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Abstract—Several key wireless communication setups call for
coordination capabilities between otherwise interfering trans-
mitters. Coordination or cooperation can be achieved at the
expense of channel state information exchange. When such
information is noisy, the derivation of robust decision-making
algorithms is unfortunately known to be very challenging via
conventional optimization method. In this paper we introduce
a learning-based framework which allows the agents, aka. the
transmitters, to produce as-relevant-as-possible messages to each
other on the basis of arbitrarily partial and noisy local channel
state information. The messages are produced via distributed
deep neural networks (DNNs) which are trained for a specific
coordination purpose. The message-passing DNNs are completed
with decision-making DNNs which are trained for a network
metric maximization. Promising preliminary results are obtained
in the context of sum-rate maximizing decentralized power
control.

Index Terms—Deep learning, rate maximization, power con-
trol, decentralized wireless network, information sharing, coor-
dination, cooperation

I. INTRODUCTION

The number of wireless devices is increasing over years
as the demand for mobile data services is still sharply rising
and diversifying. Past research on dense interference-limited
wireless networks has shown the potential of enabling co-
operation or coordination mechanisms between transmitters
sharing the same spectral resources, with coordination gains
being achieved in various resource allocation domains such
as time, frequency, beam and power [1]. It is well known
that coordination gains go at the expense of the exchange
of channel state information between the coordinating agents.
In practice such exchange mechanisms may or may not be
established, depending on the availability of a near-ideal
backhaul optical-fiber based network. In many setups however,
inter-node communication is subject to rate limitation and
latency which prevents the application of centralized algo-
rithms. In contrast, coordination in the face of noisy and partial
inter-node signaling calls for robust forms of decentralized
decision-making which are famously difficulty to obtain by
conventional control and optimization methods [2]. In such
scenarios, the design problem is twofold: (1) Establishing the
nature of the messages which nodes can exchange among each
other prior to decision, under the communication link quality
constraint, and (2) design of a robust decision making policy
making use of the exchanged messages.

In this paper, we revisit this problem in the context of
throughput maximizing power control among a set of band-

sharing transmitter-receive pairs. While the literature on power
control is abundant including for decentralized cases [3] [4],
and moreover deep learning approaches [5] [6], this research
departs in significant ways from past work in that we consider
that each decision making agent (i.e. each transmitter) (i) must
make an independent decision so as to maximize the network’s
sum throughput, (ii) must do so in the presence of channel gain
information (CGI) feedback of arbitrary nature, (iii) can ex-
ploit a limited message communicated from other transmitters.
Challenging questions arise in this context as to what form
should the limited information to be exchanged among the
agents take. Intuition has it that such message should convey
a combination of channel state information (CGI) and possibly
some power control decision-related information, although
the optimal form of the message is still elusive. Another
question lies in what optimal power control decision should
be taken at each node, based on locally available CGI and
the exchanged messages. Faced with analytical intractability
of such questions, we consider a (deep-) learning framework
where each agent is endowed with two deep neural networks
(DNNs). One DNN specializes in formulating a message
intended to other agents based on its local CGI and statistical
CGI everywhere. The other DNN is tasked with taking the
power control decision. This approach can be viewed as an
extension of the so-called Team DNNs introduced in [7].
The main difference being the absence of communication
between agents in [7]. Note that the DNNs we envision for
message sharing maybe compared with DNNs used in auto-
encoder fashion in [8]. However our message formulating
DNNs sharply differ from such structures as their goal is
not to encode a given message optimally for transmission but
instead the objective is itself to formulate a message that is
as relevant as possible to the destination agent so as to help
with power control coordination. Also, the goal of our paper
may be similar to [9], however, our works differs in a fact that
iterative message exchange is involved in [9] to train DNN via
reinforcement learning.

In summary our contributions are:
• We propose a deep learning framework for power control

scheme in decentralized networks considering limited
message exchange between agents. Two DNN modules
are designed, namely message maker and decision maker,
to formulate the messages and to make decisions, respec-
tively.

• We investigate the effect of DNN-designed information



exchange in terms of quantization and noise. The robust
operation of the proposed scheme with respect to noise
and quantization is shown through simulations.

II. BRIEF OVERVIEW OF DEEP LEARNING

The essential component of deep learning is DNN where
the multiple layers of perceptrons are connected in tandem.
Herein, we aim to utilize a special characteristic of DNN
which is known as the universal approximator [10]. We intend
to use DNN as a function approximator in which the goal of
the function is to output a value of transmit power that can
maximize the sum rate.

The basic unit of DNN is a neuron that connects from
the previous layer to the next layer with the multiplication
of weights, the addition of biases and wrap-up of non-linear
activation function which can be expressed as φ(WX + b),
where x is the input matrix, W is the weight matrix, b is
the bias vector, and φ(·) is the activation function. Then, the
output of L-layer DNN can be expressed as set out below.

f(X;θ) = φL(WLφL−1(...φ1(W1x+ b1)...) + bL) (1)

Here, θ means the parametric representation of DNN with
the set of weights and biases {W , b}. Since we intend to use
DNN as a decision maker that uses the available information,
i.e., locally estimated CGI, to derive a solution, i.e., transmit
power, the DNN can be considered as a function f(·;θ) that
maps from the input CGI to the output power.

The parameters in DNN must be updated based on the
training data such that the objective function (loss function)
is optimized. The principle of updating the DNN parameters
is based on stochastic gradient descent (SGD) algorithm in
which the error of the loss function is back-propagated from
the output nodes to the input nodes based on the gradient of
each layer which is calculated by the chain rule. Note that
many variations of the SGD algorithm are used to improve
the training [11].

III. SYSTEM MODEL

A. System setting

We consider a wireless network system where there are K
pairs of single-antenna transmitters (Txs) and single-antenna
receivers (Rxs). All Tx-Rx pairs are sharing the time and fre-
quency resource such that transmit power should be properly
controlled in order to mitigate the interference. The channel
gain between Tx i and Rx j is denoted as gi,j , then, the
channel gain matrix G ∈ RK×K , where the i-th row and j-th
column refers to the channel gain gi,j , represents the overall
channel gain information for the whole system. Each Tx i has
continuous power control pi with a limited transmit power
Pmax, i.e., 0 ≤ pi ≤ Pmax. One of general goals to optimize
such a system is to maximize the sum rate of all Tx-Rx pairs
as below.

max
p1,...,pK

R(p1, . . . , pK)=

K∑
k=1

log2

(
1 +

gk,kpk
N +

∑
k 6=j gk,jpj

)
.

(2)
Here, R(·) is the sum rate and N denotes the noise power. This
optimization problem is NP-hard and non-convex problem
even when the knowledge of perfect channel gain information
(PCGI) is available at all Tx-Rx pairs [12].

B. Team decision problem

In a team decision problem, the decision makers, i.e., Tx-
Rx pairs, try to make decisions in a decentralized manner in
order to achieve a common objective for the whole system.
Let G be the perfect system state, then, the locally estimated
system state at DM node i is denoted as Ĝ(i) ∈ RK×K . Also,
let pi(Ĝ(i)) denote the transmit power decided by Tx i given
the locally estimated system Ĝ(i). Then, the team decision
problem for power allocation can be formulated as follows

(p∗1, . . . , p
∗
K)

= argmax
p1,...,pK∈P

E
[
R
(
G, p1(Ĝ(1)), . . . , pK(Ĝ(K))

)]
(3)

where the expectation is taken with respect to (w.r.t.) the
joint probability pG,Ĝ(1),...,Ĝ(K) , and P is defined as P ,
{(p1, . . . , pK)|0 ≤ pi ≤ Pmax}. Then the optimal power
solution is chosen to maximize the expected sum rate of the
whole system.

IV. DEEP LEARNING FRAMEWORK WITH INFORMATION
SHARING

The team decision problem stated in (3) is a very chal-
lenging problem because the decision is made with only the
information of local estimate and the joint probability, there-
fore, we assume that information sharing between transceiver
pairs is enabled1 so that shared information can give the hint
to decision making. Our proposed Team-DNN model with
information sharing is depicted in Fig. 1 for the 2-user case.
We define the message si,j as the shared information from Tx
i to j and let ŝk be the received message vector at Tx k. It
should be noted that the message si,j is a single scalar value.
Then, the team decision with information sharing problem can
be formulated as the following.

(p∗1, . . . , p
∗
K) =

argmax
p1,...,pK

E
[
R
(
G, p1(Ĝ(1), ŝ1), . . . , pK(Ĝ(K), ŝK)

)]
(4)

Unlike the Team-DNN model without information sharing
[7], the proposed model requires an additional module to gen-
erate the message to be shared. Since the module that decides
the power is called as the decision maker, pk(Ĝ(k), ŝk), the
message generating module is denoted as the message maker,
sk,j(Ĝ

(k)), which can be mathematically expressed as follows.

1Such communication protocols are available in the existing communication
systems such as X2 interface of LTE or D2D communication
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Fig. 1: Team-DNN model with information sharing.

pk(Ĝ(k), ŝk) = fk(X;θfk )

= φL(W f
LφL−1(· · ·φ1(W f

1 x+ bf1 ) · · · ) + bfL)
(5)

sk,j(Ĝ
(k)) = gk(X;θgk)

= φL(W g
LφL−1(· · ·φ1(W g

1 x+ bg1) · · · ) + bgL)
(6)

It should be noted that the message maker delivers the mes-
sages not only to other Txs but also to its own decision maker
as described in Fig. 1. This connection allows the decision
maker to easily recognize its own sharing information.

DNN-node-graph is connected all the way from the input
node of message maker to the output of decision maker such
that the message maker is able to be trained in accordance
with the decision maker. In other words, the message maker
is trained to generate the best message to convey useful
information and the decision maker is trained to decode the
received message from the message maker. The messages si,j
are exchanged over the wireless channel such that they are
likely to be corrupted with noise which can be expressed as
ŝi,j = si,j + n. Moreover, the messages should be quantized
in bits just like other types of data, therefore, the received
messages is denoted as ŝi,j = [si,j ]q+n. Here, [·]q refers to the
round function for quantization and n is the Gaussian noise.
The effects of quantization and noise of the shared messages
are discussed further in Section V.

The training procedure is composed of two stages as de-
scribed in Fig. 2. First, in the training stage, all pairs of

transceiver pairs are jointly trained so that the DNNs can learn
the joint probability of CGIs, pG,Ĝ(1),...,Ĝ(K) . Then, in the
test (operation) stage, each Tx is fed with only the local CGI
and messages received from other Txs. The advantage of such
deep learning based scheme is that the training stage may
take a number of training samples and require a long time to
train for a sufficient training, however, in the test stage, only
one feed-forward operation is required for each channel input
which takes much less time, i.e., 6× 10−5s per one solution.

V. PERFORMANCE EVALUATION

In this section, we describe the CGI model that are used
in the simulation ands details of the DNN parameters for the
proposed Team-DNN model. The performance of the proposed
scheme is compared with conventional power control schemes
in terms of sum rate. Also, we show how the information
sharing structure affects the performance. Then, the effect of
quantization of the message and additive noise to the message
is shown.

We use additive white Gaussian noise model [7] for the
distributed CGI in the simulation. For a brief explanation,
when the noise level Σ(k) increases from 0 to 1, the CGI
information diminishes to 0 as can be seen in (7)

Ĝ(k) , Σ̄(k) ◦G + Σ(k) ◦∆(k)

Σ̄(k) ,
√

1K×K − (Σ(k))2
(7)

where ◦ denotes the element-wise multiplication for matrices.
Throughout the simulations, we consider 2-user case sce-

nario and the signal-to-noise-ratio (SNR) is fixed to 10 dB. For
the training stage, 4000 randomly generated training data is
used and the DNNs are trained for 1000 epochs with the batch
size equal to 400 using the Adam optimizer at the learning
rate of 0.00003. In the test stage, 10000 samples are used for
evaluation. Both the message maker and the decision maker
are composed of 4 layers of fully-connected network with
50 hidden nodes per layer. ReLU function [15] is used for
the activation layer, and we assume that Σ(1) = [σ, σ;σ, σ],
Σ(2) = [0, 0; 0, 0] for the Figs. 3, 4, and Σ(1) = [0, σ; 0, σ],
Σ(2) = [σ, 0;σ, 0] for the Figs. 5, 7 in order to observe more
distinctive effects w.r.t. quantization and noise level.

In Fig. 3, the sum rate of the proposed Team-DNN with in-
formation sharing is compared with the conventional schemes
explained below.
• Egoistic: Each Tx transmits at the maximum power

without any interference management.
• TDMA: Each Tx transmits at its turn at the maximum

power without any interference.
• Naive (WMMSE): Each Tx decides its transmit power

with WMMSE scheme [13] based on its local CGI
estimate.

• Centralized WMMSE: Power is centrally determined with
WMMSE scheme based on the perfect CGI using [13].

The proposed DNN-based scheme outperforms the centralized
WMMSE scheme when it is allowed to exchange information.
Comparing to the Naive (WMMSE) scheme, we can see
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Fig. 2: Deep learning framework for decentralized network.

that sharing information between users can compensate the
distributed CGI.

In Fig. 4, the sum rate of different configurations of informa-
tion sharing are shown. It is interesting to see that when there
is no message from user 1 (who has the noisy CGI) to user 2
(who has the perfect CGI) it can perform as good as the bi-
directional info-sharing. It can be interpreted that information
sharing can be useless depending on the information structure.
For the other case in which user 2 shares no information to
user 1, it performs better than the case without sharing when
noise is small but it becomes as bad when the noise level
increases.

In Fig. 5, the sum rate of different noise level in the shared
information is shown. As explained in the previous section,
additive Gaussian noise is applied to the sharing messages.
As can be expected, the performance degrades as the noise
variance increases. Also, this result implies that DNN can learn
to share information in the noisy environment.

In Fig 7, we assume that the shared information is quantized
in bits as of most data are quantized. As can be expected,
more bits of shared information result in better performance.
It is tricky to quantize information in deep learning framework
because all the functions that comprises the DNN graph must
be differentiable in order to calculate the gradient from end
to end, and quantization (step function) has zero gradient. We
adopt the approach used in [14] for message quantization in
our paper. In order to properly train DNN, we first start with
a sigmoid function sigmoid(x, k) = 1

1+e−px with p = 1 and
increase the slope p proportional to the number of training
epochs which can be seen in Fig. 6. Thereby, at the end of
the training stage, the sigmoid function converges to the step
function so that the step function can actually be used in the
test stage.

VI. CONCLUSIONS AND FURTHER WORKS

In this work, we have proposed the deep learning based
continuous power control scheme in a decentralized network
where the information sharing between nodes are enabled.
We have shown by simulation results that the information

Fig. 3: Comparison of the proposed DNN based scheme and
conventional schemes.
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Fig. 5: Sum rate of the proposed scheme by varying the noise
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Fig. 6: Sigmoid function for quantization.
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Fig. 7: Sum rate of the proposed scheme by varying the
number of bits of shared information.

sharing can compensate the lack of information in distributed
CGI such that the performance of the proposed scheme in
a distributed CGI setting can achieve the performance of the
perfect CGI setting. Also, the effects of the shared information
limited by quantization and noise power have been shown.

For future works, it will be interesting to see how different
methods of initialization help to train DNN better. Further-
more, it is important to show that the DNN trained in a specific
setting or trained with a specific dataset can be applied to other
environment and work as well. For instance, comparison of the
performance for different SNRs of the DNN which is trained
at a particular SNR, e.g., SNR 10 dB.
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