
ODESSA at Albayzin Speaker Diarization Challenge 2018
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Abstract
This paper describes the ODESSA submissions to the Al-

bayzin Speaker Diarization Challenge 2018. The challenge ad-
dresses the diarization of TV shows. This work explores three
different techniques to represent speech segments, namely bi-
nary key, x-vector and triplet-loss based embeddings. While
training-free methods such as the binary key technique can be
applied easily to a scenario where training data is limited, the
training of robust neural-embedding extractors is considerably
more challenging. However, when training data is plentiful
(open-set condition), neural embeddings provide more robust
segmentations, giving speaker representations which lead to
better diarization performance. The paper also reports our ef-
forts to improve speaker diarization performance through sys-
tem combination. For systems with a common temporal reso-
lution, fusion is performed at segment level during clustering.
When the systems under fusion produce segmentations with an
arbitrary resolution, they are combined at diarization hypothesis
level. Both approaches to fusion are shown to improve diariza-
tion performance.
Index Terms: speaker diarization, diarization fusion, neural
embeddings, binary key

1. Introduction
Albayzin evaluations cover a range of speech processing re-
lated tasks that include search on speech, audio segmentation,
speech-to-text transcription, or speaker diarization. The latter
motivates the work reported on this paper. Speaker diarization
is the task of processing an audio stream into speaker homoge-
neous clusters. Traditionally considered as an enabling technol-
ogy, a number of potential applications can benefit from speaker
diarization as a pre-processing step, such as automatic speech
recognition [1], speaker recognition and identification [2], or
spoken document retrieval. The increasing maturity of these
technologies calls for continuous improvement in speaker di-
arization that has accordingly been the objective of numerous
evaluations and campaigns, be it in the context of the NIST
RT evaluations [3], the more recent multi-domain DIHARD
challenge [4], or in the well-established Albayzin Speaker Di-
arization evaluations [5]. The current edition of the Albayzin
Speaker Diarization Challenge [6] includes audio content from
the recently released RTVE2018 database [7], composed of TV
shows from a range of topics broadcast on the Spanish TV pub-
lic network. Further details can be found in [6, 7].

This work has been produced in the context of the
ODESSA1 project, which is focused on improving speaker di-
arization performance by leveraging recent developments in the

1This work was partly supported by ANR through the ODESSA
project (ANR-15-CE39-0010).

task of text-independent speaker recognition. Efforts were made
by the different members of the consortium to improve the re-
liability of their own speaker diarization systems. In doing
so, different speaker modelling techniques were used, on both
the closed- and open-set conditions of the evaluation. For the
closed-set condition, binary key speaker modelling [8] offers a
training-free option that has produced competitive performance
in previous editions of the challenge [9]. Triplet-loss neural em-
beddings [10] trained on the provided data were also explored.
Experiments in the open-set condition include embeddings in
the form of state-of-the-art text-independent speaker recogni-
tion x-vector [11]. Different clustering techniques were also
explored across the training conditions and speaker modelling
techniques.

Finally, and motivated by the access to significantly differ-
ent approaches to speaker modelling and diarization that could
potentially offer complementary solutions, the main contribu-
tion of this work lies in the exploration of different fusion tech-
niques for speaker diarization. Whereas fusion, for example at
score level, is often applied as a mean of increasing robustness
in closely related tasks such as speaker recognition, the problem
of merging clustering solutions for speaker diarization scenar-
ios remains challenging. Diarization hypothesis level fusion is
applied following a label merging approach [12]. A segment-
level fusion technique similar to that employed in [13] is also
tested.

The remainder of this paper is structured as follows. Sec-
tion 2 details the processing blocks which compose the different
diarization solutions. Section 3 describes the two fusion ap-
proaches. Sections 4 and 5 report the experimental setup, and
submitted systems with results, respectively. Finally, Sections 6
and 7 provide discussions and conclusions.

2. Processing modules
This section reviews the different processing modules compos-
ing our diarization systems. These include feature extraction,
speech activity detection, segmentation, segment and cluster
representation, clustering and re-segmentation. As shown in
Figure 1, one or more techniques are proposed for each pro-
cessing module.

2.1. Feature extraction

Two different acoustic frontends were used. They include (i)
a standard Mel-frequency cepstral coefficients (MFCC) [14]
frontend and (ii) an infinite impulse response - constant Q, Mel-
frequency cepstral coefficients (ICMC) [15] frontend. The lat-
ter has been applied successfully to tasks including speaker
recognition, utterance verification [15] and speaker diariza-
tion [9, 16]. These features are similar to MFCC, but they re-
place the short-time Fourier transform by an infinite-impulse re-
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Figure 1: Diarization pipeline adopted by the proposed individual systems.

sponse, constant Q transform (IIR-CQT) [17]. This is a richer,
multi-resolution time-frequency representation for audio sig-
nals, which provides a greater frequency resolution at lower fre-
quencies and a higher time resolution at higher frequencies.

2.2. Speech activity detection and segmentation

All submissions share a common speech activity detection
(SAD) module [18], where SAD is modelled as a supervised bi-
nary classification task (speech vs. non-speech), and addressed
as a frame-wise sequence labelling task using a bi-directional
long short-term memory (LSTM) network operating on MFCC
features. As for segmentation, two systems were explored: (i) a
straightforward uniform segmentation which splits speech con-
tent into 1 second segments and (ii) segmentation via the de-
tection of speaker change points. The speaker change detection
(SCD) module is that proposed in [19]. Similarly to the SAD
module, SCD is also modelled here as a supervised binary se-
quence labelling task (change vs. non-change).

2.3. Segment/cluster representation

Binary key. This technique was initially proposed for speaker
recognition [8, 20] and applied to speaker diarization [21, 9, 16].
It represents speech segments as low-dimensional, speaker-
discriminative binary or integer vectors, which can be clustered
using some sort of similarity measure. The core model to per-
form this mapping is a binary key background model (KBM)
which is trained in the test segment before diarization. The
KBM is actually a collection of diagonal-covariance Gaussian
models selected from a pool of Gaussians learned on a sliding
window over the test data. The window rate is adjusted dy-
namically to assure a minimum number of Gaussians. Then,
a selection process is performed to keep a percentage p of the
Gaussians in the pool to ensure sufficient coverage of all the
speakers in the test audio stream. The KBM is then used to bi-
narise an input sequence of acoustic features, which are then
accumulated to obtain a cumulative vector, which is the final
representation. Refer to [21] for more details.
Triplet-loss neural embedding. The embedding architecture
used is the one introduced in [10] and further improved in [22].
In the embedding space, using the triplet loss paradigm, two
sequences xi and xj of the same speaker (resp. two different
speakers) are expected to be close to (resp. far from) each other
according to their angular distance.
x-vector. This method [11] uses a deep neural network (DNN)
which maps variable length utterances to fixed-dimensional em-
beddings. The network consists of three main blocks. The first
is a set of layers which implements a time-delay neural net-
work (TDNN) [23] which operates at the frame level. The sec-
ond is a statistics pooling layer that collects statistics (mean and
variance) at the utterance level. Finally a number of fully con-
nected layers are followed by the output layer with as many
outputs as speakers in the training data. Neurons of all lay-

ers use ReLu activations except the output layer neurons which
use soft-max. The network is trained to discriminate between
speakers in the training set. Once trained, the network is used
to extract utterance-level embeddings for utterances from un-
seen speakers. The embedding is just the output of one of the
fully connected layers after the statistics pooling layer.

2.4. Clustering

Agglomerative hierarchical clustering. The AHC clustering
uses a bottom-up agglomerative clustering algorithm as follows.
First, and assuming that the input audio stream is represented
as a matrix of segment-level embeddings, a number of clusters
Minit are initialised by a uniform splitting of the segment-level
embedding matrix. Cluster embeddings are estimated as the
mean segments embeddings. An iterative process including:
(i) segment to-cluster assignment, (ii) closest cluster pair merg-
ing and (iii) cluster embedding re-estimation by averaging em-
beddings of cluster members is then applied. All comparisons
are performed using the cosine similarity between embeddings.
The clustering solutions generated after (i) are stored at every
iteration. The output solution is selected by finding a trade-
off between the number of clusters and the within-class sum
of squares (WCSS) among all solutions. This is accomplished
through an elbow criterion, as described in [21].
Affinity propagation. As proposed in [24], an affinity propa-
gation (AP) algorithm [25] is our second clustering method. In
contrast to other approaches, AP does not require a prior choice
of the number of clusters contrary to other clustering methods.
All speech segments are potential cluster centres (exemplars).
Taking as input the pair-wise similarities between all pairs of
speech segments, AP will select the exemplars and associate all
other speech segments to an exemplar. In our case, the simi-
larity between the ith and jth speech segments is the negative
angular distance between their embeddings.

2.5. Re-segmentation

A resegmentation process is performed to refine time bound-
aries of the segments generated in the clustering step. It
uses Gaussian mixture models (GMM) to model the clusters,
and maximum likelihood scoring at feature level. Since the
log-likelihoods at frame level are noisy, an average smooth-
ing within a sliding window is applied to the log-likelihood
curves obtained with each cluster GMM. Then, each frame is
assigned to the cluster which provides the highest smoothed
log-likelihood.

3. System fusion
Two approaches to fusion were explored. The first operates at
the similarity matrix level suited to combine speaker diarization
systems that are aligned at the segment level. The second oper-
ates at the hypothesis level and can be applied to systems with
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Figure 2: Illustration of the segment-to-cluster similarity matrix
fusion.
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Figure 3: Illustration of the fusion of two diarization hy-
potheses.

arbitrary segment resolutions.
Fusion at similarity matrix level. Systems sharing the same
segmentation can be combined at the similarity level. In [13]
fusion is performed by the weighted sum of the similarity ma-
trices of two segment-aligned systems before a linkage agglom-
erative clustering. This approach was adapted to our AHC al-
gorithm by combining segment-to-cluster and cluster-to-cluster
similarity matrices at every iteration. Similarities are also com-
bined in the WCSS computation for the best clustering selection
procedure. In this way, the full process takes into account the
influence of the systems being fused. An example of combina-
tion of two M -cluster to N -segments similarity matrices using
weights α and 1− α is depicted in Figure 2.
Fusion at hypothesis level. The combination of systems with
totally diarization pipelines is generally only possible at hypoth-
esis level. In this work we explored hypothesis level combina-
tion using the approach described in [12]. Given a set of di-
arization hypotheses, every frame-level decision can be merged
to assign a new frame-level cluster label which is the concate-
nation of all labels of the individual hypotheses. An example of
this strategy is illustrated in Figure 3. This process will result
in a large set of potential speaker clusters. Clusters shorter than
15 seconds are excluded and a final resegmentation is applied
on the merged diarization to obtain the final diarization hypoth-
esis.

4. Experimental setup
This section gives details of the training data and the configura-
tion of the different modules.

4.1. Training data

For the closed-set condition, the 3/24 channel database of
around 87 hours TV broadcast programmes in Catalan language
provided by the organisers was used. For the open-set condi-
tion, two popular datasets were used:
SRE-data. It includes several datasets released over the years in
the context of the NIST speaker recognition evaluations (SRE),
namely SRE 2004, 2005, 2006, 2008 and 2010, Switchboard,
and Mixer 6. This dataset contains mostly telephone speech
sampled at 8 kHz.
VoxCeleb. The VoxCeleb1 dataset [26] consists of videos con-
taining more than 100,000 utterances for 1,251 celebrities ex-
tracted from YouTube videos. The speakers represent a wide
range of different ethnicities, accents, professions and ages, and
a large range of acoustic environments. This dataset is sampled
at 16 kHz.

4.2. System configuration

Feature extraction. MFCCs are extracted with different num-
bers of coefficients depending on the subsequent segment repre-
sentation: 23 static coefficients for x-vector, and 19 plus energy
augmented with their first and second derivatives for triplet-loss
embeddings. The binary key system uses 19 static ICMC fea-
tures. Finally, the re-segmentation stage uses 19 static MFCC
features.
Segment representation. For BK, the cumulative vector di-
mension is set to p = 40% of the size of the initial pool of
Gaussian components in the KBM, leading to different repre-
sentation dimensions which depend on the length of the test
audio file. Gaussians are learned on a sliding window of 2 sec-
onds to conform a pool with a minimum size set to 1024. The
x-vector system uses the configuration employed in the Kaldi
recipe for the SRE 2016 task2. Data augmentation by means
of additive and convolutive noise is performed for training. The
dimension of the embeddings is 512, which was later reduced to
170 using LDA. For triplet-loss embeddings, and because of the
lack of global identities in the Albayzin dataset, triplets are only
sampled from intra-files for the closed-set condition. Thanks to
the given speaker names in Voxceleb, triplets are also sampled
from inter-files for the open-set condition.
Clustering. AHC is initialised to a number Ninit of cluster
higher than the number of expected clusters in the test sessions.
We set Ninit = 30. The parameters of AF clustering such as
preference and damping factor are tuned on the development set
with the chocolate toolkit3.
Resegmentation. It is performed with GMMs with 128
diagonal-covariance components. Likelihoods are smoothed by
a sliding window of 1s.

4.3. Evaluation

Performance is assessed and optimised using the diarization er-
ror rate (DER), a standard metric for this task. It is defined as
DER = Espkr + EFA + EMS , where EFA and EMS are
factors mainly associated to the SAD module, namely the false
alarm and miss speech error rates. EMS is also incremented
by the percentage of overlapping speech present in the audio
sessions that is insufficiently assigned to a single speaker. Our
systems do not contain any purpose-specific module to detect
such segments. Finally,Espkr is the error related to speech seg-
ments that are associated to the wrong speaker identities. It is

2https://github.com/kaldi-asr/kaldi/tree/
master/egs/sre16/v2

3https://chocolate.readthedocs.io/



Table 1: Summary of ODESSA Primary (P) and contrastive (C1/C2) submissions for the closed- and open-set (denoted by c and o sub-
script, respectively) conditions, including feature extraction, segmentation and training data used, segment representation, clustering
and fusion. Performance (DER, %) is shown in the last column.

Condition Sys. Features Segmentation Segment rep. / train data Clustering Fusion DER

Closed
Pc - - - - C1c,C2c, Hyp-level 10.17
C1c ICMC 1-second BK / - AHC - 12.33
C2c MFCC BiLSTM EMB / 3/24 data AP - 14.10

Open
Po - 1-second - AHC C1c,C1o,C2o, Sim-level5 7.21
C1o MFCC 1-second x-vector / SRE-data AHC - 9.29
C2o MFCC BiLSTM EMB / Voxceleb AP - 11.46

generally the main source of error in a speaker diarization sys-
tem. To compute DER, a standard forgiveness collar of 0.25s is
applied around all reference segment boundaries.

Systems were tuned on approximately 15 hours of audio
available at the 12 sessions that compose the partition dev2 of
the RTVE2018 database. These sessions belong to the Spanish
TV shows ”La noche en 24h” and ”Millenium”, of roughly 1h of
duration and an average of 14 speakers per session. For further
details please refer to [7].

5. Submitted systems and results
Table 1 summarises the ODESSA submissions and reports their
performance on the RTVE2018 development set4. All systems
share the same speech activity detection module, implying that
the speech/non-speech segmentation is identical for each sys-
tem. The segmentation error rate was 1.9%, composed of a
missed speech rate of 0.3% and a 1.6% false alarm speech rate.
ODESSA submitted systems to both closed- and open-set con-
ditions.
Closed-set condition. C1c uses ICMC features, 1-second uni-
form segmentation, BK representation and AHC clustering,
while C2c uses MFCC features, BiLSTM based SCD, triplet-
loss neural embedding representation (EMB) and AP clustering.
The DERs on the development set were 12.33% and 14.10%,
for systems C1c C2c, respectively. Our primary system Pc is
the fusion at diarization hypothesis level of C1c and C2c. Since
these two systems use different segmentations this combination
method was found to be the most convenient. The combined
hypothesis decreases the DER to 10.17%.
Open-set condition. In the open-set condition, ODESSA
aimed to analyse how systems can benefit from greater amounts
of training data. The SRE and Voxceleb databases were used
for this purpose. Contrastive system C1o used MFCC features,
1-second uniform segmentation, x-vector representation trained
on SRE data and AHC clustering. System C2o aligns with the
closed-set C2c system, but where the training data was replaced
with the Voxceleb data. The DERs on the development set are
9.29% and 11.46%, respectively. The primary submission Po

is the combination at similarity matrix level of three systems,
namely C1c (closed-set condition), C1o and C2o

5. To speed
up the tuning of optimal weights for three systems, we first
tuned α for the fusion of C1o and C1c, and then β for the fu-
sion of previously fused C1o-C2o and C2o. Weights were set to
α = β = 0.98. This combined system led to the best perfor-
mance on the development set, with a DER of 7.21%.

4At time of submission, neither results on the evaluation set, nor the
ground-truth labels were available.

5In the fused system, C2o was modified to use the 1-second seg-
mentation and AHC clustering approaches to enable the alignment with
C1o and C1c.

6. Discussion
Open- vs. closed-set conditions. As shown in Table 1, open-
set systems outperform closed-set ones on the development set.
This is somehow expected since neural approaches usually ben-
efit from large amounts of data. Apart from differences in the
amount of training data, the absence of global speaker IDs on
the closed-set training data are also likely to influence perfor-
mance. Our attempt to train an x-vector extractor for the closed-
set condition was unfruitful, and performance of the triplet-loss
embedding extractor was significantly worse than when using
external training data (system C2c vs. C2o). In this situation,
the simpler, training-free binary key approach turned out to be
the single best performing system (C1c), showing the potential
of such techniques when training data is sparse or unavailable.
Segmentation. It is not clear if a dedicated module to speaker
turn detection brings significant benefits compared to simple,
straightforward uniform segmentation of the input stream. A
volume of work reports the relative success of both explicit ap-
proaches to SCD [27, 28, 24] and uniform segmentation ap-
proaches [13, 29, 16]. In this work we found that some of the
speaker representations work better with either one of the two
strategies, with the uniform approach being better suited to BK
and x-vector, and SCD to the triplet-loss embeddings.
System combination. In the closed-set condition, and because
of the segmentation mismatch of our best performing single sys-
tems, they could not be combined at the similarity matrix level.
Hence, the most obvious combination was at hypothesis level.
The label combination procedure followed by a re-segmentation
resulted in a lower DER than those of the two individual sys-
tems. In the open-set condition three subsystems used the same
segmentation, and hence they could be fused at the similarity
matrix level. This enabled the clustering to be performed jointly
by considering the contributions of the three subsystems in par-
allel along the complete diarization process.

7. Conclusions
This paper reports the participation of the ODESSA team to
the Albayzin Speaker Diarization Challenge 2018. As a con-
sortium, our main interest was on the combination of multiple
approaches to diarization. We assessed the effectiveness of two
fusion strategies, namely at similarity matrix level, and at di-
arization hypothesis level, which allowed the combination of
segment-time-aligned and arbitrary time-aligned diarization al-
gorithms, respectively. We also found the use of appropriate and
abundant training data was critical to the learning of robust em-
beddings, while training-free approaches are demonstrated to
be adequate in the absence of suitable training data. For future
work, and together with other classical challenges such as the
problem of overlapping speakers, the impact of speaker change
detection should be further investigated.
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