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A. Full derivation of variational lower bound
The following derivation shows that minimizing the KL divergence between the approximate posterior and the true posterior
is equivalent to minimizing the so-called Negative Expected Lower Bound (NELBO):

KL [qθ(W)||p(W|X,Y )] = Eqθ
[
log

qθ(W)

p(W|X,Y )

]
=

= Eqθ [log qθ(W)− log p(W|X,Y )] =

= Eqθ [− log p(Y |X,W)] + Eqθ [log qθ(W)− log p(W)] + log p(Y |X) =

= NLL + KL [qθ(W)||p(W)] + log p(Y |X) =

= NELBO + log p(Y |X) (1)

This also shows that when the approximate posterior is exactly equal to the true posterior, the NELBO is equal to the
negative log-marginal likelihood.

B. Bayesian linear regression
In this section, we derive Bayesian linear regression, which is the core model used in our proposed initialization I-BLM.
Denote by X the n × d matrix containing n input vectors xi ∈ Rd, and let Y be the set consisting of the corresponding
multivariate labels yi. In Bayesian linear regression we introduce a set of latent variables that we compute as a linear
combination of the input through a set of weights, and we express the likelihood and the prior on the parameters as follows:

p(Y |X,W,L) =
∏
i

p(Y·i|XW·i, λ) =
∏
i

N (Y·i|XW·i, L) (2)

and
p(W |Λ) =

∏
i

p(W·i) = N (W·i|0,Λ) (3)

The posterior of this model is:

p(W |Y,X,L,Λ) ∝
∏
i

N (Y·i|XW·i, L)N (W·i|0,Λ) (4)

which implies that the posterior factorizes across the columns of W , with factors

p(W·i|Y,X,L,Λ) = N (W·i|ΣiX>L−1Y·i,Σi) (5)

with Σi = (Λ−1 +X>L−1X)−1. Similarly, the marginal likelihood factorizes as the product of the following factors

p(Y·i|X,L,Λ) = N (Y·i|0, L+XΛX>) (6)
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C. Heteroscedastic Bayesian linear regression
In the main paper we discuss how I-BLM can be extended to handle classification problems, by borrowing ideas from
Milios et al. (2018) where it shown how to transform classification problems into regression. Here we extend Bayesian
linear regression to the heteroscedastic case where L = diag(σ2) and Λ = αI . These yield

p(W·i|Y,X,σ2, α) = N (W·i|µi,Σi) with (7)

µi = ΣiX
>diag(σ−2)Y·i (8)

Σi = α (I + αX>diag(σ−2)X)−1 (9)

and
p(Y·i|X,σ2, α) = N (Y·i|0,diag(σ2) + αXX>) (10)

The expression for the marginal likelihood is computationally unconvenient due to the need to deal with an n× n matrix.
We can use Woodbury identities1 to express this calculation using Σi. In particular,

log[p(Y·i|X,σ2, α)] = −1

2
log
∣∣diag(σ2) + αXX>

∣∣− 1

2
Y >·i

(
diag(σ2) + αXX>

)−1
Y·i + const. (11)

Using Woodbury identites, we can rewrite the algebraic operations as follows:

log
∣∣diag(σ2) + αXX>

∣∣ = log
∣∣diag(σ2)

∣∣+ log
∣∣I + α diag(σ−2)XX>

∣∣
=
∑
j

log σ2
j + log

∣∣I + αX>diag(σ−2)X
∣∣ (12)

and (
diag(σ2) + αXX>

)−1
= diag(σ−2)− α diag(σ−2)X

(
I + αX>diag(σ−2)X

)−1
X>diag(σ−2) (13)

So, wrapping up, we can express all quantities of interest through:

Σ−1i = I + αX>diag(σ−2)X (14)

The marginal likelihood becomes:

log[p(Y·i|X,σ2)] = −1

2

∑
j

log σ2
j + log

∣∣Σ−1i ∣∣


−1

2
Y >·i

(
diag(σ−2)− α diag(σ−2)XΣiX

>diag(σ−2)
)−1

Y·i + const. (15)

If we factorize Σ−1i = QQ>, we obtain:

log[p(Y·i|X,σ2)] = −1

2

∑
j

log(σ2
j ) +

∑
k

2 log(Qkk)

− 1

2
Y >·i Ỹ·i +

α

2
Ỹ >·i XQ

−>Q−1X>Ỹ·i + const. (16)

where Ỹ·i = diag(σ−2)Y·i

Predictions follow from the same identities as before - looking at the predicted latent process, we have

p(f∗i|X,Y,x∗) =

∫
p(f∗i|W,x∗)p(W |X,Y )dW (17)

We can again remove the dependence from the dimensions of W that do not affect the prediction for the ith function as

p(f∗i|X,Y,x∗) =

∫
p(f∗i|W·i,x∗)p(W·i|X,Y )dW (18)

Now:
p(f∗i|W·i,x∗) = N (f∗i|x>∗W·i, 0) and p(W·i|X,Y ) = N (W·i|µi,Σi) (19)

giving
p(f∗i|X,Y,x∗) = N (f∗i|x>∗ µi,x>∗ Σix∗) (20)

1 |I +B>C| = |I + CB>| and (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1
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D. Full derivation of fully factorized Gaussian posterior approximation to Bayesian linear
regression posterior

For simplicity of notation, let w be the parameters of interest in Bayesian linear regression for a given output y = Y·i. We
can formulate the problem of obtaining the best approximate factorized posterior of a Bayeian linear model as a minimiza-
tion of the KL divergence between q(w) = N (w|m,diag(s2)) and the actual posterior p(w|X,y). The expression of the
KL divergence between multivariate Gaussians p0 = N (W |µ0,Σ0) and p1 = N (W |µ1,Σ1) is as follows:

KL[p0||p1] =
1

2
Tr(Σ−11 Σ0) +

1

2
(µ1 − µ0)>Σ−11 (µ1 − µ0)− D

2
+

1

2
log

(
detΣ1

detΣ0

)
(21)

The KL divergence is not symmetric, so the order in which we take this matters. In case we consider KL[p(w|X,y)||q(w)],
the expression becomes:

KL[p(w|X,y)||q(w)] =
1

2
Tr(diag(s2)−1Σ) +

1

2
(m− µ)>diag(s2)−1(m− µ)− D

2
+

1

2
log

(∏
i s

2
i

detΣ

)
(22)

It is a simple matter to show that the optimal mean m is µ as m appears only in the quadratic form which is clearly
minimized when m = µ. For the variances s2, we need to take the derivative of the KL divergence and set it to zero:

∂KL[p(w|X,y)||q(w)]

∂s2i
=

1

2

∂Tr(diag(s2)−1Σ)

∂s2i
+

1

2

∂
∑
i log s2i
∂s2i

= 0 (23)

Rewriting the trace term as the sum of the Hadamrd product of the matrices in the product
∑
ij(diag(s2)−1 � Σ)ij =∑

i Σii/s
2
i , this yields

∂KL[p(w|X,y)||q(w)]

∂s2i
=

1

2

∂Σii/s
2
i )

∂s2i
+

1

2

∂ log s2i
∂s2i

= 0 (24)

This results in s2i = Σii, which is the simplest way to approximate the correlated posterior over w but it is going to inflate
the variance in case of strong correlations.

In case we consider KL[q(w)||p(w|X,y)], the expression of the KL becomes:

KL[q(w)||p(w|X,y)] =
1

2
Tr(Σ−1diag(s2)) +

1

2
(m− µ)>Σ−1(m− µ)− D

2
+

1

2
log

(
detΣ∏
i s

2
i

)
(25)

Again, the optimal mean m is µ. For the variances s2, we need to take the derivative of the KL divergence and set it to
zero:

∂KL[q(w)||p(w|X,y)]

∂s2i
=

1

2

∂Tr(Σ−1diag(s2))

∂s2i
− 1

2

∂
∑
i log s2i
∂s2i

= 0 (26)

Rewriting the trace term as the sum of the Hadamrd product of the matrices in the product
∑
ij(Σ

−1 � diag(s2))ij =∑
i s

2
iΣ
−1
ii , this yields

∂KL[q(w)||p(w|X,y)]

∂s2i
=

1

2

∂s2iΣ
−1
ii )

∂s2i
− 1

2

∂ log s2i
∂s2i

= 0 (27)

This results in (s2i )
−1 = Σ−1ii . This approximation has the opposite effect of underestimating the variance for each variable.

E. Extended results
E.1. Experimental setup

The experimental results in the main paper and in the supplement have been carried out using Zoe-Analytics (Pace et al.,
2017) running on a cluster of computers featuring servers equipped with NVIDIA Tesla P100 GPUs.

E.2. Toy example

With this simple example we want once more illustrate how I-BLM works and how it can speed up the convergence of SVI.
We set up a regression problem considering the function f(x) = sin(x) + sin(x/2) + sin(x/3) − sin(x/4) corrupted by
noise ε ∼ N (0, exp(−2)), with x sampled uniformly in the interval [−10, 10]. Figure 1 reports the output of a 4-layer DNN
after different initializations. The figure shows that I-BLM obtains a sensible initialization compared to the competitors.
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Figure 1: Predictions after initialization using our proposal and all the other competitive methods.

E.3. Regression with shallow architecture
TEST RMSE

I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

POWERPLANT 0.2427± 0.006 0.2452± 0.007 0.2436± 0.008 0.2427± 0.008 0.2439± 0.008 0.2438± 0.007
PROTEIN 0.6831± 0.004 0.7135± 0.008 0.7020± 0.009 0.6952± 0.011 0.7315± 0.016 0.7356± 0.006

TEST MNLL
I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

POWERPLANT −0.7647± 0.012 −0.7607± 0.013 −0.7622± 0.014 −0.7641± 0.013 −0.7623± 0.013 −0.7623± 0.012
PROTEIN 0.7510± 0.021 0.8980± 0.040 0.8376± 0.046 0.8047± 0.055 0.9878± 0.083 1.0081± 0.033

E.4. Regression with deep architecture
TEST RMSE

I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

POWERPLANT 0.2472± 0.003 0.2476± 0.005 0.2462± 0.005 0.2658± 0.030 0.2467± 0.005 0.2774± 0.026
PROTEIN 0.6683± 0.007 0.7170± 0.013 0.6899± 0.011 0.6821± 0.007 0.6982± 0.014 0.7033± 0.011

TEST MNLL
I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

POWERPLANT −0.7455± 0.008 −0.7420± 0.008 −0.7455± 0.009 −0.7007± 0.070 −0.7450± 0.010 −0.6677± 0.065
PROTEIN 0.6922± 0.035 0.9326± 0.066 0.7884± 0.055 0.7540± 0.033 0.8280± 0.072 0.8587± 0.040

E.5. Classification with shallow architecture
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Figure 2: Progression of test ERROR RATE and test MNLL over training iterations for different initialization strategies on four classifica-
tion datasets.
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TEST ERROR RATE
I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

SPAM 0.0594± 0.013 0.0620± 0.008 0.0624± 0.011 0.0620± 0.012 0.0611± 0.012 0.0598± 0.014
EEG 0.1855± 0.015 0.1929± 0.009 0.2221± 0.009 0.2137± 0.008 0.2335± 0.007 NC

CREDIT 0.2680± 0.027 0.2679± 0.044 0.2480± 0.071 0.2519± 0.033 0.2539± 0.032 0.2580± 0.050
MNIST 0.0253± 7e−4 NC 0.1046± 0.014 0.0315± 0.001 0.0275± 0.001 0.0291± 0.002

TEST MNLL
I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

SPAM 0.229± 0.034 0.213± 0.030 0.228± 0.043 0.228± 0.048 0.225± 0.053 0.228± 0.050
EEG 0.4218± 0.020 0.4668± 0.008 0.4411± 0.006 0.4866± 0.010 0.4728± 0.010 NC

CREDIT 0.6759± 0.084 0.6597± 0.101 0.6605± 0.111 0.6616± 0.105 0.6662± 0.076 0.6739± 0.069
MNIST 0.2655± 0.015 NC 0.4497± 0.039 0.2724± 0.020 0.2643± 0.017 0.2744± 0.014

E.6. Classification with deep architecture
TEST ERROR RATE

I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

MNIST 0.0356± 0.003 0.0390± 0.003 0.0400± 0.003 0.0411± 0.002 0.0396± 0.002 0.0373± 0.001
EEG 0.0673± 0.008 0.1283± 0.009 0.1119± 0.008 0.0894± 0.003 0.1216± 0.002 NC

CREDIT 0.2700± 0.024 0.2975± 0.059 0.2824± 0.058 0.2833± 0.022 0.3145± 0.051 0.2758± 0.022
SPAM 0.0566± 0.021 0.0611± 0.008 0.0585± 0.017 0.0534± 0.018 0.0514± 0.013 0.0611± 0.013

TEST MNLL
I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

MNIST 0.1692± 0.007 0.1847± 0.002 0.1799± 0.009 0.1912± 0.011 0.1822± 0.005 0.1723± 0.005
EEG 0.4222± 0.054 1.2515± 0.352 0.8136± 0.123 0.6273± 0.130 0.9366± 0.097 NC

CREDIT 2.6555± 0.521 3.2836± 0.704 3.1268± 0.678 2.7015± 0.665 2.6482± 0.231 2.5422± 0.236
SPAM 0.7021± 0.218 1.1098± 0.271 1.0458± 0.517 1.0682± 0.347 0.8176± 0.337 1.1682± 0.486

E.7. Convolutional neural networks
TEST ERROR RATE

I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

MNIST 0.0087 NC NC NC 0.0098 0.0113
CIFAR10 0.3499 NC NC NC 0.3784 0.3846

TEST MNLL
I-BLM UNINFORMATIVE HEURISTIC XAVIER ORTHOGONAL LSUV

MNIST 0.0345 NC NC NC 0.0377 0.0421
CIFAR10 1.0683 NC NC NC 1.1270 1.1428

0.0 0.2 0.4 0.6 0.8 1.0

0

2000

4000

6000

8000

MCD

Average = 0.026

Average = 0.383

0.0 0.2 0.4 0.6 0.8 1.0

0

2000

4000

6000

8000

I-BLM INITIALIZATION

Average = 0.035

Average = 0.526

Test on MNIST Test on NOT-MNIST

Figure 3: Entropy distribution while testing on MNIST and NOT-MNIST (higher average entropy on NOT-MNIST means better uncertainty
estimation).
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E.8. Uncertainty estimation

One of the advantages of Bayesian inference is the possibility to reason about uncertainty. With this experiment, we
aim to demonstrate that SVI with a Gaussian approximate posterior is competitive with MCD in capturing uncertainty in
predictions. To show this, we focus on a CNN with the LENET-5 architecture. We run MCD and SVI with a Gaussian
approximate posterior with the proposed initialization on MNIST. At test time, we carry out predictions on both MNIST and
NOT-MNIST; the latter is a dataset equivalent to MNIST in input dimensions (1 × 28 × 28) and number of classes, but it
represents letters rather than numbers2. This experimental setup is often used to check that the entropy of the predictions
on NOT-MNIST are actually higher than the entropy of the predictions on MNIST. We report the entropy of the prediction
on MNIST and NOT-MNIST in Figure 3. MCD and SVI behave similarly on MNIST, but on NOT-MNIST the the histogram of
the entropy indicates that SVI yields a slightly higher uncertainty compared to MCD.

E.9. Calibration
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Figure 4: Comparison of reliability diagrams and ECE between I-BLM and MCD on MNIST (left) and CIFAR10 (right).

Calibration of uncertainty is an important performance metric that one should take into account for comparing classification
models (Flach, 2016; Guo et al., 2017). Reliability Diagrams and the Expected Calibration Error are standard methods
to empirically estimate the calibration uncertainty. Reliability Diagrams are a visualization tool where sample accuracy is
plotted as function of confidence (DeGroot & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005). For a perfectly calibrated
model, the diagram follows the identity function. Expected Calibration Error (or ECE) represents a summary statistic of
the calibration (Naeini et al., 2015). Figure 4 shows the reliability diagrams and the ECE for LENET-5 trained on MNIST
and for ALEXNET trained on CIFAR10. Even tough they show similar properties on MNIST, with ALEXNET on CIFAR10,
SVI initialized with I-BLM improves the calibration of uncertainty up to 3.5 times over MCD.

E.10. KL regularization policy for Gaussian SVI

The KL regularization term in the variational objective severely penalizes training of over-parameterized model. With a
sensible initialization of this kind of model, the approximate posterior is drastically different from a spherical Gaussian
prior and the variational objective is majorly dominated by the regularization term rather than the reconstruction likelihood.
To deal with such issue, we propose and implement a simple policy to gradually include the KL term in the NELBO. Given
the generic expression for the NELBO, we modify the lower bound as follow:

NELBO = NLL + λKL [qθ(W)||p(W)] where λ = γ (1 + exp(−α(iter− β)))
−1

,

This way, we start the optimization of the NELBO with low regularization, and progressively increase it throughout the
optimization. For the experiment on VGG16, we used α = 2 · 10−3, β = 2.5 · 104 and γ = 10−1.
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