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Abstract—Any vehicle needs to be aware of its localization,
destination and neighboring vehicles’ state information for colli-
sion free navigation. A centralized controller computes controls
for Cooperative Adaptive Cruise Control (CACC) vehicles based
on the assumed behavior of manually driven vehicles (MDVs) in a
mixed vehicle scenario. The assumed behavior of the MDVs may
be different from the actual behavior which gives rise to a model
mismatch. The use of erroneous localization information can
generate erroneous controls. The presence of a model mismatch
and the use of erroneous controls could potentially result into
collisions. A controller robust to issues like localization errors and
model mismatches is thus required. This paper proposes a robust
model predictive controller which accounts for localization errors
and mitigates model mismatches. Future control values computed
by the centralized controller are shared with CACC vehicles and
are stored in a buffer. Due to large localization errors or model
mismatches when control computations are infeasible, control
values from the buffer are used. Simulation results show that
the proposed robust controller with buffer can avoid almost the
same number of collisions in a scenario impacted by localization
errors as that in a scenario with no localization errors despite
model mismatch.

Index Terms—Robust Model Predictive Control, Localization
Errors, Model Mismatch, Centralized Control.

I. INTRODUCTION

Improvements in sensing, control and localization tech-
niques along with higher computational capabilities have fa-
cilitated the entry of automation in vehicular domain. Co-
operative Adaptive Cruise Control (CACC) is an operational
feature of a vehicle with cruise control and vehicle to every-
thing (V2X) communication capability [1], which leverages
onboard V2X communication capability to communicate and
coordinate with other CACC vehicles. Controls of such CACC
enabled vehicles (referred to as CACC vehicles hereon) can
either be computed locally in a decentralized control system
or remotely on either a road side unit (RSU) or a centralized
controller if they are a part of a centralized control system.
While driving, vehicles need to accelerate, brake, maintain
constant velocity, etc. More specifically, behavior of vehicles
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performing such actions can be studied under different sce-
narios like ramp merging, while approaching an intersection,
during freeflow on a highway, etc. A critical scenario is the
braking scenario, where multiple vehicles on the same lane
are notified of an emergency event ahead and vehicles must
brake and come to a halt within a particular distance or time.

Vehicles use different localization techniques with varying
performances. Localization based on GPS usually has a stan-
dard deviation (std) of error around 4 m and the accuracy
depends on various factors like the environment, satellites in
line of sight, etc. [2]. Map matching techniques implemented
on Waymo’s autonomous vehicle achieve localization with std
of accuracy better than 10cm [3]. HIGHTS is an example
of an European project with a goal to achieve high precision
positioning system with the accuracy of 25 cm for Intelligent
Transportation System (ITS) [4]. Localization errors translate
to control input errors, which in turn can lead to collisions.
In order to provide controls for collision free maneuvers, it is
necessary to account for localization errors.

In a mixed vehicle scenario, consisting of CACC and man-
ually driven vehicles (MDVs), human factors like limited visi-
bility and perception response time influence human’s driving
behavior [5] which can not be accurately predicted. Although
online estimation and modeling of neighboring vehicles can
be performed [6]-[8] it might be computationally intensive.
Control behavior generated from such an estimated model
can still be different from the actual human behavior. This
difference between the estimated model (assumed behavior)
of a human driver and the actual model of a human driver
controlling a MDV is termed as a model mismatch in this
paper. Controls computed using estimated state parameters
different from the actual state parameters could lead to colli-
sions. Thus it is necessary to mitigate model mismatch. The
presence of constantly changing localization error and model
mismatch necessitates recomputation of controls for CACC
vehicles. This is the basis of a model predictive control (MPC)
where controls are computed at each time slot using updated
state parameters in a receding horizon manner.

The main contribution of this work is proposing a central-
ized controller robust to localization uncertainties and model
mismatches. It consists of three key components: 1) a MPC
controller: to provide robustness against model mismatch 2) an
algorithm that accounts for localization errors: to mitigate
the impact of localization error 3) a buffer: to store the
future intended controls computed by the controller; in case of



infeasibility of control computation (due to model mismatch
or localization error), controls from the buffer can be fetched.
The proposed robust MPC controller is evaluated in a mixed
vehicle braking scenario and the use of each component is
validated.

The remainder of this paper is structured as follows. In
Section II related work is discussed. Section III introduces the
problem statement and concept of model mismatch. The MDV
model assumed by the centralized controller, the algorithm that
counters localization errors and the use of buffer to counter
infeasibility issues of the proposed MPC based controller are
described in Section I'V. Simulations are analyzed in Section V
and concluding thoughts are presented in Section VI.

II. RELATED WORK

There can be multiple sources of model mismatch. Accord-
ing to Chen et al. communication and actuator delays results
into different values of vehicles’ state parameters compared to
the actual values leading to a model mismatch [9]. If MDVs
are modeled using IDM+ (Intelligent Driving Model + was
introduced in [10]), model mismatches can also arise from
uncertainties or unknown parameters of IDM+ [9]. Uncertainty
in range of frequency responses from engine torque command
to speed can also be modeled as a model mismatch [11].
Aramrattana et al. evaluated the performance of a centralized
controller under model mismatch arising due to the difference
in the assumed controls and the controls obtained from real
humans used in their simulations [12].

The presence of model mismatch and localization error
necessitates frequent computation and transmission of controls
to CACC vehicles. The frequency of transmission of controls
could be optimized based on the magnitude of localization
error [13]. To evaluate robustness of centralized controller
to localization errors authors add a random value of dis-
tance disturbance during simulations [14]. Patel et al. showed
unaccounted localization error results into a reduction in
flow capacity and leads to accidents in a centralized control
system; they also proposed an algorithm to counter localization
error [15], [16]. [13]-[16] have two main drawbacks. First, it
does not account for space/time varying localization errors.
Second, strong localization errors leading to computational
infeasibility were simply profiled as ‘failure/accident’.

MPC-based controllers have been widely used in the liter-
ature. A centralized MPC based optimization algorithm for
intersection clearance is used to optimize the longitudinal
motion of a vehicle by researchers at University of California
Berkeley [17]. Rodrigues de Campos et al. evaluate centralized
control algorithm vs decentralized control algorithm for traffic
coordination at intersections [18]. More examples of MPC
based centralized and decentralized controllers can be found
in a literature survey by Rios-Torres et al. [19]. Wang et
al. focus on longitudinal collision avoidance based on MPC
for centralized coordinated braking [20]. Similar work has
been accomplished by Lu and other researchers from PATH,
University of California, Berkeley [21]. Both [20], [21] focus
on longitudinal collision avoidance via coordinated braking by
minimizing kinetic energy between pairs of autonomous vehi-

cles (or strictly MDVs) assuming ideal communication and lo-
calization capability. In order to make MPC-based controllers
perform well even under adversaries, robust MPC techniques
are implemented. A min-max MPC approach has been used to
make a centralized controller robust to uncertainties in MDV
behavior [17] where as Chen et al. use min-max MPC to create
a centralized controller robust to communication and actuator
delays [9]. Authors Gao et al. in [11] propose the use of a
robust controller to counter both parameter uncertainties and
uniform communication delay. The use of a buffer to miti-
gate the impact of communication failures has been recently
proposed for a decentralized controller [22]. In short, papers
[9], [11], [17], [22] propose robust algorithms to counter path
planning uncertainties, communication uncertainties, actuator
delays and vehicle model uncertainties like uncertain range of
frequency responses from torque command respectively.

In this paper we focus on a mixed vehicle coordinated brak-
ing scenario in the presence of model mismatch and localiza-
tion errors. Model mismatch is realized using different models
for assumed and actual MDV controls and the lower level
controller is assumed to be perfect. Localization uncertainty
is modeled as space and time varying errors. The centralized
controller is made robust first by integrating localization errors
in the MPC controller and second by including a buffer in
order to avoid the lack of controls in case of a computational
infeasibility.

III. SYSTEM MODEL

In this paper we consider longitudinal motion of multiple
vehicles on a single lane containing CACC enabled vehicles
and MDYV as illustrated in Fig. 1. We assume a MDV is driven
by a human and is without any control capabilities. On the
other hand, CACC vehicles are assumed to start implementing
control action simultaneously on the reception of controls in-
puts from the centralized controller. The frequency of received
control inputs is defined by the controller’s update frequency.
Without loss of generality, we set the update frequency to
10 Hz. This is motivated by the fact that both the maximum
realizable rate of steering commands [23] and the state-of-art
GPS-fix update rate both are around 10 Hz.

A. Informal Problem Statement

We consider a system of multiple vehicles traveling in
the same direction on a single lane, as illustrated in Fig. 1.
Each vehicle is characterized by its position and velocity. If
the first vehicle has to brake on sensing an obstacle ahead,
the following vehicles would need to brake as well in a
coordinated way. There exists a centralized control system like
a Cloud or Edge Service, located either in the Cloud or in
ITS-G5 or Cellular infrastructures. All vehicles (CACC and
MDV5s) are connected and transmit their noisy position, speed
and acceleration estimates to the centralized controller. The
red ellipses in Fig. 1 depict the MDVs’ and CACC vehicles’
localization errors impacting the centralized controller. This
information is used by the centralized controller to compute
control inputs, which are subsequently sent back to CACC
vehicles. MDVs react as function of the vehicle in front,
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Fig. 1. Centralized control of CACC vehicles in a mixed vehicle scenario.

according to the model described in Section III-B. The central
controller accounts for the MDVs through simple but realistic
models.

In summary, the objective is for the central controller to
bring all vehicles to a complete stop without collision with
minimal discomfort, in the presence of localization errors and
model mismatch.

B. Actual Model of MDV

The actual behavior of MDYV is based on ‘follow-the-leader’
strategy. In order to imitate actual human driving, MDVs are
assumed to respond and react to the vehicle in front after a
certain time delay represented by the perception response time.
If there are multiple MDVs following one another in a stream
of vehicles, the effective perception reaction time of a MDV
would be proportional to the number of MDVs immediately
ahead. We refer readers to [16] and references therein for a
detailed explanation. This effective perception response time
(now on referred to as perception response time) for vehicle
1 is denoted by ¢; 1. The behavior of MDVs after perception
response time is actually governed by intelligent driver model
(IDM) [24], i.e., a simplified version of Human Driving
Model [25] where we assume the visibility to be limited to
just the vehicle in front. We consider time slots of duration
100 ms, and introduce ¢ = 10 slots/second. Control input is
assumed to be the acceleration of the vehicle u;(n). The profile
implemented by MDVs can be represented mathematically as
follows: for time slots n < ¢ - ;1 (i.e., before the perception
response time), u;(n) = 0. For n > ¢-t; 1,
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where ¢ is the vehicle being considered, ¢+ — 1 is the vehicle
in front and so on; w,,v;, p;,1; is the acceleration, velocity,
location and length of vehicle ¢; s; is the actual distance
between vehicles ¢ and ¢ — 1; «;*** is the maximum possible
acceleration of the vehicle. b represents comfortable braking
strength. The desired velocity and minimum distance between
vehicles is denoted by vy and s respectively. T' represents the
time headway observed by the vehicle; Awv; is the difference

in the velocities of vehicle ¢ and vehicle ¢ — 1 in front; §
corresponds to a factor which can be tuned to control the
behavior of the vehicle. Bigger the value of §, more aggressive
the reaction of the vehicle in general.

C. Model Mismatch

The centralized controller needs to use the future behavior
(controls) of MDVs to compute controls for CACC vehicles.
The future controls of MDVs is not known, it can only
be predicted. To predict future controls, we assume simple
but realistic MDV models. This leads to a model mismatch
between the (true) MDV control and the predicted control
(derived from the simplified MDV model) which must be
considered.

IV. PROPOSED CONTROLLER

In this section, we describe the proposed controller. We
first detail two possible assumed models of the MDV used to
predict future MDV controls within the centralized controller.
Secondly, we propose a method for extending the size of
vehicles countering localization error. Then, we describe our
proposed control strategy, followed by the buffer implementa-
tion to ensure control availability in case of infeasibility.

A. MDV braking model assumed by centralized controller

At each time slot n in the simulation horizon N, the
centralized controller uses a particular control (braking) model
for MDV to predict braking control values u; , for MDV over
the entire prediction horizon N, (i.e, n = 1,...,N,) after
current time n. v; 54y corresponds to the predicted velocity
of vehicle 7 at the nth time slot in the future, computed at time
slot n. Two models used in the simulations are introduced next.

1) Model 1: This profile assumes MDVs begin to brake
after an assumed perception response time ¢; ; after the vehicle
in front starts to brake, and they continue to brake with a fixed
magnitude «™" until halt (zero velocity). Thus,

i
0 n+n<cti
IR mgn > 0, 1> ety 2

Uiy = U;

0 otherwise

for all MDVs where 4™ is the maximum braking capacity.

2) Model 2: Model 2 is more realistic than Model 1 and
can be described as follows. As before, ¢; 1 is the perception
response time; u;(n) is the actual value of the applied acceler-
ation; the jerk Aw;(n) is given by Au;(n) = u;(n)—u;(n—1);
Au™ is the maximum permitted decrease in acceleration
between two time slots.

Until perception response time n < ct; i, the controller
assumes that the driver will start braking after a certain
perception response time ¢; ; and increase the braking strength
gradually until it reaches a maximum. At maximum braking
strength, the vehicle continues to brake until halt. Hence, when
n < ct; 1, we set

0 n+n<ct;1

Uiy = § max(nAuPin min) Viptn = 0,7+ 1> ctiq

0 otherwise

3)



After perception response time, n > ct; 1, we discern

between three cases, based on the braking magnitude:

1) If the braking magnitude is zero (i.e., u;(n) = 0), the
controller assumes that the driver will start braking at this
time slot and continue to increase its braking strength
gradually until the vehicle attains maximum braking
strength. At maximum braking strength, the vehicle will
continue to brake until halt:

{maX((n — ety ) AU ) g, >0
Ui,y =

0 otherwise

“4)

2) If the braking magnitude is increasing (i.e., Au;(n) < 0),
the controller assumes that the vehicle will continue to
increase its braking strength until the vehicle attains max-
imum braking strength. At maximum braking strength,
the vehicle will continue to brake until halt:

N max(u;(n — 1) + ncAu; (n), u™™)  v; y4n >0
e 0 otherwise
&)

3) If the braking magnitude is decreasing or constant (i.e.,
Au;(n) > 0), the controller assumes, the vehicle will
continue to brake at the previous braking magnitude until

halt:
{ui(n —1) Viygn >0
Ui =

(6)

0 otherwise

B. Dealing with Localization Errors
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Fig. 2. Converting a 2D perceived localization information into a 1D
localization information in presence of localization errors.

Fig. 2 depicts our modeling of localization errors. In this
figure, vehicle 7 has a perceived location p; different from
its true location p; by a localization error of magnitude e;.
The perceived and true location of the vehicle is denoted
by blue and green blocks respectively. The vehicle can be
located anywhere within a circle centered at the perceived
location p; with radius equal to e;. As a vehicle position is

usually computed in 2D, the localization error is also in 2D.
But without loss of generality, we only consider longitudinal
motion of vehicles on a single lane to simplify our study. Thus,
we transform this 2D scenario to a 1D scenario (as shown in
the bottom part of the Fig. 2). The vehicle can be located
anywhere between p; ;1 and p; o.

We assume that a vehicle’s position refers to its front
bumper and that the true occupied road length corresponds
to the vehicular length /; from the front to the rear bumper.
The potential length of the road occupied, where the vehicle
may be located lies accordingly between p; 1 to p; 3. As we
can not be certain about the position of the vehicle (which
may be anywhere between p; 1 to p; 2) and the corresponding
road occupancy between p; 1 to p; 3, in the proposed approach,
the vehicle is assumed to be at p;; and the new length
of the vehicle is assumed to be l; .. Thus each vehicle is
modeled as having a length proportional to the localization
uncertainty. (7a), and (7b) express the above mentioned ideas
mathematically.

(7a)
(7b)

lie = l; 4 2¢;
Pig = p; + €

The assumed distance between vehicles ¢ and k£ can be rep-
resented using d7 .. d7 . is the distance between the assumed
locations of vehicles i and k and is mathematically represented
in (8). Kindly refer to [15] for further details. Note that neither
transmitting nor receiving entities (vehicles or centralized
controllers) are aware of vehicles’ true locations.

®)

Equations (7a), (7b) and (8) represent the proposed method to
account for localization errors.

ik() =pii(n) —pei(n) —lie i€2.n,

C. Controller Formulation

The control system knows neither the true positions nor
the true distance between vehicles. It computes control inputs
using perceived positions and perceived distance between
vehicles. The centralized controller is assumed to have full
knowledge (at instant n = 0) about the state parameters
(perceived position and velocity) of all MDVs and CACC
vehicles, including their vehicular constraints. Our proposal
is to calculate control inputs for CACC vehicles taking into
account CACC vehicles and MDVs at each instant n over
the simulation horizon Ny, (n = 1,...,N). We model our
centralized controller as an MPC, as described below.

1) Dynamics and Constraints: The state variable x; of a
vehicle i (i € 1...n,) is defined as the perceived position p; 1,
velocity v; tuple in (9).

z; = [pi1 vi]" )

The general kinematic relation between position, velocity,
acceleration and jerk is given by (10). We assume acceleration
to remain constant between two time slots.

w;(n+1) = Aui(n+ 1) + ui(n)
vi(n+1) = v;(n) + u;(n) At
pi(n +1) = pi(n) + vi(n) At + 0.5u;(n)(At)?

(10)



A discrete time linear control system represented by (11) is
used, where values for constants are given by (12),

zi(n +1) = Az;(n) + Bu(n) (11)
N v

where At is the time between two consecutive time slots n
and n + 1. Vehicle and road constraints in terms of minimum
and maximum values of position, velocity, acceleration are
accounted for in (13a), and (13b),

min Il’ldX
pz 1
v:mn — max
mm
z < ul

(13a)
(13b)

where (-)Mn, (-)M¥ corresponds to minimum and maximum
value of that parameter for vehicle i. u™ and u™* stand
for maximum braking and maximum acceleration capabilities.
Restricting jerks Aw within certain acceptable bounds ensures
smooth braking for CACC vehicles and is implemented using
(14). Note: MDVs implement a braking profile defined by
model in Section III-B and thus jerks corresponding to MDV's
can not be optimized.

AU < Au,(n) < Au™ (14)
Collision avoidance for CACC vehicles is achieved by en-
suring the perceived distance between vehicles is always
positive.If Z be the set of all CACC vehicles amongst n,
vehicles, this condition can be given as:

o Front-end collision avoidance:

;‘7k(n)>0 1€, k=i—1 (15)
o Front and rear-end collision avoidance
ik(n) >0 1€z, i>1, k=i—1 (16)
ik(n) >0 1E€EZ, i<my, k=i+1

If the control profile of MDV models the relation between

a MDV and a CACC vehicle, the centralized controller could
be able to avoid accidents on both, MDV and CACC vehicles,
but this is out of scope of this paper. Starting and terminal
position and velocity can be represented as constants x;(0)
and x;(Ns). p;(0) and p;(N;) indirectly defines the range of
the vehicle and the path it needs to follow in a 1D scenario.
(17) finally ensures the terminal velocity of all vehicles reach
zero and this signifies a braking scenario.
v;(Ng) =0 17)

2) MPC Controller Description: Comfort is related to the
change in control inputs (acceleration). Strong deviations in
control inputs can be penalized using the 2-norm. To present
the cost function in a quadratic form, we use the square of the
2-norm of change in control inputs between two time slots. By
integrating all of previously defined, the optimization problem

for a centralized mixed vehicle braking coordination scenario
can be represented as:

i(n—1))* (18)

subject to
MDYV model, (7a), (7b), (9), (10),
(1), (12), (13a), (13b), (14), (16), (17)

Assumed MDV model generates predicted acceleration for
MDVs which are set as constraints in the above MPC problem.
At each time slot, state parameters, predicted MDV controls
and constraints are updated and the centralized controller
solves the convex optimization problem represented by (18).
In this paper, we rely on QUADPROG toolbox in MATLAB
to solve (18).

D. Infeasibility: Control Buffer Implementation

At each time slot, localization errors are modeled in a robust
manner to avoid collisions and they are used by the centralized
controller to compute control inputs for CACC vehicles based
on the updated state information of all (considered) vehicles
using (18). The output of (18) is a vector of control actions for
each CACC vehicle, over a prediction horizon. This control
vector is sent in downlink to CACC vehicles. As soon as
control inputs are obtained, the first value of control is applied
and the rest are stored in a buffer. The buffer is updated at
each reception of new control inputs.

At certain time slots either due to the uncertainty in localiza-
tion or model mismatch or the robust-modeling of localization
errors or violation of the collision avoidance constraint, the
feasible set of the optimization problem could be empty and
the control problem might be infeasible. When computation
is infeasible and no control data is transmitted in downlink,
control data corresponding to that time slot from the previous
computation stored in the buffer is used.

e WN -

Simulation Horizon

(] implemented control value
«___\ Buffer content

Fig. 3. Buffer implementation: The use of control data stored in the buffer
when new control data is not received is illustrated.

The implementation of the buffer is illustrated in Fig. 3.
Assume at the first slot, controls are successfully received at
the vehicle. The first control value is implemented (shaded
purple) and the rest are stored in the buffer (shaded blue). At
the next simulation slot, assume new controls are not received;
the buffer content is retained and the first control value from
the buffer is used by the vehicle and that value is then deleted.
At the third time slot, assume new controls are not received,
buffer is retained, the next control value is applied and then



that value is deleted. At the fourth time slot, assume new data
is received, first value is applied and the buffer content is
replaced with the rest of the new control data.

If the optimization problem is infeasible at the beginning,
the algorithm ignores the jerk filter to allow any limit of jerk
for the first time slot (within maximum braking capacity).
If even then, the optimization problem is infeasible, CACC
vehicles brake at the maximum braking capacity permitted
by the jerk filter (e.g.: If permitted jerk is 2.5m/s® and
the acceleration in the previous time slot was zero, the
permitted braking strength for the current time slot would be
—0.25m/s?). The optimization problem is retried at the next
time slot with updated parameter values.

V. SIMULATIONS AND ANALYSIS

The goal of these simulations is to highlight the impact of
the uncertainty created due to model mismatch between the
assumed and the actual braking model behavior of MDVs and
constantly changing localization error in a centralized control
scenario. Other errors that impact a centralized controller
operation like communication and lower-level controller errors
are out of scope of this paper.

First, we highlight the impact of model mismatch on a
centralized controller assuming perfect localization. We then
compare the impact of model mismatch in presence of lo-
calization errors where the centralized control algorithm does
not account for localization errors (a non-robust controller)
versus the impact on the control algorithm that accounts for
localization errors (a robust controller).

A. General simulation settings

We assume at the start of the simulation, 4 vehicles are
approaching an intersection. The initial vehicle is located at a
distance of 800 meters from the intersection. The first vehicle
moves towards the intersection with a constant velocity until
it is notified of a potential obstacle or an intersection at the
notification distance from the obstacle. Notification distance is
also the distance at which the first vehicle senses an obstacle or
is notified about an obstacle. An’s exemplary study illustrated
that at least one DSRC/ITS-GS5 safety message would be re-
ceived with 99.5% probability by the time notification distance
reduces to 95.9 m [26]. But in this work, a range of notification
distances from 95.9m to 150 m are used for simulations. All
following vehicles have a zero initial acceleration, and then are
governed by IDM until the notification distance. We assume
the stream of vehicles will reach steady state by the time first
vehicle is notified. After the first vehicle is notified, MDV
and CACC vehicles assume corresponding braking models. A
centralized controller intervenes and assists a collision free
braking procedure.

Equal number of CACC and MDV vehicles (2 each) are
used. There are six possible arrangements of these 4 vehicles
and 20 samples of each arrangement are taken to create a
database of 120 simulation samples. We define a simulation
sample as the set of vehicle state parameters. Each sample
has different initial velocities (90 kmph =+ 5 %) and different
initial distance between vehicles. We assume vehicles can

TABLE I
GENERAL PARAMETERS
[ Parameter [ Value | Parameter [ Value |
g 9.88 m/s? (Aumn Ay™ax) T (—0.25, +0.25)
At 0.1s b —2m/s?
ymn —5.928m/s? | N,, Np, N¢ 100
Qmax 1 m/s2 (vmm7 Umax) (0, oo)
(™, p™) | (0,00)

only have non-negative velocity signifying, they can not move
in reverse. The obstacle or the intersection is assumed to
be at the origin. A simulation is counted to be successful
when the terminal velocity of all vehicles reach zero and
is considered a failure if there are any collisions. The per-
ception response time of a MDV is drawn from a normal
distribution A/(1.33, (0.27)?) [27] and is capped between 0.8
and 1.8s. Jerk value around 2m/s? is usually considered
comfortable in the literature [28]. In this work, increase and
decrease in braking capacity is restricted to 2.5m/s® and
—2.5m/s? respectively. As there are 10 time slots per second,
Au™in Ay™a% yalues are (—0.25, +0.25) respectively.
Localization errors are derived from a zero-mean Gaussian
distribution with standard deviation ¢. The actual localization
error e; is drawn for each vehicle ¢ from the Gaussian distribu-
tion. In a heterogeneous simulation scenario different vehicles
use different localization techniques, we assume MDVs use
GPS/GNSS based localization techniques, with a std of error
of 4m [2], whereas CACC vehicles use advanced localization
techniques like map matching to compute localization with a
std of error of 25 cm. In a homogeneous simulation scenario,
we assume all vehicles have the same localization technique
and thus share the same ¢ value. The controller assumes e;
remains constant for each vehicle over the prediction horizon
but changes at every time slot in simulation horizon. Further
parameters are shown on Table I.

We analyze simulations by observing the percentage of
collisions avoided (CA) in this braking scenario. At every
successful computation, although the buffer is updated, it is
not used. We consider the buffer to be used only in case of a
computational failure. The total number of collisions avoided
(CA) is the sum of the number of collisions avoided without
the use of buffer (CAWOB) and number of collisions avoided
with the use of buffer (CAWB), CA = CAWOB + CAWB.

B. Simulation set 1

In this particular study, the goal is to highlight the im-
pact of model mismatch on a centralized controller in the
absence of localization error. Different assumed models give
rise to different model mismatches. Two kinds of model
mismatches are generated: first by using the profile introduced
in Section IV-Al as the assumed MDV model whereas the
profile introduced in Section III-B as the actual MDV model;
second by using the profile introduced in Section IV-A2 as
the assumed MDV model whereas the profile introduced in
Section III-B as the actual MDV model. We propose the use
of a Control Buffer introduced in Section IV-D.
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Fig. 4. Collision avoidance results evaluating model mismatch, but no
localization error: most of the CA are attributed to the use of the buffer.

The collision free braking control computation shall be in-
feasible when the assumed MDYV profile leads to unreasonable
constraints. The use of a buffer facilitates the availability
of control inputs despite computational infeasibility and the
use of receding horizon MPC with small time slots (0.15s)
facilitates frequent recomputation of controls which mitigates
the impact of model mismatch. If we consider simulation
results over entire database (refer Fig. 4), we observe that
the percentage of CA without the use of buffer (CAWOB)
is very small compared to the the total collisions avoided
(CA) irrespective of the assumed MDV profile. As CA =
CAWOB + CAWRB, it follows that the other collisions are
avoided with the use of the buffer (CAWB) (not plotted). It
is evident from Fig. 4 that the use of buffer leads to a higher
number of collisions avoided (CAWB > CAWOB) and thus
the use of buffer is required.

Figure 4 also shows that the percentage of collisions avoided
under different model mismatch scenarios could be different.
This is because different assumed MDV profiles (different
types of model mismatch) lead to different constraints which
could lead to a different number of total collisions avoided
as seen for notification distance 150 m in Fig. 4. To further
illustrate the impact of different assumed MDV models (and
model mismatches) on controls, we demonstrate two samples
with the same set of initial parameters (see Figs. 5-6). The
order of vehicles is [MDV;CACC;CACC;MDV], first MDV
vehicle is the leading vehicle. The acceleration profile of
vehicles in both scenarios is the same until the notification
distance (in this case, 110m) as all vehicles are assumed to
implement IDM. Once they enter the notification distance,
CACC vehicles use controls transmitted by the centralized
controller whereas MDVs react to the vehicle in front. As the
controls computed by the centralized controller are different
for different assumed MDV control models, the acceleration
of CACC vehicles is different and the acceleration (reaction)
of MDVs is also different, as evident from Fig. 5 and Fig. 6.

Different controls lead to a different amount of discom-
fort. Discomfort is computed as the two norm of change

Acceleration (m/s?

—Vehicle 1 is MDV
5 L[ Vehicle 2 is CACC
- Vehicle 3 is CACC
- - - Vehicle 4 is MDV
gSO 300 350 400
Time slot

Fig. 5. Acceleration profile for a particular simulation with no localization
error and MDV profile 1.
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Fig. 6. Acceleration profile for a particular simulation with no localization
error and MDV profile 2.

in acceleration (per time slot) over the entire simulation.'
The average value of discomfort per vehicle for simulations
where collisions were avoided is plotted in Fig. 7. Generally
speaking, we observe that the assumed MDV profile 2 results
into lower levels of discomfort as it is more realistic compared
the assumed MDV profile 1.2 In this paper, control values
from buffer are only used when control computation is infea-
sible. We observe that the average discomfort in cases where
collisions were avoided when controls from buffer are used
(CAWB) is higher than the discomfort value when buffer is
not used (CAWOB) in Fig. 7. The use of a buffer results into
more collision avoidance at the cost of a higher discomfort.
As all simulations without the use of the buffer at notification
distance of 95.9m resulted into collisions, there is no value

'The two norm of change in acceleration is also proportional to fuel
consumption

2The reason for the discomfort value using MDV model 2 at the notification
distance of 120 m being higher than that of assumed MDV model 1 could
not be determined.
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Fig. 7. Average values of discomfort in cases where collisions were avoided
for different values of notification distance (no localization error).

of discomfort in the plot.

C. Simulation set 2

In this particular study, the goal is to highlight the impact
of model mismatch on a centralized controller in presence
of localization error, when the algorithm doesn’t account for
localization errors (a non-robust MPC controller). We choose
to use model introduced in Section IV-A2 as the assumed
MDYV model. Buffer is used to counter infeasibilities. When
localization errors are not accounted for, control inputs are
generated using perceived information (positioning informa-
tion computed by the vehicle) which is different from the
actual localization. Due to the difference in the true position
and the perceived information, control inputs generated are
usually different, which could be a source of collisions. Con-
trol inputs generated using perceived information are applied
on the vehicles in their true positions.

First we consider a homogeneous localization system where
all vehicles have the same ¢. Results are displayed in from of a
bar plot in Fig. 8. To analyze the figure, choose a value of noti-
fication distance and observe the change in CA as ¢ increases.
As localization errors are not accounted for, in general, CA
decreases as the value of ¢ increases’. Next, consider a stream
of vehicles with heterogeneous localization system, where std
of localization errors is different for different vehicles; for
CACC vehicles, ¢ = 4m, for MDV ¢ = 0.25 m. Simulation
results reveal that total CA (sum of collisions avoided with
and without the use of buffer) increases with an increase in
notification distance as evident from the non-robust MPC plot
in Fig. 10.

D. Simulation set 3

In this particular study, the goal is to highlight the impact
of model mismatch on a centralized controller in presence of

3The simulations involve several sources of randomness. Hence, due to
the limited number of scenarios, the value of CA in Fig. 8 is not strictly
decreasing with the increase in standard deviation ¢ of localization error.

HO59m M110m ©120m m135m m150m

100
90
80

E() 70
S 60
:%, 50
£ 40
g 30
g 20
10
0
¢=105 b=1 b=2 b=14

Std of localization error (m)

Fig. 8. Evaluating a non-robust centralized controller in presence of localiza-
tion errors in a system consisting of vehicles with the same localization system
(a homogeneous system). The legend mentions different values of notification
distance.
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Fig. 9. Evaluating a robust centralized controller in presence of localization
errors in a system consisting of vehicles with the same localization system.
The legend mentions different values of notification distance.

localization error, using a robust MPC where the algorithm
accounts for localization errors. Buffer is used to counter
infeasibilities.

First, let us consider simulations consisting of vehicles
with homogeneous localization systems (and thus the same
std of localization error). Simulation results are plotted in
Fig. 9. For a notification distance of 150 m, we observe that
CA nears 100 % despite the presence of localization errors
(¢ € 0.5,1,2,4). On comparing Fig. 8 and Fig. 9 for any
particular value of ¢ and notification distance, we observe that
the relative performance of the robust algorithm is much better
compared to that of the non-robust algorithm. Next, consider
a stream of vehicles with heterogeneous localization system.
Simulation results plotted in Fig. 10 show that for a notification
distance of 135m and more, we can attain almost 100 % CA
using a robust controller instead of approximately 80 % with
a non-robust controller. Comparing the two plots in Fig. 10,
we observe the percentage of CA with a robust MPC is higher
than that of a non-robust case, for all notification distances.
This highlights the benefits of implementing a robust MPC
controller; it is avoids more collisions compared to a non-
robust controller by effectively mitigating model mismatches
and localization errors.

On analyzing Fig. 9 in detail, we observe that despite an
increase in ¢, CA increases. e.g.: at the notification distance
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Fig. 11. Average values of discomfort in cases where CA was successful for
different values of ¢ and notification distance.

of 110m, percentage of CA for ¢ = 1m and ¢ = 4m is
46.66 and 55.8 respectively. This is because the algorithm
assumes vehicles to be located over a larger area and thus
offers a larger inter-vehicular distance when localization error
is larger. Larger inter-vehicular distance provides extra margin
and can indirectly compensate for model mismatch as well.

The assumed vehicle length and the area over which the
vehicle is assumed to be located evolves with every change
in the localization error. This results into drastic changes in
computed controls. Bigger the change in localization error,
bigger the change in acceleration. We compute discomfort for
cases where collisions were avoided and plot it in Fig. 11. We
observe that discomfort is higher for higher values of std of
localization error. From Fig. 11 and Fig. 9 we can conclude
that for higher values of standard deviation of localization
error, the proposed algorithm can avoid more collisions, at the
cost of an increased discomfort, despite model mismatches.

VI. CONCLUSIONS

In this work, the impact of localization errors and model
mismatch on a centralized robust Model Predictive Controller
(MPC) has been analyzed. Model mismatch arises when
the assumed and the actual model of vehicle is different.
Localization errors arise due to inaccurate localization. A
multi-vehicle braking scenario consisting of vehicles with
different levels of automation and different standard deviation
of localization errors is simulated. Different model mismatches
usually leads to different controls of vehicles which leads to
different levels of discomfort and different results (different
number of collisions). In case of computational infeasibility
arising due to localization errors or model mismatch, controls
from the buffer can be used. The implementation of a receding
horizon MPC ensures control recomputation at every time slot
which is essential to counter model mismatch and localization
errors. Simulations show that the robust MPC controller im-
plemented with a buffer results into more collisions avoided
compared to the non-robust controller at the cost of increased
discomfort. Bigger the localization error, higher is the number
of collisions avoided by robust controller compared to non-
robust controller. Larger the notification distance, more is the
number of collisions avoided in general.

In future, the proposed robust centralized MPC controller
implementing a control buffer will be made more realistic
by implementing engine delay and the performance of the
controller will be analyzed under communication uncertainties.
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