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Abstract— In the context of caching in heterogeneous net-
works, the work explores the setting where a multi-antenna
transmitter (N0 antennas), broadcasts to K receiving users, each
assisted by one of Λ ≤ K helper nodes serving as limited-sized
caches. Our aim is to identify the limits of coded caching when
there are fewer caches than users (Λ < K), the interplay between
having fewer caches but more transmit antennas, and the impact
of non-uniformity where some caches serve more users than
others.

For a broad range of parameters, under the assumption of
uncoded cache placement, the work derives the exact optimal
worst-case delivery time (or equivalently, the optimal sum
degrees of freedom (DoF)), as a function of the cache sizes
and the user-to-cache association profile. This is achieved by
presenting an information-theoretic outer bound based on index
coding that adapts to user-to-cache association non-uniformities,
and an optimal caching-and-delivery scheme. The result reveals
the effect of these non-uniformities, and also reveals a powerful
effect of introducing a modest number of antennas and a modest
number of helper nodes; when Λ < K/N0, adding a single degree
of cache-redundancy yields a caching-gain increase equal to N0,
and similarly, adding antennas has a multiplicative DoF impact
where for example introducing a second transmit antenna can
double the DoF.

I. INTRODUCTION

A recent information theoretic exposition of the cache-
aided communication problem [2], has revealed the potential
of caching in allowing for the elusive scaling of networks,
where a limited amount of (bandwidth and time) resources
can conceivably suffice to serve an ever increasing number of
users. This exposition in [2] considered a single-stream broad-
cast channel (BC) scenario where a single-antenna transmitter
has access to a library of N files, and serves (via a single
bottleneck link) K receivers, each having a cache of size equal
to the size of M files.

In a normalized setting where the link has capacity 1 file
per unit of time, the work in [2] showed that any set of K
simultaneous requests can be served with normalized delay
(worst-case completion time) which is at most T = K(1−γ)

1+Kγ

where γ , M
N denotes the normalized cache size. This implied

an ability to treat Kγ + 1 users at a time; a number that is
often referred to as the cache-aided sum degrees of freedom
(DoF) dΣ , K(1−γ)

T , corresponding to a caching gain of Kγ
additional served users due to caching.

For this same single-bottleneck setting, this performance
was shown to be approximately optimal (cf. [2]), and under
the basic assumption of uncoded cache placement where
caches store uncoded content from the library, it was shown
to be exactly optimal (cf. [3], [4]). This coded caching was
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adapted for a variety of basic broadcast settings that include
uneven topologies [5], the erasure channel [6], [7], the MISO
BC with fading [8], see also [9]–[12].

Cache-aided heterogeneous networks: A next step was
to explore coded caching in the context of more involved
topologies, that better capture aspects of wireless networks.
Of particular interest are the so called heterogeneous net-
works where communication between the base station and
the receiving nodes, takes place in the presence of helper
nodes which can now serve as caches. This heterogeneous
topology nicely captures an evolution into denser networks
where many wireless access points work in conjunction with
bigger base stations, in order to better handle interference
and (when storage of data is allowed) in order to alleviate the
backhaul load by replacing backhaul capacity with storage
capacity at the communicating nodes.

The use of caching in such networks was famously explored
in the Femtocaching work in [14], where wireless receivers are
assisted by helper nodes of a limited cache size, whose main
role was to bring content closer to the users. A transition to
coded caching can be found in [15] which considered a similar
heterogeneous network, where one receiving user can have
access to a main base station (server) as well as to multiple
access points (multiple helper caches). In this context, under
mostly a uniform user-to-cache association, [15] proposes a
coded caching scheme which is shown to perform to within a
certain constant factor from the optimal. This uniform setting
is addressed also in [16], again for the single antenna case.

Notation: For n a positive integer, we will use [n] ,
{1, 2, ..., n}, and we will use 2[n] to denote the power set of
[n]. The expressions α|β denote that integer α divides integer
β. We will use P (n, k) , n!

(n−k)! and
(
n
k

)
, n!

(n−k)!k! . If A
is a set, then |A| will denote its cardinality. N will represent
the natural numbers. We will use Conv(f(i)) to represent the
lower convex envelope of the points {(i, f(i))|i ∈ [n] ∪ {0}}
for some n ∈ N. For n ∈ N, we will use Sn to denote
the symmetric group of all permutations of [n]. To simplify
notation, we will also use such permutations π ∈ Sn on
vectors v ∈ Rn, where π(v) will now represent the action
of the permutation matrix defined by π, meaning that the first
element of π(v) is vπ(1) (the π(1) entry of v), the second is
vπ(2), and so on. πs(L) will denote the sorted version of L
in descending order.

II. SYSTEM MODEL

In this work, we consider a basic broadcast configuration
with a transmitting server having N0 transmitting antennas
and access to a library of N files W 1, ...,WN of total size∑
n∈[N ] |Wn| = N units of ‘file’, where this transmitter

is connected via a broadcast link to K receiving users and
to Λ ≤ K helper nodes that will serve as caches which
store content from the library. The communication process is
split into a) the cache-placement phase, b) the user-to-cache
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Fig. 1: Representation of the addressed problem (left) and a
system example with N0 = 2,K = 6,Λ = 3 (right)

assignment phase during which each user is associated to a
single cache, and c) the delivery phase.

a) Uncoded cache placement phase: During this phase,
helper nodes store content from the library without having
knowledge of the users’ requests. Each helper cache has size
M ≤ N units of file, and no coding is applied to the content
stored at the helper caches; this corresponds to the common
case of uncoded cache placement. We denote by Zλ the cache
content at helper node λ ∈ [Λ].

b) User-cache association: After the caches are filled,
each user is randomly assigned to exactly one helper
node/cache, from which it can download content at zero
cost. We denote by Uλ the set of users associated to helper
node/cache λ ∈ [Λ]. The user-to-cache assignment is indepen-
dent of the cache content and independent of the file requests
to follow. The resulting user-to-cache association is described
by

L = (L1, ..., LΛ)

where Lλ is the number of users associated to helper
node/cache λ. Naturally

∑
λ∈[Λ] Lλ = K.

c) Delivery: The delivery phase commences when each
user k = 1, . . . ,K requests from the transmitter, any one file
W dk , dk ∈ [N ] out of the N library files. Upon notification
of the entire demand vector d = (d1, d2, · · · , dK), the
transmitter aims to deliver the requested files, each to their
intended receiver, and the aim is to design a caching and
delivery scheme χ that does so with limited (delivery phase)
duration T . For each transmission, the received signals at user
k, take the form

yk = hTk x + wk, k = 1, . . . ,K (1)

where x ∈ CN0×1 denotes the transmitted vector satisfying a
power constraint E(||x||2) ≤ P , where hk ∈ CN0×1 denotes
the channel of user k, and where wk represents unit-power
AWGN noise at receiver k. We will assume that P is high
(high SNR), we will assume perfect channel state information
throughout the (active) nodes, statistically symmetric fading,
and that each link (one antenna to one receiver) has capacity
log(SNR) + o(log(SNR)).

d) Performance measures: As in [2], T is the number of
time slots, per file served per user, needed to complete delivery
of any request vector1. We use T (L,d, χ) to define the delay
required by some caching-and-delivery scheme χ to satisfy
demand d in the presence of a user-to-cache association vector
L. Our interest is in the regime of N ≥ K where there are
more files than users.

1The time scale is normalized such that one time slot corresponds to the
optimal amount of time needed to send a file from a single-antenna transmitter
to a single-antenna receiver, had there been no caching and no interference.

III. MAIN RESULTS

We first describe the main results for the single antenna
case, and then generalize to the multi-antenna case. The
outer bound encompasses the class of all caching-and-delivery
schemes χ that employ uncoded cache placement under a
general sum cache constraint 1

Λ

∑Λ
λ=1 |Zλ| = M which does

not necessarily impose an individual cache size constraint.
The outer bound also encompasses all scenarios that involve
a library of size

∑
n∈[N ] |Wn| = N but where the file sizes

may be of different size. In the end, even though the actual
designed optimal scheme will consider an individual cache
size M and equal file sizes, the outer bound guarantees that
there cannot exist a scheme (even in settings with uneven
cache sizes or uneven file sizes) that exceeds the optimal
performance identified here.

For the single transmit antenna case, the optimal delivery
time takes the following form.

Theorem 1. In the K-user, single-antenna network with Λ
caches and cache-size γ, the optimal average delivery time
T ∗ , minχ EL maxd T (L,d, χ) is

T ∗ = EL

[
Conv

(∑Λ−Λγ
r=1 Lπs(r)

(
Λ−r
Λγ

)(
Λ

Λγ

) )]
(2)

for points γ ∈ { 1
Λ ,

2
Λ , . . . , 1}, where πs is the permutation

that sorts L in descending order.

The lower bound proof is in Section IV, and due to lack
of space, the optimal scheme χ is presented in [17]2.

Effect of user-to-cache association non-uniformity: One
can see that the different L can be split into classes

SL , {π(L) : ∀π ∈ SΛ}

where each class defines a different type of non-uniformity
in user-to-cache association3. To capture this effect of non-
uniformity, we will here describe the optimal average delay
for each type, by calculating

T ∗(SL) , min
χ

EL∈SL
max
d

T (L,d, χ)

representing the optimal delivery time averaged over the L of
a given type.

Corollary 1. Within any class SL, the optimal T ∗(SL) takes
the form

T ∗(SL) = Conv

(∑Λ−Λγ
r=1 Lπs(r)

(
Λ−r
Λγ

)(
Λ

Λγ

) )
(3)

at points γ ∈ { 1
Λ ,

2
Λ , . . . , 1}

The lower bound proof is in Section IV, and the scheme is
in [17].

We proceed to extend the above to the multiple antenna
case.

2For any given L, and any γ ∈ { 1
Λ
, 2

Λ
, . . . , 1} the scheme

achieves a worst-case delivery time equal to maxd T (L,d, χ) =∑Λ−Λγ
r=1 Lπs(r)

(
Λ−r
Λγ

)
(

Λ
Λγ

) which, when averaged over all possible L, gives the

optimal delay stated in the theorem. Whenever γ /∈ { 1
Λ
, 2

Λ
, . . . , 1} the lower

convex envelope of these points is achieved.
3We here emphasize that we consider set SL to accept repetitions, i.e., to

accept entries consisting of identical vectors. In that sense, note that |SL| =
|SΛ| = Λ!. Repetition will occur whenever there will be caches populated
with the same number of users.

2



Theorem 2. In the N0-antenna K-user MISO BC with Λ
caches of normalized size γ, the optimal delay for any N0-
admissible class4 SL is equal to

T ∗(SL) =
1

N0
Conv

(∑Λ−Λγ
r=1 Lπs(r)

(
Λ−r
Λγ

)(
Λ

Λγ

) )
(4)

γ ∈ { 1

Λ
,

2

Λ
, . . . , 1}

which reveals a multiplicative gain of N0 with respect to the
single antenna case.

The lower bound proof is in Section IV, and the scheme
is in the long version [17]. An example of the scheme can
be found in Section V. The N0-admissibility condition of
Theorem 2 has been relaxed in [1] for a broader range of
user-to-cache associations.

As a direct consequence of the above theorem, the fol-
lowing corollary provides, under the assumption of uncoded
cache placement, the exact optimal delay for the uniform case5

L = (KΛ ,
K
Λ , ...,

K
Λ ) with N0 ≤ K

Λ .

Corollary 2. In the uniform case of L = (KΛ ,
K
Λ , ...,

K
Λ ) where

N0 ≤ K
Λ , the optimal delay is

T ∗(L) =
K(1− γ)

N0(Λγ + 1)
. (5)

The lower bound proof is in Section IV, and the scheme is
given in the long version [17].

IV. DERIVATION OF THE LOWER BOUND

In this section we develop an information theoretic lower
bound on the normalized delivery time

EL∈SL

(
max
d

T (L,d, χ)

)
(6)

associated to any given user-cache association class SL.
This will directly allow us to prove the results stated in
Theorem 1 and Theorem 2. The proof technique is based
on the breakthrough in [3] which – for the single stream
case with Λ = K – employed index coding to bound coded
caching performance. Part of the effort in our proof, will be
to adapt the index coding approach to account for having
shared caches, multiple antennas, and non-uniform user-to-
cache association. At this point we note that due to lack of
space, the proof is limited to the bare essentials. For a clearer
version of the proof, which includes explanatory examples,
we refer the reader to [17].

We will start by lower bounding the normalized delivery
time T (L,d, χ), for any user profile L, demand vector d and
a generic caching-delivery strategy χ. The use of index coding
will be facilitated by reordering the demand vector d to take
the form d(L)

4
= (dU1

, · · · ,dUΛ
), where dUλ is the vector of

indices of the files requested by the set of users Uλ associated
to cache λ.

4An L and its class SL are N0-admissible if the following three conditions
are met: i) Lλ =

∑P
j=1 nλ,jAj ∀λ ∈ [Λ], ii) Aj ∈ N, N0 ≤ Aj <

2N0 nλ,j ∈ N, P ∈ N, and iii) if nλ,j ≥ nλ′,j then nλ,j′ ≥ nλ′,j′ ∀j′ ∈
[P ]. Part of what N0-admissibility controls is that the number of caches does
not exceed a certain threshold. For example, in the uniform case that follows,
N0-admissibility guarantees that Λ ≤ K

N0
.

5We here assume that Λ|K.

The corresponding index coding problem: At this point
each requested file WdUλ(j) by each user Uλ(j), can be
thought to be split into 2Λ disjoint subfiles W

dUλ(j)

T , T ∈ 2[Λ]

where T ⊂ [Λ] indicates the set of helper nodes in which
the subfile W

dUλ(j)

T is cached6. Transitioning from the coded
caching problem to the equivalent index coding problem, each
subfile W

dUλ(j)

T can be thought to be requested by a user that
has as side information all the content Zλ of helper node
λ associated to the original (in the caching problem) user
Uλ(j). Naturally no subfile of the form W

dUλ(j)

T , ∀T 3 λ
is requested because (caching) user Uλ(j) already has this
information. Therefore the corresponding index coding prob-
lem has K2Λ−1 users and it is represented by the so-called
side-information graph G = (VG , EG), where VG is the set of
vertices (nodes representing subfiles W

dUλ(j)

T , T 63 λ) and EG
is the set of direct edges of the graph. A directed edge from
node W

dUλ(j)

T to W
dU

λ′ (j
′)

T ′ exists if and only if λ′ ∈ T . This
graph G is defined by L,d, χ, and the total delay T required
to serve all index coding users, is our desired T (L,d, χ). This
T is bounded in the following lemma.

Lemma 1. For the N0-antenna MISO BC with side informa-
tion graph G = (VG , EG), then

T ≥ 1

N0

∑
V∈VJ

|V|

holds for every acyclic induced subgraph J of G, where VJ
denotes the set of nodes of the subgraph J and |V| is the size
of the message/subfile V.

The above draws from [18] (see also [19, Corollary1] for
a simplified version), and it is easily proved in [17].

Creating large acyclic subgraphs: As we see, the above
bound requires the creation of (preferably large) acyclic
induced subgraphs of G. The following lemma will tell us
how to properly choose a set of nodes that induce a large
acyclic subgraph.

Lemma 2. An induced acyclic subgraph J of G corre-
sponding to the index coding problem is designed here to

consist of subfiles W
dUπs(λ)(j)

Tλ , j ∈ [Lπs(λ)], ∀λ ∈ [Λ] for
all Tλ ⊆ [Λ] \ {πs(1), ..., πs(λ)} where πs ∈ SΛ is the
permutation such that Lπs(1) ≥ Lπs(2) ≥ ... ≥ Lπs(Λ).

The proof of Lemma 2 is given in the long version [17].

Remark 1. Lemma 2 is an adaptation of [3, Lemma 1] to
our setting. The choice of the permutation πs is critical;
in our case, for each L,d, χ, we pick this single πs that
forces larger (in comparison to other permutations) acyclic
subgraphs and thus yields a tighter (eventually optimal)
bound. This is different from [3], which instead considered a
set of all possible permutations, to ensure a certain symmetry
that is crucial to that proof, but which would dilute the non-
uniformity in SL that we are capturing here.

Having chosen an acyclic subgraph according to Lemma 2,
we go back to Lemma 1 and form the following lower bound

6Notice that by considering a subpacketization based on the power set 2[Λ],
and by allowing for any possible size of these subfiles, the generality of the
result is preserved.
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by adding the sizes of all subfiles associated to the chosen
acyclic graph.

T (L,d, χ) ≥ TLB(L,d, χ) ,

1

N0

( Lπs(1)∑
j=1

∑
Tπs(1)⊆[Λ]\{πs(1)}

|W
dUπs(1)(j)

Tπs(1)
|

+ · · ·+
Lπs(Λ)∑
j=1

∑
Tπs(Λ)⊆[Λ]\{πs(1),...,πs(Λ)}

|W
dUπs(Λ)(j)

Tπs(Λ)
|
)
.

(7)

At this point we average over L ∈ SL to get

T (SL, χ)
4
= EL∈SL

(
max
d

T (L,d, χ)

)
(a)

≥ 1

|Dwc|
1

|SL|
∑

d∈Dwc

∑
L∈SL

T (L,d, χ) (8)

which yields

T (SL, χ)
(b)

≥ 1

P (N,K)Λ!

∑
d∈Dwc

∑
L∈SL

TLB(L,d, χ) (9)

where in the above, (a) is due to interchanging the max and
average operation and due to the worst-case delay assumption
where each d belongs to set Dwc consisting of requests
vectors with K different files. Finally (b) is due to having
|Dwc| = P (N,K), |SL| = Λ!, and due to combining (7) and
(8).

After applying (7), we can rewrite the double summation
in (9), to get∑
d∈Dwc

∑
L∈SL

TLB(L,d, χ) = (10)

1

N0

Λ∑
i=0

∑
n∈[N ]

∑
T ⊆[Λ]:|T |=i

|Wn
T | ·

∑
d∈Dwc

∑
L∈SL

1V
Jd(L)
s

(Wn
T )︸ ︷︷ ︸

Qi(Wn
T )

where VJ d(L)
s

is the set of vertices in the acyclic subgraph
chosen according to Lemma 2 for a given d and L.

A crucial step towards removing the dependence on T ,
comes from the fact that

Qi = Qi(W
n
T )
4
=

∑
d∈Dwc

∑
L∈SL

1V
Jd(L)
s

(Wn
T )

=

(
N − 1

K − 1

) Λ∑
r=1

P (Λ− i− 1, r − 1)(Λ− r)!Lπs(r)

× P (K − 1, Lπs(r) − 1)(K − Lπs(r))!(Λ− i) (11)

where we notice that the total number of times that a specific
subfile appears — in the summation in (10), over the set of all
possible d ∈ Dwc,L ∈ SL, and given the chosen permutation
πs — is not dependent on the subfile itself but is dependent
only on the number of caches i = |T | storing that subfile.
The proof of (11) can be found in [17].

By considering xi
4
=
∑
n∈[N ]

∑
T ⊆[Λ]:|T |=i |Wn

T | to be the
total amount of data stored in exactly i helper nodes, and by
noting that

N =
Λ∑
i=0

xi =
Λ∑
i=0

∑
n∈[N ]

∑
T ⊆[Λ]:|T |=i

|Wn
T | (12)

we can combine (9), (10) and (11) to get

T (SL, χ) ≥ 1

N0

Λ∑
i=0

Qi
P (N,K)Λ!

xi. (13)

Now applying (11), after some manipulation, we get

T (SL, χ) ≥ 1

N0

Λ∑
i=0

∑Λ−i
r=1 Lπs(r)

(
Λ−r
i

)
N
(

Λ
i

) xi =
1

N0

Λ∑
i=0

xi
N
ci

(14)

where ci ,
∑Λ−i
r=1 Lπs(r)(Λ−r

i )
(Λ
i)

decreases with i ∈ {0, 1, ...,Λ}
(see [17]).

Under the file-size and cache-size constraints
∑Λ
i=0 xi =

N ,
∑Λ
i=0 ixi ≤ KM respectively, (14) gives a lower bound

on the delay of any caching-and-delivery scheme χ whose
caching policy implies a set of {xi}. We then employ the
Jensen’s-inequality based technique of [4, Proof of Lemma 2]
to minimize the above, over all admissible {xi}. First we see
that for any integer Λγ, we get that

T (SL, χ) ≥ 1

N0

∑Λ−Λγ
r=1 Lπs(r)

(
Λ−r
Λγ

)(
Λ

Λγ

) (15)

and for all other values of Λγ, this is extended to its convex
lower envelop. The details of deriving (15) are found in [17].

The above concludes lower bounding
EL∈SL

(maxd T (L,d, χ)), for any scheme χ. Hence
the above automatically concludes the proof of
the lower bound part of Corollary 1, as well as
the proof of the lower bound part for Theorem 2,

yielding T ∗(SL) ≥ 1
N0
Conv

(∑Λ−Λγ
r=1 Lπs(r)(Λ−r

Λγ )
( Λ
Λγ)

)
, for

γ ∈ { 1
Λ ,

2
Λ , . . . , 1} which holds7 for any SL.

For Corollary 2, we simply consider the uniform SL and
then apply Pascal’s triangle, while for Theorem 1, we directly
have that

T ∗ ≥ ESL
Conv

(∑Λ−Λγ
r=1 Lπs(r)

(
Λ−r
Λγ

)(
Λ

Λγ

) )
.

V. EXAMPLE OF SCHEME

Due to lack of space, we describe the scheme for a specific
example case. The reader is referred to [17] for the general
description of the scheme and is encouraged to read [1] for an
improved version of the algorithm. Let K = 15, N0 = 2, N =
15, and consider Λ = 3 helper caches of size M = 5 units of
file. We first split each file Wn in 3 equal parts Wn

1 ,W
n
2 ,W

n
3 ,

and as in [2], each cache λ stores Wn
λ , ∀n ∈ [15].

Let users U1 = {1, 2, ..., 8} be associated to helper node
1, users U2 = {9, 10, ..., 13} to helper node 2, and users
U3 = {14, 15} to helper node 3. This association implies L =
(8, 5, 2). Let us assume the demand vector d = (1, 2, ..., 15).

The proposed optimal scheme will consider two rounds,
with the first one serving users R1 = {1, 2, 9, 10, 14, 15}, and
the second serving users R2 = {3, 4, 5, 6, 7, 8, 11, 12, 13}. In
the first round, the 3 transmissions are:

x{1,2,9,10} = H−1
{1,2}

[
W 1

2

W 2
2

]
+ H−1

{9,10}

[
W 9

1

W 10
1

]
(16)

x{1,2,14,15} = H−1
{1,2}

[
W 1

3

W 2
3

]
+ H−1

{14,15}

[
W 14

1

W 15
1

]
(17)

x{9,10,14,15} = H−1
{9,10}

[
W 9

3

W 10
3

]
+ H−1

{14,15}

[
W 14

2

W 15
2

]
(18)

7The outer bound does not need the N0-admissibility condition.
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where H−1
{i,j} is the zero-forcing (ZF) precoder for the

channel H{i,j} = [hTi h
T
j ] to users i and j. Hence

user 1, during the first transmission, receives y1 = W 1
2 +

[1 0]hT1 H
−1
{9,10}

[
W 9

1

W 10
1

]
+w1 and simply caches-out W 9

1 and

W 10
1 to decode W 1

2 . Similarly for the other users.
In the second round, each remaining subfile is split into

two parts as Wn
T = {Wn

T ,1,W
n
T ,2}. This round is split

into two sub-rounds, where the first sub-round serves users
3, 4, 5, 11, 12, 13 and the second serves users 6, 7, 8. The first
3 transmissions for the first sub-round are

x{3,4,11,12} =H−1
{3,4}

[
W 3

2,1

W 4
2,1

]
+ H−1

{11,12}

[
W 11

1,1

W 12
1,1

]
x{3,5,11,13} =H−1

{3,5}

[
W 3

2,2

W 5
2,1

]
+ H−1

{11,13}

[
W 11

1,2

W 13
1,1

]
x{4,5,12,13} =H−1

{4,5}

[
W 4

2,2

W 5
2,2

]
+ H−1

{12,13}

[
W 12

1,2

W 13
1,2

]
each serving 4 users, while the rest, as seen below, are each
intended for 2 users.

x{3,4} = H−1
{3,4}

[
W 3

3,1

W 4
3,1

]
x{3,5} = H−1

{3,5}

[
W 3

3,2

W 5
3,1

]
x{4,5} = H−1

{4,5}

[
W 4

3,2

W 5
3,2

]
x{11,12} = H−1

{11,12}

[
W 11

3,1

W 12
3,1

]
x{11,13} = H−1

{11,13}

[
W 11

3,2

W 13
3,1

]
x{12,13} = H−1

{12,13}

[
W 12

3,2

W 13
3,2

]
We can now easily verify that the intended users
3, 4, 5, 11, 12, 13 can successfully decode. The last sub-round
serves users 6, 7, 8. These users cannot benefit from coded
multicasting because they share the same cache content, hence
ZF is applied as follows:

x{6,7}=H−1
{6,7}

[
W 6

2,1|W 6
3,1

W 7
2,1|W 7

3,1

]
, x{6,8}=H−1

{6,8}

[
W 6

2,2|W 6
3,2

W 8
2,1|W 8

3,1

]
x{7,8} =H−1

{7,8}

[
W 7

2,2|W 7
3,2

W 8
2,2|W 8

3,2

]
.

The delay T = 1
3 ·3+ 1

6 ·9+ 1
6 ·6= 21

6 , matches T ∗(S{8,5,2})≥∑2
r=1Lπs(r)(3−r

1 )
2(3

1)
= 8·2+5·1

6 = 21
6 from Theorem 2.

VI. CONCLUSIONS

The work further bridges the gap between realistic wireless
networks and coded caching, and is among the first to enlist
index coding as a means of providing (in this case, exact) outer
bounds for more involved cache-aided network topologies that
better capture aspects of cache-aided wireless networks, such
as shared caches and user-cache association non-uniformities.
These non-uniformities raised an interesting challenge in re-
designing outer bounds, as well as redesigning coded caching
which is generally known to thrive on symmetry. As we
have shown in this work, the non-uniformity of user-to-cache
association results in reduced DoF compared to the uniform
setting; the higher is the skewness of the users’ distribution
among the caches, the lower is the optimal achievable DoF.

A multiplicative relationship between caching gain and
multiplexing gain: One important conclusion is on the in-
terplay between the number of antennas and the number of
different caches. Focusing here on the uniform case where
each cache serves K/Λ users, this work revealed that as long
as N0 ≤ K/Λ, the derived DoF is dΣ = N0(1 + Λγ) (users
served at a time), thus revealing the powerful impact of adding

antennas; for example introducing a second transmit antenna
can double the DoF. This multiplicative effect comes in strong
contrast to the additive effect experienced in the standard
cache-aided BC setting where all K = Λ users have their
own cache, in which case, as we know from [20], adding one
antenna allows for one additional DoF.

Similarly, again assuming that Λ ≤ K/N0, directly tells us
that every time we add a single degree of cache-redundancy
(i.e., every time we increase Λγ by one), we gain N0 degrees
of freedom. This is again in contrast to the case of Λ = K,
where again a unit increase in the cache redundancy yields
only one additional DoF. The above observations are further
evidence of the powerful impact of jointly introducing a
modest number of antennas and a modest number of helper
nodes.
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