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Abstract—This work deals with coordinated beamforming (BF)
for the Multi-Input Single-Output (MISO) Interfering Broadcast
Channel (IBC), i.e. the MISO Multi-User Multi-Cell downlink
(DL). The novel beamformers are here optimized for the Expected
Weighted Sum Rate (EWSR) for the case of Partial Channel
State Information at the Transmitters (CSIT). Gaussian (pos-
terior) partial CSIT can optimally combine channel estimate
and channel covariance information. With Gaussian partial
CSIT, the beamformers only depend on the means (estimates)
and (error) covariances of the channels. We extend a recently
introduced large system analysis for optimized beamformers with
partial CSIT, by a stochastic geometry inspired randomization
of the channel covariance eigen spaces, leading to much simpler
analytical results, which depend only on some essential channel
characteristics. In the Massive MISO (MaMISO) limit, we obtain
deterministic approximations of the signal and interference plus
noise powers at the receivers, which are tight as the number
of antennas and number of users M,K → ∞ at fixed ratio.
Simulation results exhibit the correctness of the large system
results and the performance superiority of optimal BF designs
based on both the MaMISO limit of the EWSR and using Linear
Minimum Mean Squared Error (LMMSE) channel estimates.

Index terms— Massive MIMO, stochastic geometry, partial
CSIT, ergodic weighted sum rate, optimal beamforming

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter
/transmission and Rx may denote receive/receiver/reception.
Interference is the main limiting factor in wireless
transmission. Base stations (BSs) disposing of multiple
antennas are able to serve multiple Mobile Terminals (MTs)
simultaneously, which is called Spatial Division Multiple
Access (SDMA) or Multi-User (MU) Multi-Input Multiple-
Output (MIMO). The recent development of Massive MIMO
(MaMIMO) [1] opens new possibilities for increased system
capacity while at the same time simplifying system design.
However, MU systems have precise requirements for Channel
State Information at the Tx (CSIT) which is more difficult
to acquire than CSI at the Rx (CSIR). [2] proposes optimal
beamformers (BFs) in the case of partial CSIT in the massive
MISO limit.

Gaussian (posterior) partial CSIT can optimally combine
channel estimate and channel covariance information. Recently
a number of research works have proposed to exploit the
channel hardening in Massive MIMO (MaMIMO) to reduce
global instantaneous CSIT requirements to local instantaneous
CSIT plus global statistical CSIT. Indeed, in Massive MISO
systems, the received signal and interference powers converge
to their expected value due to the law of large numbers. We

may remark that in the case of MIMO (not considered here),
in which UEs possess a limited number of Rx antennas which
contribute actively (e.g. to Zero-Forcing (ZF)/Interference
Alignment (IA) at high SNR), the interference subspace and
hence the receiver at the UEs does not harden. A major
work on large system analysis for MaMISO systems is [3].
The authors obtain deterministic (instead of channel real-
ization dependent) expressions for various scalar quantities,
facilitating the analysis and design of wireless systems. E.g.
it may allow to evaluate beamforming performance without
computing explicit beamformers. The analysis in [3] allowed
e.g. the determination of the optimal regularization factor
in Regularized ZF (R-ZF) BF, both with perfect and partial
CSIT. In [4], the authors investigate the deterministic limits
for optimal beamformers, but only for the perfect CSIT MISO
BC (broadcast channel) case. Some other extensions appeared
recently in [5] or [6] where MISO IBC is considered with
perfect CSIT and weighted Regularized Zero-Forcing (R-ZF)
BF, with two optimized weight levels, for intracell or intercell
interference. [7] studied the energy consumption dynamics in
a MISO BC with users moving around according to a random
walk model. Recently large system analysis was applied to
investigate the BF designs for the power minimization prob-
lem with quality-of-service (QoS) targets at the users [8],
[9]. [10] applies large system analysis to reduced order ZF
beamforming for the simplified case of differently attenuated
channel covariance matrices of the users. [11], [12] proposes
the Expected Weighted Sum MSE (EWSMSE) based approach
for BF design under partial CSIT. However EWSMSE is
suboptimal and cannot even be used in the case of zero channel
mean (covariance CSIT only information). [2] proposes a
large system analysis for optimized BF with partial CSIT as
considered here. Furthermore, the channel, channel estimate
and channel error covariances can all be arbitrary and different
for all users. However, the resulting deterministic analysis is
quite cumbersome and does not allow much analytical insight.
In stochastic geometry based methods [13], the location of the
users is assumed to be random, their geographic distribution
then inducing a certain probability distribution for the channel
attenuations. Whereas most stochastic geometry work focuses
on the distribution of the attenuations, here we consider an
extension to multi-antenna systems. The multipath propagation
for the various users leads to randomized angles of arrival at
the BS which can be translated into spatial channel response
contributions that depend on the antenna array response. In the
massive MIMO regime in which the number of BS antennas



gets very large, it has been observed and exploited that despite
complex multipath propagation, the channel covariance matrix
tends to be low rank. Exploiting the randomized nature of
the user and scatterer positions and making abstraction of the
antenna array response, we proposed to model the user channel
subspaces as isotropically randomly oriented. This allows us
to assume the eigen vectors of the channel covariance matrix
to be Haar distributed, and this identically and independently
for all users.

A. Contributions of this paper

In this paper:
• We first review optimal BFs for the expected weighted

sum rate (EWSR) criterion in the MaMISO limit.
• We evaluate the ergodic sum rate performance for Least-

Squares (LS), LMMSE and subspace projection chan-
nel estimators. Numerical results suggest that there is
substantial gain by exploiting the channel covariance
information compared to just using the LS estimates.

• New large system analysis for various cases of BF with
partial CSIT is proposed, with a randomized analysis of
the covariance subspaces, leading to much simpler results.
This constitutes a marriage between large system analysis
and multi-antenna stochastic geometry.

• Simulation results indicate that the large system approx-
imations are very accurate even for small system dimen-
sions and reveal the deterministic dependence of the sys-
tem performance on several important scalar parameters,
such as the channel multipath attenuation profile, signal
powers and SNR (whereas [2] doesn’t lead to any such
tractable analytical solutions).

Notation: In the following, boldface lower-case and upper-case
characters denote vectors and matrices respectively. The oper-
ators E(·), tr(·) , (·)H , (·)T represents expectation, trace , con-
jugate transpose and transpose respectively. diag(·) represents
the diagonal matrix formed by the elements (·). A circularly
complex Gaussian random vector with mean µ and covariance
matrix Θ is distributed as x ∼ CN (µ,Θ). Vmax(A,B) or
Vmax(A) represents (normalized) dominant generalized eigen
vector of A and B or (normalized) dominant eigen vector of
A respectively and λmax(A) is the corresponding max eigen
value.

II. MISO IBC SIGNAL MODEL

We consider here an IBC with C cells with a total of
K single antenna users. We shall consider a system-wide
numbering of the users. User k is served by BS bk. The
received signal at user k in cell bk is

yk=hH
k,bk

gk xk︸ ︷︷ ︸
signal

+
∑
i̸=k

bi=bk

hH
k,bk

gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j ̸=bk

∑
i:bi=j

hH
k,j gi xi︸ ︷︷ ︸

intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) scalar signal
stream, hk,bk is the Mbk × 1 channel from BS bk to user
k. The Rx signal (and hence the channel) is assumed to be

scaled so that we get for the noise vk ∼ CN (0, 1). BS bk
serves Kbk =

∑
i:bi=bk

1 users. The Mbk × 1 spatial Tx filter
or beamformer (BF) is gk.

III. CHANNEL AND CSIT MODEL

For simplicity, we omit all the user indices k. We start from
a deterministic Least-Squares (LS) channel estimate

ĥLS = h+ h̃, (2)

where h is the true MISO channel, and the error is modeled as
circularly symmetric white Gaussian noise h̃ ∼ CN (0, σ̃2I).
Now each MISO channel is modeled according to a correlation
structure as follows,

h = Cc, c = D1/2c′, (3)

where c′ ∼ CN (0, IL) and D is diagonal. Here C is the M×L
eigen vector matrix of the reduced rank channel covariance
Rhh = CDCH . The total sum rank across all users Np =
K∑

k=1

Lk,c is assumed to be less than Mc, where Lk,c is the

channel rank between user k and BS c. Assuming the channel
covariance subspace is known, the LMMSE channel estimate
can be written as ĥ = CDCH

(
CDCH + σ̃2I

)−1
ĥLS . Ap-

plying the matrix inversion lemma and exploiting CHC = IL,
this simplifies to

ĥ = C
(
σ̃2D−1 + I

)−1
CH ĥLS = CD̂1/2ĉ, (4)

where D̂ =
(
σ̃2D−1 + I

)−1
D and ĉ = D−1/2(σ2D−1 +

I)−1/2CH ĥLS . The posterior error covariance becomes

Rh̃h̃ = CDCH −CDCH
(
CDCH + σ̃2I

)−1
CDCH , (5)

which the matrix inversion lemma allows to simplify to,

Rh̃h̃ = C
[
D−

(
σ̃2D−1 + I

)−1
D
]
CH = CD̃CH . (6)

So we can write for S = Eh|ĥ
(
hhH

)
= ĥ ĥH + Rh̃h̃ =

CWCH , where W = D̂1/2ĉĉHD̂1/2 + D̃.

IV. PARTIAL CSIT BF BASED ON DIFFERENT CHANNEL
ESTIMATES

In the MaMIMO limit, BF design with partial CSIT will
depend on the quantities S = Eh|ĥ

(
hhH

)
= ĥ ĥH + Θ̃. We

shall consider three possible channel estimates.
(i) LS Channel Estimate
We have ĥLS = h+ h̃ where h and h̃ are independent. In the
LS case, Θ̃ = σ̃2I. If we want however S to be an unbiased
estimate for hhH , then we shall take Θ̃ = −σ̃2I.
(ii) LMMSE Channel Estimate
We have h = ĥ + h̃ in which ĥ and h̃ are decorrelated
and hence independent in the Gaussian case. In the LMMSE
case, Θ̃ = Ch̃h̃ is the posterior covariance. The resulting
S = ĥĥH + Θ̃ now forms an unbiased estimate of hhH :
EĥS = Rhh.
(iii) Subspace Projection based Channel Estimate
We also investigate the effect of limiting channel estimation



error to the covariance subspace (without the LMMSE weight-
ing, this is a simplification of the LMMSE estimate). The
subspace channel estimate is given as,

ĥS = PC ĥLS = h+ PC h̃LS , Ch̃Sh̃S
= σ̃2PC , (7)

where PC = C(CHC)−1CH represents the projection onto
the covariance subspace. Estimates for hhH :
(a) Naive Subspace Channel Estimator, S = ĥSĥ

H
S =

CĉĉHCH ,
(b) Subspace Channel Estimator, S = ĥSĥ

H
S + Ch̃S h̃S

=

C(ĉĉH + σ̃2I)CH ,
(c) Unbiased (S) Subspace Channel Estimator, S = ĥSĥ

H
S −

Ch̃S h̃S
= C(ĉĉH − σ̃2I)CH .

A. BF with Partial CSIT

Three types of BF design with partial CSIT can be analyzed.
In the case of partial CSIT we get for the Rx signal,

yk = ĥH
k,bk

gk xk + h̃H
k,bk

gk xk︸ ︷︷ ︸
sig. ch. error

+

K∑
i=1,̸=k

(ĥH
k,bi gi xi + h̃H

k,bi gi xi︸ ︷︷ ︸
interf. ch. error

) + vk .

(8)

1) Naive BF EWSR: just replace h by ĥ in a perfect CSIT
approach. Ignore h̃ everywhere. 2) Optimal BF EWSR: ac-
counts for covariance CSIT in the signal and interference
terms. 3) EWSMSE BF (Expected Weighted Sum MSE) [11]:
accounts for covariance CSIT in the interference terms, but
also associates the signal h̃ term with the interference !

B. Max EWSR BF in the MaMISO limit (ESEI-WSR)

The scenario of interest here is to design optimal beam-
formers when there is only partial CSIT. Once the CSIT is
imperfect, various optimization criteria such as outage capacity
can be considered. Here the design is based on expected
weighted sum rate (EWSR) (and in a first instance with
LMMSE channel estimates). The actual EWSR represents two
rounds of averaging. In a first stage, the WSR is averaged
over the channels given the channel estimates and covariance
information (i.e. the partial CSIT), leading to a cost function
that can be optimized by the Tx. The optimized result then
needs to be averaged over the channel estimates to obtain
the final ergodic WSR. In the MaMISO limit, due to the
law of large numbers, a number of scalars converge to their
expected value, facilitating averaging the WSR. From the law
of total expectation and motivated from the ergodic capacity
formulations [14] (point to point MIMO systems), [15] (multi
user MISO systems),

EWSR = Eĥ maxg EWSR(g),

EWSR(g) = Eh|ĥWSR(g) =

K∑
k=1

uk Eh|ĥ ln(sk/sk)

(a)
=

K∑
k=1

uk ln((Eh|ĥsk)/(Eh|ĥsk)) =

K∑
k=1

uk ln(r−1

k
rk),

(9)

where transition (a) represents the MaMISO limit leading to
ESEI-WSR (Expected Signal Expected Interference WSR), uk

are the rate weights, g represents the collection of BFs gk.
sk is the (channel dependent) interference plus noise power
and sk is the signal plus interference plus noise power. Their
conditional expectations are

rk = 1 +
∑
i ̸=k

Eh|ĥ|h
H
k,bigi|2 = 1 +

∑
i ̸=k

gH
i Sk,bigi,

rk = rk + gH
k Sk,bkgk, Sk,bk = Ck,bkWk,bkCk,bk .

(10)

Further we split gk = g′
kp

1/2
k , where pk is the power allocated

to user k, and ||g′
k|| = 1. By adding the Lagrange terms for the

BS power constraints,
C∑

c=1

µc(Pc−
∑

k:bk=c

||gk||2), to the EWSR

in (9), we get the gradient (with αk = uk

rk
, βk=uk(

1
rk

− 1
rk
))

∂EWSR

∂g∗
k

= αkSk,bk gk − (
∑
i ̸=k

βiSi,bk + µbk I)gk = 0,

(11)
with Si,bk = Ci,bkWi,bkC

H
i,bk

. This leads to the generalized
eigen vector,

g′
k = Vmax(Sk,bk ,

∑
i ̸=k

βiSi,bk+µbk I) . (12)

While (11) can be interpreted many ways, (12) comes from
the following DC programming. Introducing the Tx covariance
matrices Qi = gig

H
i , the power constraints can be written

as
∑

k:bk=c tr {Qk} ≤ Pc . The EWSR problem is non-
concave in the Qk due to the interference terms. Therefore
finding the global optimum is challenging. In order to find at
least a local optimum, we consider the difference of convex
functions programming (DCP) approach as in [16]. Whereas
[16] however solves the Lagrange multipliers by Lagrangean
duality, here we solve them together with the powers (as in
standard water filling) in an alternating optimization approach
(alternating with optimizing the g′

k). In DCP one keeps the
concave signal term and linearizes the convex term, leading to
a concave cost function in the Qi (or a minorizer actually in
the g′

i and pi), which can be optimized iteratively.

EWSR = uk ln det(r
−1

k
rk) + EWSRk,

EWSRk =

K∑
i=1,̸=k

ui ln(r
−1

i
ri),

(13)

where ln(r−1

k
rk) is concave in Qk and WSRk is convex

in Qk. Since a linear function is simultaneously convex and
concave, consider the first order Taylor series expansion of
WSRk in Qk around Q̂ (i.e. all Q̂i).

EWSRk(Qk, Q̂) ≈ EWSRk(Q̂k, Q̂)−
tr
{
(Qk − Q̂k)Âk

}
,

(14)

where, Âk = − ∂EWSRk(Qk,Q̂)
∂Qk

∣∣∣∣
Q̂k,Q̂

=

K∑
i=1,̸=k

β̂iSi,bk .

(15)



Note that the linearized tangent expression for EWSRk

constitutes a lower bound for it and hence the DC approach
is also a minorization approach. Now dropping the constant
terms and reparameterizing the Qk in terms of the gk, we can
write the original WSR as the Lagrangian,

EWSR(g) =

K∑
k=1

[
uk ln

(
1 + gH

k B̂kgk

)
−tr
{
gH
k

(
Âk + µbkI

)
gk

}]
+

C∑
j=1

µjPj , B̂k = r̂−1

k
Sk,bk .

(16)
(16) leads again to (11) and esp. (12). The advantage of formu-
lation (16) is that it allows straightforward power adaptation:
substituting gk =

√
pk g

′
k in (16) and optimizing leads to the

following interference leakage (σ(2)
k ) aware water filling

pk =

(
uk

σ
(2)
k + µbk

− 1

σ
(1)
k

)+

, (17)

where (x)+ = max{0, x} and the Lagrange multipliers µc are
adjusted (e.g. by bisection) to satisfy the power constraints.
Also, σ

(1)
k = g′H

k B̂kg
′
k, σ

(2)
k = g′H

k Âkg
′
k. With σ

(2)
k = 0

this would be standard waterfilling.

V. STOCHASTIC GEOMETRY MAMIMO REGIME

As argued earlier, an appropriate model for the covariance
subspaces C is a Haar distribution (randomly oriented semi-
unitary matrices). However, as we shall consider that the
rank L remains finite, whereas M grows unboundedly, for
the large system analysis we may equivalently consider the
elements of C as i.i.d. with zero mean and variance 1/M
so that the expected squared norm (and asymptotically the
actual squared norm) of the columns of C is normalized
to 1. The subspaces C of different channels are considered
independent. For the large system analysis, we use Theorem
1, Lemma 1, 4, 6 from [3]. From (12), we can see that g′

k

will be of the form [
∑

i ̸=k βiSi,bk +µbk I]
−1Ck,bkbk, where

bk = αkWk,bkC
H
k,bk

g′
k is of size Lk,bk ×1. bk can be written

as,

bk = αkWk,bkC
H
k,bk

[
∑
i ̸=k

βiSi,bk+µbk I]
−1Ck,bkbk. (18)

Hence, bk is the max eigen vector of
Wk,bkC

H
k,bk

(
∑

i ̸=k βiSi,bk + µbk I)
−1Ck,bk . Asymptotically

CH
k,bk

(
∑

i ̸=k βiSi,bk + µbk I)
−1Ck,bk converges to a

deterministic limit which is a multiple of identity, ebkI, where
ebk is defined below. This leads to bk = Vmax(Wk,bk).
Now we derive the deterministic equivalents for terms of the
form CH

k,bk
[
∑

i̸=k βiSi,bk + µbk I]
−1Ck,bk . Considering the

eigen decomposition of Wk,bk = Vk,bkΛk,bkV
H
k,bk

, where

Λk,bk = diag(ζ(1)k,bk
, ..., ζ

(Lk,bk
)

k,bk
) and let Ck,bkVk,bk = C′

k,bk
,

with C′
k,bk

still being Haar matrix. Considering the
term CH

k,bk
[
∑

i ̸=k βiCi,bkWi,bkC
H
i,bk

+ µbk I]
−1Ck,bk ,

we can use Lemma 4 in Appendix VI of [3], that
xH
NANxN

N→∞−−−−→ (1/N)trAN when the elements of xN are

iid with variance 1/N and independent of AN , and similarly
when yN is independent of xN , that xH

NANyN
N→∞−−−−→ 0.

Hence the expression above goes to,

CH
k,bk

[
∑
i̸=k

βiCi,bkWi,bkC
H
i,bk

+µbk I]
−1Ck,bk =

1
Mbk

tr{[
∑
i ̸=k

βiCi,bkWi,bkC
H
i,bk

+µbk I]
−1}ILk,bk

.
(19)

Further we apply Lemma 6 from [3] which states
that 1

N tr{A−1
N } − 1

N tr{(AN + vvH)−1} N→∞−−−−→ 0
to approximate [

∑
i ̸=k βiCi,bkWi,bkC

H
i,bk

+ µbk I]
−1 =

[
∑
i=1

βiCi,bkWi,bkC
H
i,bk

+ µbk I]
−1. Now using Theorem 1

from [3] that any terms of the form 1
N tr{(AN − zIN )−1},

where AN is the summation of independent rank one ma-
trices with covariance matrix Θi is equal to the unique

positive solution of ej = 1
N tr{(

K∑
i=1

Θi

1 + ei
− zIN )−1}. Thus

tr{[
∑
i ̸=k

βiCi,bkWi,bkC
H
i,bk

+µbk I]
−1} can be simplified as ebk ,

which is defined as the solution to the following fixed point
equation,

ec =

 1

Mc

K∑
i=1

Li,c∑
r=1

βiζ
(r)
i,c

1 + βiζ
(r)
i,c ec

+ µc

−1

. (20)

Now (18) gets simplified as, bk = αkebkWk,bkbk and thus
bk will be the max eigen vector of Wk,bk . Finally we write
the optimized BF w.r.t. partial CSIT as,

gk = [
∑
i ̸=k

βiSi,bk+µbk I]
−1Ck,bkvk,bk , where,

vk,bk = Vmax(Wk,bk).
(21)

Computation of eigen values ζ
(r)
k,bi

of Wk,bi : from Section III,

Wk,bi = c̆k,bi c̆
H
k,bi

+ D̃k,bi , c̆k,bi = D̂
1/2
k,bi

ĉk,bi ,∀i, k
(22)

In (3), we assume that all the eigen values are equal and
positive, i.e Dk,bi = ηk,biI, D̃k,bi = η̃k,biI. Thus the eigen
values of Wk,bi can be shown to be ζ

(1)
k,bi

= λmax(Wk,bi) =

∥c̆k,bi∥
2
+ η̃k,bi and ζ

(2)
k,bi

= .... = ζ
(Lk,bi

)

k,bi
= η̃k,bi , where

η̃k,bi =
σ̃2
k,bi

ηk,bi

σ̃2
k,bi

+ηk,bi

, using the definition of D̃k,bi from (6).

λmax(Wk,bi) is random since c̆k,bi is random. By the law
of large numbers (assuming Lk,bi is large but finite) we
replace it by the expectation which can be computed as
follows. E(λmax(Wk,bi)) = E(ĉHk,biD̂k,bi ĉk,bi) + η̃k,bi . This
gets simplified as, E (λmax(Wk,bi)) = Lk,bi d̂k,bi + η̃k,bi ,

where d̂k,bi =
η2
k,bi

ηk,bi
+σ̃2

k,bi

from (4) (D̂k,bi = d̂k,biI) and

E(ĉHk,bi ĉk,bi) = Lk,bi from (4).

VI. LARGE SYSTEM ANALYSIS OF SINR AND POWER

In this section, we derive under large system limit, with
Mc,Kc → ∞ at a fixed ratio Kc

Mc
< 1,∀c, approximations to



the scalar quantities involved in the rate expression, which we
denote as the deterministic equivalent.

Theorem 1: In the large system limit, the quantities σ
(1)
k −

σ
(1)
k

Mbk
→∞

−−−−−−→
a.s

0, σ(2)
k − σ

(2)
k

Mbk
→∞

−−−−−−→
a.s

0, rk − rk
Mbk

→∞
−−−−−−→

a.s

0 and rk − rk
Mbk

→∞
−−−−−−→

a.s
0, where σ

(1)
k , σ

(2)
k , rk, rk are the

deterministic equivalents. Here
Mbk

→∞
−−−−−−→

a.s
denotes almost sure

convergence. Further we can show that, since the logarithm
is a continuous function, by applying the continuous mapping
theorem [17], it follows from the almost sure convergence of

rk and rk that, Rk − Rk

Mbk
→∞

−−−−−−→
a.s

0, where Rk is the rate

of user k, with Rk = ln( rkrk
). By using similar argument, we

state that βk − βk

Mbk
→∞

−−−−−−→
a.s

0 and αk − αk

Mbk
→∞

−−−−−−→
a.s

0. The
deterministic limits are obtained as,

σ
(1)
k =

e2bk
λmax(Wk,bk

)

e′bk(1+Υk)
,

σ
(2)
k = 1

Mbk

K∑
i=1,i̸=k

βi[

Li,bk∑
r=1

ζ
(r)
i,bk

(1 + βiζ
(r)
i,bk

ebk)
2
],

rk = 1 + Υk,

rk = 1 + Υk + pk
e2bk

λmax(Wk,bk
)

e′bk
,

(23)

where,

Υk =

K∑
i=1,
i ̸=k

pi
1

Mbi

[

Lk,bi∑
r=1

ζ
(r)
k,bi

(1 + βkζ
(r)
k,bi

ebi)
2
],

βk = uk

(
1
rk

− 1
rk

)
, αk = uk

rk
,

(24)

Proof: Main steps leading to this using standard results from
random matrix theory [3] are outlined in Appendix A.
All the deterministic equivalents described above depend just
on the scalar parameters such as eigen values of the channel
covariance matrices, transmit powers and channel estimation
error variances. Note that the BF computation algorithm based
on EWSR still remains iterative in pi, βi and µbi .

VII. VARIOUS BF SUM RATE EXPRESSIONS FOR MULTI
CELL WITH LMMSE/SUBSPACE CHANNEL ESTIMATOR

In this section, we consider the simplified sum rate ex-
pressions for naive, EWSMSE and EWSR ZF BFs for
LMMSE/Subspace channel estimators under multi cell (C
cells), with identical parameters, σ̃2

k,c = σ̃2, Lk,c = L,
Dk,c = ηI and Mc = M, ∀k, c. Number of users in cell c
is denoted as Kc = K/C, ∀c. We denote,

ζ
(1)
k,bk

= L
η2

σ̃2 + η
+

σ̃2η

σ̃2 + η
, (25)

and rest of the eigen values ζ
(r)
k,bk

= σ̃2η
σ̃2+η ,∀r = 2, ..., L. For

convenience, we define the terms λ1 = η2

η+σ̃2 and λ2 = σ̃2η
σ̃2+η .

Further at high SNR, BS power becomes equally distributed

among the users. Substituting these values, leads to the fol-
lowing simplified expressions for sum rate.
Optimal ZF BF with LMMSE:

RLMMSE = K ln
(
1 + (1− (K−1)L

Mbk

)(Lλ1 + λ2)
P
K

)
.

(26)
Naive BF with LMMSE: D̃k,bk = 0 leading to ζ

(1)
k,bk

= Lλ1

and rest of the eigen values ζ
(r)
k,bk

= 0,∀r = 2, ..., L.

RnaiveLMMSE = K ln
(
1 + (1− (K−1)L

Mbk

)Lλ1
P
K

)
. (27)

For naive LMMSE, maximum eigen value for Wk,bk (ζ(1)k,bk
=

Lλ1) is lesser compared to the optima ZF BF case and hence
the performance degrades compared to the optimal BF case.
EWSMSE BF with LMMSE: In this case, the error covari-
ance for the intended user get moved to the interference part,
thus the sum rate expression will be,

REWSMSE = K ln

(
1 +

(1− (K−1)L
Mbk

)Lλ1

(1− (K−1)L
Mbk

)Lλ2+1

P
K

)
. (28)

Compared to naive LMMSE, there is scaling factor in the
denominator factor accounting for the channel estimation error
power being moved to the noise part (8) and this explains the
performance degradation for EWSMSE.
Optimal BF with Subspace Estimator: For subspace esti-
mator, the sum rate expression RSubspace is similar to the
optimal BF with LMMSE case, (29), but with different eigen
values. The eigen values can be derived as ζ

(1)
k,bk

= L + σ̃2

and ζ
(r)
k,bk

= σ̃2,∀r = 2, ..., L.

RSubspace = K ln
(
1 + (1− (K−1)L

Mbk

)(L+ σ̃2) PK

)
. (29)

VIII. SIMULATION RESULTS

In this section, we present the Ergodic Sum Rate Evalua-
tions for BF design for the various channel estimates. Monte
Carlo evaluations of ergodic sum rates are done with the
following parameters: C, number of cells. Kc, number of
(single-antenna) users in cell c and K =

∑
c

Kc. M , number

of transmit antennas in each cell. We consider a path-wise or
low rank channel model as in section III, with L = number
of paths = channel covariance rank. d : scale factor in the LS
channel estimation error variance σ̃2 = d/SNR. Notations:
in the figures, iCSIT refers to the optimal BF design for the
instantaneous CSIT case [18].
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Fig. 1. EWSR for C = 1 cell, K = 10 users, M = 64, L = 4, σ̃2 = 0.1.
In Figure 1, we plot the optimal BF performance with

LMMSE channel estimator comparing to the optimal BF
performance for the case of large system approximation. It is
evident that the deterministic approximations are accurate even
for finite M,K. Further, we have fixed the channel estimator
error variance σ̃2 to be 0.1 and thus it is evident from the
figure that exploiting the channel estimation error covariance
information has significant performance gain compared to the
sub-optimal methods such as EWSMSE and naive BFs.
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Fig. 2. EWSR for C = 1 cell, K1 = K = 10 users, M = 64, L = 2,
σ̃2 = 1/SNR.
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Fig. 3. EWSR for C = 2 cells, K1 = K2 = 5 users, M = 32, L = 2,
σ̃2 = 1/SNR.

In Figure 3, we plot the EWSMSE beamforming perfor-
mance also and it is evident from the figure that ESEI-WSR
based beamformers (i.e. MaMISO limit based) perform better
EWSR approximations than a EWSMSE design. From the
numerical simulations in both Figures 2,3, it is quite evident
that just using LS channel estimates may lead to substantial
EWSR loss. In Massive MIMO, the exploitation of channel
subspaces (reduced rank covariances) in channel estimates
may lead to substantial reductions in SNR loss due to partial
CSIT. Moreover, there is significant gain from exploiting
(error) channel covariances in addition to (LMMSE) channel
estimates and proper handling of channel error covariance in
the direct link in the BF design.

IX. CONCLUSION

This paper investigated the optimal linear precoder based
on partial CSIT in the multi-cell MU-MISO downlink. We
introduced a stochastic geometry inspired randomization of the
channel covariance eigen spaces and analyzed the large system
behavior. This leads to simpler analytical results with SINR
or the user rates depending only on some scalar quantities
such as eigen value profile, channel rank, the number of
antennas M or users K and the channel estimation error
variance. Moreover, we show the improvement in performance
by using an LMMSE channel estimate compared to just
having LS estimates, and by furthermore properly exploiting
all covariance information. Numerical simulations suggest that
the large system approximations are accurate even for finite
values of M,K.

APPENDIX A
PROOF OF THEOREM 1

First we compute the deterministic equivalent for σ(1)
k ,

σ
(1)
k = r̂−1

k
g′H
k Ŝk,bkg

′
k = r̂−1

k
g′H
k Ck,bkWk,bkC

H
k,bk

g′
k.
(30)

Using the eigen decomposition of Wk,bk = Vk,bkΛk,bkV
H
k,bk

,

g′H
k Sk,bkg

′
k = g′H

k Ck,bkWk,bkC
H
k,bk

g′
k,

g′
k = g′′

k/ ∥g′′
k∥ ,g′′

k = Γ−1
k Ck,bkvk,bk ,

CH
k,bk

g′
k = CH

k,bk
Γ−1
k Ck,bkvk,bk/||g′′

k ||,
(31)

where Γk =
∑
i ̸=k

βiSi,bk +µbk I. Using large system analysis

simplifications shown in (20), CH
k,bk

Γ−1
k Ck,bk = ebkI,

g′H
k Sk,bkg

′
k =

e2bk
vH
k,bk

Wk,bk
vk,bk

∥g′′
k∥2 =

e2bk
λmax(Wk,bk

)

∥g′′
k∥2 ,

(32)
We define Γbk = Γk + βkSk,bk . Further we consider simpli-
fying ∥g′′

k∥
2
= vH

k,bk
Ck,bkΓ

−2
k Ck,bkvk,bk . By using Lemma

4 from [3] leads to ∥g′′
k∥

2
= 1

Mbk

tr{Γ−2
k } ∥vk,bk∥

2
=

1
Mbk

tr{Γ−2
k }. Further, by using Lemma 6 we approximate

Γ−1
k ≈ (Γk + βkSk,bk)

−1 = Γ−1
bk

. From [3], in the large
system limit, for (1/Mbk)tr{Γ

−2
bk

}, we have an almost sure



convergence value as e′bk , where e′bk is the derivative of ebk
w.r.t. µbk , and thus ∥g′′

k∥
2
= e′bk ,

e′bk = e2bk(
1

Mbk

K∑
i=1

Li,bk∑
r=1

β2
i ζ

(r), 2
i,bk

e′bk

(1 + βiζ
(r)
i,bk

ebk)
2
+ 1)

=⇒ e′bk =
e2bk

1−
e2
bk

Mbk

K∑
i=1

Li,bk∑
r=1

β2
i ζ

(r), 2
i,bk

(1 + βiζ
(r)
i,bk

ebk)
2

. (33)

Deterministic limit for rk, rk: Each term in rk is of
the form pig

′′
i Sk,big

′′
i / ∥g′′

i ∥
2, where g′′H

i Sk,big
′′
i =

v′H
i,bi

Γ−1
i Ck,biWk,biC

H
k,bi

Γ−1
i v′

i,bi
and we defined v′

i,bi
=

Ci,bivi,bi . Since v′
i,bi

is independent of all other ran-
dom quantities in this expression, we apply Lemma 4 and
then Lemma 6 to get, v′H

i,bi
Γ−1
i Ck,biWk,biC

H
k,bi

Γ−1
i v′

i,bi
=

1
Mbi

tr{Γ−1
bi

Ck,biWk,biC
H
k,bi

Γ−1
bi

}. Applying Lemma 1 to
each of the rows of VH

k,bi
CH

k,bi
Γ−1
i , then Lemma 4 and 6,

we obtain the following simplified expression,

1
Mbi

tr{Γ−1
bi

Sk,biΓ
−1
bi

} = 1
M2

bi

tr{Γ−2
bi

}tr{Λk,biB
−2
k,bi

},

where, Bk,bi = diag(1 + βkζ
(1)
k,bi

ebi , ..., 1 + βkζ
(L)
k,bi

ebi).
(34)

Finally we obtain,

K∑
i=1,
i ̸=k,

pig
′H
i Sk,bkg

′
i =

K∑
i=1,
i ̸=k

pi
1

Mbi

[

Lk,bi∑
r=1

ζ
(r)
k,bi

(1 + βkζ
(r)
k,bi

ebi)
2
] = Υk,

(35)

Thus we can write rk and rk,

rk = 1 + Υk, rk = 1 + Υk + pk
e2bk

λmax(Wk,bk
)

e′bk
,

Also, βk = uk

(
1
rk

− 1
rk

)
, αk = uk

rk
.

(36)

Finally, combining (32), (33), (36), we can write the deter-

ministic equivalent for σ
(1)
k as, σ(1)

k =
e2bk

λmax(Wk,bk
)

e′bk(1+Υk)
. Each

term in σ
(2)
k is of the form β̂ig

′ ′H
k Si,bkg

′ ′H
k / ∥g′ ′

k ∥
2, which

gets simplified as follows:

g′ ′H
k Si,bkg

′ ′H
k = v′H

k,bk
Γ−1
k Ci,bkWi,bkC

H
i,bk

Γ−1
k v′

k,bk
(a)
= 1

Mbk

tr{Γ−1
k Ci,bkWi,bkC

H
i,bk

Γ−1
k },

(37)
where (a) follows from Lemma 4 (since v′

k,bk
is independent

of all other matrices involved). By following the same steps
as in (34)-(35), this gets simplified and we write σ

(2)
k as,

σ
(2)
k =

K∑
i=1,i̸=k

βig
′ ′H
k Si,bkg

′ ′H
k / ∥g′ ′

k ∥
2
=

1
Mbk

K∑
i=1,i̸=k

βi[

Li,bk∑
r=1

ζ
(r)
i,bk

(1 + βiζ
(r)
i,bk

ebk)
2
].

(38)
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