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Abstract

This work considers the achievable diversity for coded systems ap-
propriately characterized by a block—fading channel model. We are
primarily interested in cases where the number of uncorrelated fad-
ing channel realizations(blocks) F', is small, so that ideal interleaving
assumptions do not hold. This is usually the case in mobile radio sys-
tems which employ coded slow frequency-hopping such as the GSM
system and its derivatives. We show that the diversity order is lim-
ited to a value less than or equal to F' which depends on the code
rate and the size of the signaling constellation. We report on the
results of code searches for rate 1/n convolutional codes for simple
AM constellations, which show the minimum complexity needed to
achieve maximum diversity. We also present computer simulations
of some codes in order to determine the effect of code complexity on
the frame and bit error-rate performance.

1 Introduction

This work deals with so~called block-fading channels, which are
models appropriate in very slowly fading situations (i.e. low mo-
bile speed) and assume that the channel state is stationary for
blocks of N symbols. In most applications like GSM [1] or IS54
[2] NV is quite large and there is a constraint on the interleaving
depth due to a maximum processing delay requirement. Even
in-the absence of such delay constraints, there may be a maxi-
mum number of channel realizations (for instance FDMA slots in
GSM). Both amount to the same thing, namely that the number of
blocks over which coding is performed, F, is small.

Most work dealing with code design for fading channels assumes
an ideal interleaving situation [3, 4] which, in the context of
block—fading channels, is equivalent to letting F' tend to infinity.
Codes designed in this fashion may be ineffective when applied to
a system where F is small. An important exception is the work of
Lapidoth in [5] where the construction of binary codes matched
to the depth of the interleaver (or number of blocks) is addressed
for an erasure—channel model of a fading channel. Another ap-
plication of a block—fading model is for fast frequency—hopping
systems where N is small (on the order of a few symbols). The
work of Kaplan, er al. in [6] considers coding for these systems
without a constraint on the number of frequencies over which the
signal can hop. This amounts again to an ideal interleaving situa-
tion, where the fast frequency—hopping pattern takes the place of
the interleaver.
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2 System Model and Performance Measures

Consider transmission scheme in Fig. l. The infor-
mation bits are coded/modulated into F blocks of length
N symbols. We consider codewords having length NF
and information rate R bits/dim, which are denoted by
¢ = (Co,o Co,1 CoN-1 C10 CF—1,N—1) =
(o -+ ep-1). When the blocks are long (i.e. N is large), the
coded symbols are formed by a combination of either a block or
convolutional encoder and an interleaver. The interleaver serves
to spread the information evenly over the F blocks so that very
high complexity codes are not needed. Except when explicitly
stated otherwise, we will consider the interleaver as part of the
encoder.
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Fig. 1: System model

The coded symbols belong an arbitrary symbol set (constellation)
S on the real line and are transmitted over different frequency—flat
fading channels. Under the block fading assumption, the fading
level is constant over each block so that the discrete—time received
symbols before processing are given by

Tin = \/a’fSSCfﬂ + Zfn, 9]

forn=0,1,--- ,N -1, f=20,1,---,F — 1 where oy is the
random unit-mean strength of the ft channel, &, is the energy



per coded symbol and z; , is a real zero—-mean Gaussian random
variable with variance Ny /2.

Coding across different channel realizations provides a certain
amount diversity, which counters the effects of fading. In what
follows we will assume that the /' channel realizations are uncor-
related. In system such as GSM, for instance, blocks modulate
F = 4 (half-rate) or ' = 8 (full-rate) carriers whose spacing
is larger than the coherence bandwidth, resulting in virtually un-
correlated blocks. Moreover, for reasonable mobile speeds, the
channel is stationary during the block, so that the block fading
assumption holds. The practical advantages of such a system are
firstly that reliable coherent communication is possible. Secondly
and more importantly, the amount of diversity is independent of
the rate of channel variation, since it is a result of exploiting
frequency-selectivity. For mobile telephony, this is crucial since
the majority of calls are made at low speed. In the IS54 stan-
dard coding is performed across F' = 2 TDMA frames so that the
blocks start to become less correlated for high mobile speeds.
The received signal is processed by a maximum-likelihood de-
coding rule as

F-1N-1

Z Z }rfyn —Vear&crn
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The pairwise error probability (PEP) between two codewords c!*)
and c¢®) conditioned a set of F' channel strengths is given by

), ©)

where d*(a, b) is the Euclidean distance between the code se-
quences weighted by the channel strengths and is given by

&
2No

Pr (c(“) — c(b)( {af}) =Q ( d?(a,b)

F-1
d*(a,b) = > apd’(cl®, ), (4)
=0

We assume now that the , /& are Rayleigh distributed so that the

random variable = = d*(a, b)&, /2N has characteristic function
df-1 1
o.(5)= [] (5)

o 1= sa2(c! e, /2N,

) o)

where d% is the number of non-zero d2(c!® ,¢;”)- By using the

Chernov bound on the Q-function, Q(z) < 1e™*°/2, we may
bound the PEP as

Pr (c(“) - c(b)) < ;;—E; (e'é)
1 1
= :2‘<I’z <—§> (6)
! (4N°)dg (7)
2 \ x&s ’

We see that the upper—bound to the pairwise error probability is
specified asymptotically by df] which is slope of the probability
of error vs. SNR on a log-log scale, and x for the SNR gain factor.
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The slope is commonly referred to as the diversity order. In order
to maximize the asymptotic performance the goal of any coding
system is therefore to maximize dfj.

The limitations of the frequency—flat Rayleigh fading model are
clear, since we have made no assumptions regarding multipath.
In medium-band systems like GSM where the multipath induces
intersymbol interference, a sub—optimal receiver is used which
first equalizes the [ channels with a soft—output algorithm (e.g.
soft—output Viterbi equalization [7]). These outputs are then dein-
terleaved and passed to a Viterbi decoder to retrieve the infor-
mation bits. In this case, the channel strengths are not Rayleigh
distributed. In narrow-band systems such as IS-54, the channel
is almost always ISI-free, and either a very simple equalizer or
none at all is needed prior to deinterleaving/decoding. Here, the
Rayleigh assumption is valid. In wide-band systems with little
ISI, equalization is also not required and some of the multipath
can be exploited with a RAKE receiver prior to decoding. Here,
the diversity is a product of dfl and the number of resolvable
paths. The gain factor y also involves the average strengths of
the resolved components. For a more complete discussion of the
effect of multipath see [8]. In general, we can say that the perfor-
mance will lie between those of unresolved and resolved systems
for which dﬂ is the diversity factor due to coding.

3 Maximum Code Diversity

This section addresses the issue of determining maximum code
diversity (df) for a given number of uncorrelated blocks and in-
formation rate. For binary modulation, such codes may or may
not exhibit maximum (free) Hamming distance, and, in general,
df < diree. A simple example is the rate 1/2 binary convolutional
code with binary modulation employed in the full-rate GSM stan-
dard shown in Fig.2. The output bits are interteaved over 8 blocks
transmitted on widely spaced carriers. The minimum free Ham-
ming distance path ( dgee = 7) (after deinterleaving) is shown
along with the blocks in which each bit were transmitted. It is
clear that this path achieves d% = 5. It turns out that this is also
the minimum diversity path for this code and, moreover, that there
is no other code which achieves a higher diversity with binary
modulation and R = 1/2 bits/dim.

3.1 Maximum Diversity Bound

In order to determine an upper—bound on the minimum pairwise
df, it is convenient to group together the N symbols which are
transmitted in the same block, and view them as a super-symbol
over SV. The codeword is then a vector of length F super-
symbols. Using this interpretation, dﬁ is simply the Hamming
distance in SV. This reduces the analysis to one of non-binary
block codes with a fixed block length F, and therefore all tradi-
tional bounding techniques apply. The most appropriate bound in
this case is the Singleton bound [9] which in this context can be

expressed as
d§§1+[F<l il )J
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Fig. 2: Minimum diversity/weight error event for full-rate GSM,

The reason for its importance is that we will see that it can almost
always be met with reasonable complexity.

The first interesting result of this analysis is that the shape of the
constellation is not important with regard to the code diversity
since it is a completely algebraic measure of the performance.
Secondly, and more importantly, we see that a small amount
of constellation expansion yields a significant diversity increase.
Take for example transmission at R = .5 bits/dim over ' = §
blocks as in full-rate GSM . With binary modulation (|S| = 2),
the maximum pairwise diversity is 5, which incidentally is what
is achieved by the coding scheme used in GSM. With quaternary
modulation we see that it can be increased to 7. On the downside,
for high code rates (> 2 bits/dim) very large symbol alphabets are
required to achieve high asymptotic diversity. For example, with
F = 8 and R = 3 bits/dim, a 16-point constellation can only
achieve a diversity of df; = 3. To achieve d¥ = 7 a constellation
with 4096 points is needed.

3.2 Convolutional Codes

The Singleton bound is also applicable to convolutional codes,
since they can always be interpreted as very long block codes. In
tact, in systems like GSM the convolutional codes are used in a
block fashion by appending trailing zeros to the information se-
quence, and a one—shot decoding of the entire block is performed.
It is worthwhile to perform a code search using (lﬂ as a primary
performance criterion rather than di.c.. At the same time we de-
termine the number of states needed to achieve the maximum di-
versity indicated by the Singleton bound. We have performed a
search for maximum diversity rate 1/4, 1/3 and 1/2 codes for a
varying numbers of frequencies and states. Because of space lim-
itations we could not list all the codes which that were found. Ta-
ble I lists some of the codes related to the simulations described
in the next section. The code search first maximized the diversity
order and then Ymin. The generator polynomials are shown using
the convention given in [10]. In general, we have found that for
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low spectral efficiency (<2 bits/dim) fairly simple codes achieve
maximum diversity. Those highlighted in bold type in the Ta-
ble achieve the Singleton bound. As an example, for the case of
R = .5 bits/dim with F = ], we can achieve maximum diversity
(df; = 5) with an eight-state code, and moreover, it turns out that
it does not exhibit maximum free Hamming distance (dgee = 5.
not 6). The most important reason for increasing complexity, as
we will see in section 4, is that we can achieve larger values of
\min Yielding significant coding gains in the frame error—rate per-
formance.

R = .5 bits/dimension (2-AM)

’ States F=4 F=3
df  \min gen dff  \min_ gen
4 3 6.35 5.7 4 5.66 5.7
3 3 1008 31,51 5 4.00 11.31
16 3 13.21 32,13 3 5.28 1333
32 3 1454 7537 5 8.19 54,33
64 3 17.93 721,561 5 10.90 111,771
R = 1 biv/dimension (+-AM)
States F=4 F=238
d?{ \Int;m gen., df{ \[;:in aen.
4 3 1.6 5,7 3 2.02 5.7
8 3 2.02 11,31 4 1.60 31.51
16 3 2.78 23,73 5 1.27 23.71
32 3 3.33 54,73 5 1.84 7526
64 3 4.25 631,571 5 2.21 741,361
R = .5 bits/dimension(4—AM)
States F=4 F=3
‘ df gy, gen. A N, gen.
4 4 2.58 5,7.3.7 6 2.02 57.3.7
8 4 3.76 11,31.51,61 7 1.77 11,60.50.61
16 4 4.60 32,72,13,53 7 2.55 32.53.50.33
32 4 5.55 35.75,16,57 7 3.27 14,57,37,54
64 4 6.04 311,171,551,561 7 3.79 541,131,701,750

Table | Rate 1/2 and 1 bit/dimension convolutionally coded 2 and 4-
AM modulations

We now turn to a simple example of convolutional code design for
non-binary constellations in order to take advantage of the diver-
sity gain offered by constellation expansion. The first important
point to take into account is that the diversity level is indepen-
dent of the shape of the constellation and that only its cardinal-
ity matters. This is not the case for coded modulation schemes
with Euclidean distance as a performance indicator. For illustra-
tive purposes, we therefore consider linear binary convolutional
codes with a 4-AM constellation shown in Fig. 3. We assume a
Gray mapping of adjacent output bits to points in the constella-
tion for rate 1/2 and 1/4 codes (1 and .5 bits/dim). The use binary
linear codes simplifies the code search since df preserves the lin-
earity of the code (i.e. dfj(cq, cy) = df(0.c, -+ c) where each
symbol is now composed of 2 bits). We assume tfurther that inter-
leaving over the F' blocks is performed on the symbol level. The
secondary performance measure in the PEP, \ .,;;,, depends on the
F Euclidean distances between the sub—codewords transmitted in
each block, which for 4-AM do not preserve the linearity of the
code. As a result of the Gray mapping, we may “fine-tune” the
code search by maximizing a lower—bound on \ i, which pre-
serves the linearity of the code (i.e. y(cq, ¢s) 2 \'"(c/®),c(®)) =
v(0, caFep). \'® is a lower bound since under the Gray mapping
d*(a,b) > d*(0,a&b),Va, b. Some codes using this construction
are given in Table 1.
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Fig. 3: 4-AM Coding Example

4 Performance Comparison of Various Codes

In order to assess the performance of some of the codes reported
in this work, we resort to computer simulations. We have found
that a union—bound approach for assessing the performance an-
alytically yields quite unfruitful results for convolutional codes.
The reason is that as we approach the maximum diversity F',
the number of paths which share a given diversity level increases
quickly as we progress through the code’s trellis and enumerating
them becomes difficult since they cannot be discarded. This is
especially true for practical block lengths (N > 100). In our sim-
ulations, we assumed a block length N = 100n/ log, |S| coded
symbols, where 7 is the number of output bits of a rate 1/n bi-
nary convolutional code. We assume a single~path Rayleigh fad-
ing channel and soft-decision decoding with perfect channel state
information.

The frame and bit—error rate performances for a variety of codes
having F' = 4,8 at R = .5 bits/dim are shown in Figs. 4,5,6,7.
We have shown the simulated performance of the 2 GSM codes
which have generators (46,26) (full-rate, 16 states, £ = 8) and
(554,764) (half-rate, 64 states, F' = 4). The iy for these codes
are only slightly less than those listed in Table | and have com-
parable performance. We see that increased complexity can yield
non—negligible coding gains in the FER performance even though
the diversity level is maximum. There is, however, less improve-
ment in the BER performance. The 4AM codes yield significant
performance gains, especially in the BER performance, due to the
increased diversity level.

5 Conclusion

This work considered coding for block—fading channels with
small number of blocks. This channel model has significant prac-
tical importance for delay—constrained block—~oriented communi-
cations, a category in which many mobile radio systems fall. The
slow frequency-hopping scheme used in the current GSM mobile
radio systems is a prime example. It is reasonable to assume that
next generation systems will also use similar, and perhaps more
complex techniques.
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We discussed the attainable diversity due to coding. We showed
that there is a upper—limit to the diversity which depends on the
number of blocks, the code rate and the size of the signaling con-
stellation. This relies on what turns out to be a disguised version
of the Singleton bound, which indicates the maximum achievable
asymptotic diversity for a code of a given rate. It indicates that
diversity is asymptotically limited and that it can be increased
by constellation expansion. A rather unfortunate result is that
for high spectral—efficiency systems, in order to achieve a high
asymptotic diversity level, very large constellations are required.
We gave examples of convolutional codes for simple AM constel-
lations, which achieve maximum diversity. An important result is
that maximum diversity can be achieved with rather simple codes
and that, in terms of bit error—rate performance, increased com-
plexity does not yield significant gains. This is not true, however,
for the frame—error rate performance, which is often important in
both speech and data applications.
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