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Abstract—In this paper, we address the fundamental problem
of sparse signal recovery in a Bayesian framework, where the
received signal is a multi-dimensional tensor. We further consider
the problem of dictionary learning, where the tensor observations
are assumed to be generated from a Khatri-Rao structured dictio-
nary matrix multiplied by the sparse coefficients. We consider a
Bayesian approach using variational Bayesian (VB) inference. VB
allows one to obtain analytical approximations to the posterior
distributions of interest even when an exact inference of these
distributions is intractable. We propose a novel fast algorithm
called space alternating variational estimation with dictionary
learning (SAVED), which is a version of VB(-SBL) pushed to the
scalar level. Similarly, as for SAGE (space-alternating generalized
expectation maximization) compared to EM, the component-
wise approach of SAVED compared to sparse Bayesian learning
(SBL) renders it less likely to get stuck in bad local optima
and its inherent damping (more cautious progression) also leads
to typically faster convergence of the non-convex optimization
process. Simulation results show that the proposed algorithm
has a faster convergence rate and lower mean squared error
(MSE) compared to the alternating least squares based method
for tensor decomposition.

Keywords— Sparse Bayesian Learning, Variational Bayes,
Tensor Decomposition, Dictionary Learning, Alternating Op-
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I. INTRODUCTION

In many applications such as Multiple Input Multiple Output
(MIMO) radar [1], massive MIMO channel estimation [2],
image and video processing etc., the received signals are
multidimensional (i.e tensors). Moreover, these signals can be
represented as a low rank tensor. To fully exploit the structure
of such signals, tensor decomposition methods such as CAN-
DECOMP/PARAFAC (CP) [3], [4] or Canonical Polyadic
Decomposition (CPD) [5] have been introduced. Explicitly
accounting for this tensorial structure can be more beneficial
than the matricized or vectorized representations of the data,
since the matrix decomposition cannot fully exploit the multi-
dimensional subspace structure of the data. In this paper, we
consider a generalized problem in which the dictionary matrix
can be factorized as a tensor product, which can be formulated

as
M

Y = inAl,iOAQ,i-~-OAN,i+W7 (1)

i=1
where o represents the Hadamard product between two ma-
trices, Y € Cli*f2-XIN jg the observations or data, A;; €

Cli,A; = [Aj1,...,A;n] and the tensor is represented by
[Ai,...,An;x] is called the measurement or the sensing
or the dictionary matrix which is unknown, x is the M-
dimensional sparse signal and w is the additive noise. x
contains only K non-zero entries, with K << M and
thus the dictionary matrix to be learned allows a low rank
representation. w is assumed to be a white Gaussian noise,
w ~ N(0,y7I). To address this problem when the dictionary
matrix is known, a variety of algorithms such as the orthogonal
matching pursuit [6], the basis pursuit method [7] and the iter-
ative re-weighted [; and [5 algorithms [8] exist in the literature.
In a Bayesian setting, the aim is to calculate the posterior
distribution of the parameters given some observations (data)
and some a priori knowledge. The Sparse Bayesian Learning
algorithm was first introduced by [9] and then proposed for
the first time for sparse signal recovery by [10]. The SBL
is developed around a sparsity-promoting prior for x (with
precision parameter ), whose realizations are softly sparse
in a sense that most entries are small in magnitude and close
to zero.

To find the tensor factor matrices, the most popular solution
is the alternating least squares method (ALS) [11], which
iteratively optimizes one factor matrix at a time while keeping
the others fixed. However, knowledge of tensor rank is a
prerequisite to implement this algorithm and it takes large
number of iterations to converge. Moreover, classical algo-
rithms ignore the potential statistical knowledge of the factor
matrices into account. In the literature, most of the existing
works focus on estimation of parameterized dictionary. Most
common approach is to reduce the parameter space to a
fixed grid of points, thus restricting the solution space. [12]
proposes off-grid sparse decomposition problem where the
dictionary columns are specified by unknown continuous-
valued parameters.

In the empirical Bayesian approach, an estimate of the hyper
parameters o,y and sparse signal x is performed iteratively
using Type II maximum likelihood method [13]. Recently ap-
proximate message passing (AMP) [14], generalized AMP and
vector AMP [15]-[17], [17], [18] were introduced to compute
the posterior distributions in a message passing framework
and with less complexity. But it suffers from the limitation
that only for i.i.d Gaussian A, the algorithm is guaranteed to
converge. An alternative approach to SBL is using variational



approximation for Bayesian inference [19], [20]. Variational
Bayesian (VB) inference tries to find an approximation of the
posterior distribution which maximizes the variational lower
bound on In p(y). [21] introduces a Fast version of SBL by
alternatingly maximizing the variational posterior lower bound
with respect to single (hyper)parameters.

A. Contributions of this paper

In this paper:

e We propose a novel Space Alternating Variational Es-
timation based SBL technique with dictionary learning
called SAVED compared to our previous works SAVE
[22]-[24] which was for a known dictionary matrix case.

o Numerical results suggest that our proposed solution has
a faster convergence rate (and hence lower complexity)
than (even) the existing fast SBL and performs better than
the existing fast SBL algorithms in terms of reconstruc-
tion error in the presence of noise.

In the following, boldface lower-case and upper-case charac-
ters denote vectors and matrices respectively. The operators
tr(-), ()T, ()%, (-)¥ represents trace, transpose, conjugate
and conjugate transpose respectively. A real Gaussian random
vector with mean g and covariance matrix © is distributed as
x ~ N(u,®). diag(-) represents the diagonal matrix created
by elements of a row or column vector. The operator < z > or
E(-) represents the expectation of x. ||-|| represents the Frobe-
nius norm. All the random variables are complex here unless
specified otherwise. A®B and A oB represents the Khatri-Rao
product and Hadamard proguct between the matrices A, B

respectively. We represent (O A; = A1 © Ay ©...0 Ay, We
=1
v J
represent () A; =Aj0Ayo0...
j=1

II. HIERARCHICAL PROBABILISTIC MODEL

o Ay, where A; € CLixL,

In the following sections, we represent (1) using the ten-

sor decomposition properties from [11]. Let Y; ;. repre-

sents the (1,42, ...,ix)"" element of the tensor and y =
[Y11..1,Y11,.. 2 YL, Io....Ix] " » then it can be verified that
[25],

:(Al@AQ...@AN)X+W, 2)

where © represents the Khatri-Rao product between two ma-
(H 1i) %

trices, y € C i=t and we denote A = A1 ©OAs... O ApN.
Since the sparsity measure (number of nonzero components)
of x is unknown, the following VB-SBL algorithm performs
automatic rank determination. In Bayesian compressive sens-
ing, a two-layer hierarchical prior is assumed for the x as in
[9]. The hierarchical prior is chosen such that it encourages
the sparsity property of x. x is assumed to have a Gaussian
distribution parameterized by a = [ g ... ayl,a; > 0
and real, where «; represents the inverse variance or the
precision parameter of x;.

Hp xz/az

p(x/a) =

M
=[N .0;1). 3)

i=1

Further a Gamma prior is considered over o,

M
a):Hp(ai/ab HF
=1

The inverse of noise Varrance, ol > 0 and real, is also assumed
to have a Gamma prior, p(y) = I'"*(c)d®a™ e~97. Now the
likelihood distribution can be written as,

p(y/x,7) = (2m)~NyNelly=Axil®, 5)
Note that no prior is assumed for A ;; (deterministic). Further
we consider certain factor matrices to be structured and they
are considered to be Vandermonde matrices. So we write,

ba a— 1 7bozb. (4)

Aji=[1,69%0 . 00T gy =1 8 (6)

where ¢;; represents the spatial frequency and A;,Vj =
S+1,..., N are considered to be unstructured, with S <= .
We consider certain factors to be unstructured because the
parametric forms are uncertain. For eg. in massive MIMO
channel estimation [26], the array response at the mobile
station (MS) is not exploitable. Even the array response at
the base station (BS) will typically require calibration to be
exploitable. Doppler shifts are clear Vandermonde vectors.
Delays could be more or less clear, if one goes to frequency
domain in OFDM, and one only takes into account the range of
subcarriers for which the Tx/Rx filters can be considered f-flat.
Then over those subcarriers, it’s also Vandermonde. Let A ;
represents the i*” column of A ;. For the unstructured factor
matrices also, we consider A;; = [la; H1H and further a; ; is
unconstrained and deterministic (in all the Vandermonde cases,
it is perfect, or in all cases of phasors). Assuming first entry
to be 1 is even better than ||A; ;|| = 1 because ||A;;|| =1
still leaves a phase ambiguity. With first entry= 1, the factors
are unique, up to permutation in the sum of terms of course.

We define the unfolding operation on an N** order tensor

N
[ L

Y =[Ay, ..., An;x] as [11] (Y™ is of size I,, x
i=1,i#n
below, X = diag (x)),
Y™ = A X(ANOAN 1. A1 OA, 1.0 A7),
(7

A. Variational Bayesian Inference

The computation of the posterior distribution of the pa-
rameters is usually intractable. In order to address this issue,
in variational Bayesian framework, the posterior distribution
p(x,a,v,A/y) is approximated by a variational distribution
q(x, a, 7y, A) that has the factorized form:

H 4, (1) H Qo (i) H H Qa;, (a,4)

1=17=1
®)
Variational Bayes compute the factors ¢ by minimizing the
Kullback-Leibler distance between the true posterior distribu-
tion p(x, a,v, A/y) and the ¢(x, a, v, A). From [19],

KLDyp = KL (p(x,a,v,A/y)|la(x,a,7,A))  (9)

q(x,0,7,A) = q,(7)

The KL divergence minimization is equivalent to maximizing
the evidence lower bound (ELBO) [20]. To elaborate on this,



we can write the marginal probability of the observed data as,

Inp(y) = L(q) + KLDy g, where,
,0 p(@

(10)
where 8 = {x,a,~, A} and 6; represents each independent
factor in 6. Since K LDy g > 0, it implies that L(q) is a lower
bound on In p(y). Moreover, Inp(y) is independent of ¢(8)
and therefore maximizing L(q) is equivalent to minimizing
KLDyp. This is called as ELBO maximization and doing
this in an alternating fashion for each variable in 8 leads to,

In(q;(6;)) =< Inp(y, O) >rxi +ci,
p(y,0) = p(y/x, o, 7)p(x/c)p(a)p(y).

Here <>j,; represents the expectation operator over the
distributions gy, for all k # 1.

Y

III. SAVED SPARSE BAYESIAN LEARNING

In this section, we propose a Space Alternating Variational
Estimation with dictionary learning (SAVED) based alternat-
ing optimization between each elements of 8. For SAVED, not
any particular structure of A is assumed, in contrast to AMP
which performs poorly when A is not i.i.d or sub-Gaussian.
Based on a quadratic loss function, the Bayesian estimator
of a parameter is the posterior mean; we therefore define the
variational Bayesian estimators of parameters 6 as the means
of the variational approximation to the posterior distribution.
The joint distribution can be written as,

Inp(y,0) = Nlny —y[ly — Ax|[*+

M M

Z (Ina; — oyl24)?) + Z ((a—1)Ina; +alnb— bay)
i=1 i=1

+(c—1)Invy+ clnd — dv + constants,

12)
In the following, c;,, ¢}, Ca,,Ca;, and c, represents normal-
ization constants for the respective pdfs.
Update of ¢,,(x;): Using (11), Ing,,(x;) turns out to be
quadratic in z; and thus can be represented as a Gaussian
distribution as follows,

- <
j=1 7 j=1
N N
el <(Q AT >(y—<(OQA;)><x>)+
j=1 j=1
N
<(OQ A" (QAM>> @2} = < ai > foil? + e,
J= J
= _%(IL’L — .’Bl) +C:L‘7
‘ (13)
N N
Note that we split Ax as, Ax = (O Aj)zi + (O A;7)x;,
=1 =1
N ! Ty
where ((O A;;) represents the i'" column of A, (© A7)
j=1 i=1

th

represents the matrix with ¢** column of A removed,

x; is the " element of x, and x; is the vector with-
out x;. A,; represents A; with ith column of A; re-

moved Usrng the property of the Khatri-Rao products that
(@ AHH (@ Aj) Q AN A; derived in [27, Lemma
j=1

1], we simplify (6 A (@ Aji) = (O Aj,iAj,i) =
N

H1 1A, (@ AT (@ A= (O ATA ;). Clearly,
j

the mean and the Varlance of the resultrng Gaussian distribu-

tion becomes,
o? = 1 ,
<> H <A l12> + <a;>
Jj=

N
@Zaz((@lA )My (O

< x; >=

g
ATA ) <x;>) <7 >,

(14)
where Z; represents the point estimate of z; and A;; = 1<
afl, >]", < a;; > being the mean of a;; which follows from
the below derivation for a; ;.

Update of ¢, (a;;): For convenience of the analysis, we
1

O A

k=N,k#j

1
OALV; =<X>( O <
k=N, k#j

1 1
O AYT( O AXT >

k=N, k#j k=N, k#j

We go back to the tensorial representation to derive ga; , (a;,;).

The variational approximation leads to the following Gaussian

distribution for the vector a; ;,

define the following terms. X = diagx, =

AN@ANil...A.jJrl@Ajil...

Ak >)T7Wj =< X(

Inga,,(a;:) = — <7 > Y = [A1, .., Ax;x]||* = -
<y >tuf{-YOVIAT + A;V, Y0 + A;W;ATY 4 ¢
(15)
We used here the fact that [11] |A||* = tr{A® (A®)H} for
a tensor A. A;W; AH can be written as, tr{A; ;W AH it
“terms 1ndependent of a;;”, which gets srmphﬁed as
wr{W;,}||a;;|*+ “terms independent of a;,”. Finally, the
mean and variance of the resulting Gaussian distribution can
be written as,

) 1
<aj; >=a; = (b, bj=YI( O <Ax>)c,
k=N .k#j
N
Tj,l = Bj,iL Bj,i = tr{< X( O AEAZ)XH >}

k=1,k#j (6)

where ¢; = [0, ..,0,2;,0,..0/7 represents the vector with all
zeros except at zth location. Also, we can write < ||A ||> >=
1+ |[@,,]1> + B;4(I; — 1), which gets used in (14). For
computing 3;;, we use the independence assumption of the
variational distributions q of x;, A;. So terms of the form
A{ZA,’;Z >= ||A;H|| and < AfZAzZ >=< AT
A*]> <@z >= <$1><1J >, Vz#y
Update of ¢, (al) ¢~ (7): The variational approximation leads
to a Gamma distribution for the ¢q, (), ¢ (). The detailed
derivations can be found in our paper [22]. They are parame-

Z



terized by just one quantity which is the mean of the Gamma
distribution, given by,

+1 ~
<oy >= (<|xa‘27>+b)’ where < ‘x1|2 >= ‘xl‘Q + 0'22
<y>= S S
(< yf(_@lAj)x >+d)
=
a7

N N ~
where, < lly — (O Aj)x[* >= Iyl* = 2y"(O < A; >
j=1 j=

—

N
% + (O < AVA; >)ER1 + %)),

j=1
¥ = diag(o?, 03, ..., 03;), X = [T1, T2, ..., Zps). From

(14), it can be seen that the estimate X converges to the L-
MMSE equalizer, x = (A7 A + -2~ TAfly.

A. Joint VB for A;

In this section, we treat the columns of the factor matrix A ;
jointly in the approximate posterior using VB. We also define
for the convenience of the analysis, A; = [1 AX]H, where
Ag ; represents all other rows except the first and 1 represents
a column vector (of size M) with all ones.

lnqu(Aj) =—<7>< HYi ﬂAla )
w{-YOVIALT — AV, YO H

Anx]|f7 >=
CAWAR L en,
(18)
Defining B; as with the first column of (Y )V removed.
M N
So tr{-YOVHAIY = S (YD) < (O Ap)*

i=1 k=1,k#j
X" >)y i +u{B;AL ;- Now consider the term A; W Al =

1 AH ]HW 1 AH ] which can be simplified as,

><

1¥W;1 19W,AH
Ap Wil A WAl
(19)

[LAZJIW,[1AF ] =

Finally (18) gets simplified as,
Inga,(A;) =< > tr{B; AH }—|— <y >tr{Az Bf}

N
— <7 >tr{A1j < X(k pk#l
=1, J

< ATA; >)XH > A{fj}

(20)
It can be seen that (20) corresponds to the functional form
of a circularly-symmetric complex matrix normal distribution
[28]. This can be represented for a random matrix X € C™*P
as p(X) o exp(—tr{® (X — M)7 ¢ (X — M)}), which
is denoted as CMN (X | M, ¢, ®). Thus the variational
approximation for Aj; gets represented as CMN(Ag; |

M;,1;,,%;).
Mj = AT,j =77 > BJ‘I’]
X T A * H -1 (21)
T, =(<y><X O <A A >X">)

k=1 k#j

N(vec(Mj), ¥; ®1I,), so the terms
> in (14) becomes, < [|A,|

14 ||M 1> + (®;);0. (), is the i diagonal element of
W, and M ; represents the it" column of M;. Also, we can
represent AHA =117 + MHMj + 1.

Note that vec(Af )~
of the form < HA-_] LH

B. Estimation of the Parametric Dictionary

Considering the structured factor matrices which are Van-
dermonde, we estimate the spatial frequencies using least
sqaures method. We define the operator In(A;;) as the
elementwise natural logarithm, A;; being the unstructured
estimate. Now, the spatial frequencies can be estimated as
follows,

b= —j(dfldy,)” 1de In(A;,),vj=1,..
where, d;, = [0 1., I — 17,

oS, 22)

C. Computational Complexity

For our proposed SAVED, it is evident that we don’t need
any matrix inversions compared to [18], [21]. Update of all the
variable x, a,~ involves simple addition and multiplication
operations. We introduce the following variables, e = y7 <
A >and E =< ATA >. e, E and ||y| |? can be precomputed,
so only computed once. We also introduce the following
notations, x;,_ = [z1...7;_1]7,x;+ = [ziy1...200]7. Also we
represent v/ =< v >, al =< o; >, 2t =7, and =" = ¥ in
the following sections, where t represents the iteration stage.
Algorithm 1 SAVED SBL Algorithm
Given: y, A, M, N.

Initialization: a,b,c,d are taken to be very low, on the
order of 1071, oY = a/b,Vi,s° = ¢/d and 0. =
o, X0 = 0.

[[Ail[2y0+a?”

At iteration ¢ + 1,

1) Update 02", ,Vi from (14) using x;*" and x¢, .

2) Update AN,W,] from (16) or A; from (21).

3) Compute < x?’tH > from (17) and update o.

4) Update the noise variance, v*** from (17).

5) Continue steps 1 — 4 till convergence of the algorithm.

6) Compute the spatial frequencies for the parametric com-

ponents A, j =1,...,5 from (22).

t+1

IV. SIMULATION RESULTS

In this section, we present the simulation results to validate
the performance of our SAVED SBL algorithm (Algorithm
1) compared to state of the art solutions. We compare our
algorithm with the classical ALS [11]. For the simulations,
we consider a 3 — D tensor with dimensions (4, 4,4) and the
number of non-zero elements of x or the rank of the tensor (no
of non-zero elements of x) is fixed to be 4. All the elements
of the dictionary matrix A, Ay, A3 and non-zero elements
of x are generated i.i.d complex Gaussian, CN'(0, 1) and the
singular values are modified to convert the matrices such that
they have a particular condition number (= 2). This is done
to ensure that the system identifiability is not affected by the
Krushkal ill-conditioning [11]. Normalized Mean Square Error
(NMSE) is defined as NMSE = - 2, X represents
the estimated value, NMSEgp = 10log I0(NMSE). In
Figure 1, we depict the normalized MSE (NMSE) performance
of our proposed SAVED algorithm with the classical ALS
algorithm which doesn’t utilize any statistical information
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Fig. 2. Execution time in Matlab for the various algorithms.

about the dictionary or sparse coefficients. Our SAVED al-
gorithm has much better reconstruction error performance
compared to the ALS and our joint VB version performs
better than the SAVED version, but comes with a higher
computational complexity due to the matrix inversion. It is
clear from Figure 2 that proposed SAVE approach has a faster
convergence rate than the ALS.

V. CONCLUSION

We presented a fast SBL algorithm called SAVED, which
uses the variational inference techniques to approximate the
posteriors of the data and parameters. SAVE helps to circum-
vent the matrix inversion operation required in conventional
SBL using EM algorithm. We showed that the proposed
algorithm has a faster convergence rate and better performance
in terms of NMSE than even the state of the art fast SBL
solutions. Possible extensions to the current work might in-
clude: i) Convex combination of structured and unstructured
KR factor matrices, for e.g., DoA response closeness to
the vandermonde. iii) Asymptotic performance analysis and
mismatched Cramer-Rao bounds for the SAVED algorithm.
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