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Abstract

This paper considers the problem of blind estimation of
multiple FIR channels. When a subspace algorithm is ap-
plied to the blind identification problem, incorporating in-
Jformation about the symbol constellation is in general not
possible. However, by exploiting special properties of one
dimensional symbol constellations (BPSK), it is shown that
it is possible to improve or simplify a class of algorithms
for blind channel identification. It is also shown that in
the case of one dimensional symbol constellations there is a
third way, apart from multiple antennas and oversampling,
of arriving at a multi channel representation of the commu-
nication system.

1 Introduction

Subspace based estimation algorithms have recently
been applied to the multi channel identification problem [5].
Oversampled and/or multi receiver signals may be modeled
as low rank processes and thus lend themselves to subspace
based methods. In [4] a subspace fitting approach is taken
to estimate the channel from the covariance matrix. By ex-
ploiting the orthogonality property between the noise sub-
space and the channel matrix, it is shown in [2] that it is
possible to identify the channel matrix up to a multiplica-
tive constant. In these algorithms the algebraic structure of
the multichannel system is used for identification, but other
characteristic properties of communication signals, such as
constant modulus or finite alphabet, are not used.

In general, better performance of blind identification al-
gorithms is obtained when properties of the specific symbol
constellation are exploited. Combining the algebraic struc-
ture of multichannel communication systems with symbol
constellation properties is expected to result in algorithms
with good performance. In this contribution, we consider
the case when the symbol constellation is one dimensional,
e.g. binary phase shift keying (BPSK). A generalization
of the suggested approach to minimum shift keying (MSK)
signaling is also presented. The subspace based methods
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may in these two specific cases be modified in order to ex-
ploit the knowledge of the signal constellation. The pro-
posed algorithms improve the estimation accuracy, lower
the computational complexity or make the algorithm insen-
sitive to the noise correlation among the different commu-
nication channels. The fact that it is possible to obtain a
multi channel representation from one complex communi-
cation channel in the case of BPSK or MSK signaling, is
also commented on.

2 Data model

Consider a discrete time baseband representation of a
digital communication system with linear modulation and
L independent linear transmission channels with impulse
response length M + 1 at most. The communication chan-
nels may be obtained by sampling an antenna array or by
oversampling a single communication channel with respect
to the symbol rate. Further on we show a third way to obtain
a multichannel representation when the modulation method
is either BPSK or MSK.

The received signal in the i** channel can due to the lin-
earity assumption be modeled by

M
zi(k) = Y hi(D)d(k — 1) + ni(E),
1=0

i=1,...,L,

where h;(l) is the complex impulse response of the 48
channel and d(k) is the transmitted information symbol at
time k. The additive white Gaussian noise n;(k) is, if not
otherwise stated, assumed to be uncorrelated among the
channels and equi-powered with variance o2. Now, study
the following vector model of one single communication
channel

x;(k) = H;d(k) + n;(k)
where the vectors x;(k) and d(k) are defined as
xi(k) =[ @i(k) =zi(k—-1) zi(k-N+1) 17,
d(k) =[ d(k) d(k—1) dk-M-N+1) 7.

i=1,...,L,



Here N is the width of the temporal window and the N x
(N + M) matrix H; is defined as

hi(0) hi(M) 0 0
e[
0 0 h0) hi(M)

We now have L vector equations describing the communi-
cation system. A more convenient vector representation of
the system is obtained by collecting the equations

X1 (k) H,; n, (k)
: d(k) + : :

x?(k) HEL ny, (k)

or with obvious notations
x(k) = Hd(k) + n(k). 4))

Note that the noiseless signal in (1) is low rank if the length
of the temporal window is chosen large enough to satisfy
NL > N + M. If data symbols and noise are modeled as
zero mean and independent processes, the covariance of the
received vector is

R, = E{x(k)x*(k)} = HRyH" + 021,

where (-)* denotes complex conjugate transpose and R 44 is
the covariance of the data vector.

3 General subspace fitting

The low rank structure of the noiseless signal suggests
that a subspace based technique may be used for identifica-
tion of the FIR channels. In [2] a subspace technique us-
ing the orthogonality property between the noise and signal
subspace is introduced. A statistical analysis of the algo-
rithm can be found in [1].

The specializations for the one dimensional symbol con-
stellation presented in the following two sections are valid
for a large class of blind identification algorithms, includ-
ing the above subspace approach. However, the simulation
results presented in the paper are obtained by applying the
suggested methods to the subspace algorithm in [2].

4 Using the BPSK assumption

The general subspace method mentioned in the preced-
ing section uses only second order statistics of the received
data. Communication signals are in general very struc-
tured and the temporal properties, such as constant mod-
ulus or finite alphabet, are often used in blind identifica-
tion/equalization [6]. Below, we show how to exploit a one
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dimensional symbol constellation (BPSK or PAM in gen-
eral) to create additional independent channels. This allows
the use of a subspace technique based on the second order
statistics, still exploiting some of the symbol constellation
properties.

By representing the observation vector in terms of real
components (rather than an analytic representation) it is
possible to exploit the one dimensional symbol constella-
tion. Assume a BPSK communication system with real data
symbols and separate (1) into real and imaginary parts

= | )|
=il |0+ 55 |

or with obvious notation
%(k) = Hd(k) + ii(k).

The columns of H span a subspace of the same dimension
as H but the observation space is now real valued of dimen-
sion 2IVL. Applying this procedure to one single complex
communication channel results in a low rank channel rep-
resentation. The separation above is thus another way of
obtaining a multi channel representation of a communica-
tion system. It can obviously be used in combination with
oversampling and/or multiple antennas.

In general, as can be seen in the simulations, this separa-
tion procedure improves the quality of the estimated chan-
nel parameters. If the original channel matrix, H, is full
rank, this improvement can be motivated by the following.
The original channel matrix has a certain condition number,
defined by the quotient of the largest singular value and the
smallest nonzero singular value of H. Using some algebraic
properties of the new channel matrix, H, the following can
be shown,

cond(H) < cond(H).

The condition number is thus improved (or unchanged) and
this should intuitively result in better estimates in the gen-
eral case. The performance improvement can also be moti-
vated by the fact that H can be full column rank even if H
is rank deficient.

It has been shown in several papers, e.g. [7], that the
channel matrix is full rank if not all the channels share any
common zeros. A sufficient condition for the new channel
matrix, H, to be full rank, is thus that the real and imagi-
nary parts of the channel do not share any common zeros.
A common way to model the taps in a mobile communica-
tion channel is to assume that they are Rayleigh fading, i.e.
the real and imaginary parts are uncorrelated. This chan-
nel model can to some extent justify the assumption that the
real and imaginary channel do not share any common zeros.



5 MSK Modulation

Minimum shift keying MSK), see e.g. [3], is a signaling
scheme where the phase of the modulated communication
signal is changed with £ /2 at each symbol interval. The
phase shift of the signal indicates if the transmitted bit is a
zero or a one. Separating the system in exactly the same
way as for the BPSK constellation case does in this case not
give any additional information for the channel identifica-
tion. However, if the temporal phase structure of the signal
is exploited, similar results are obtained. To see this, again
study the matrix formulation of the communication system

x(k) = Hd(k) + n(k).

The symbols d(k) belong to the alphabet {+1} at even sym-
bol periods and to the alphabet {4} at odd symbol periods.
In fact, the symbols d(k) can be interpreted as a modulated
version of the symbols b(k), i.e. d(k) = i*b(k), where the
symbols b(k) belong to the alphabet {£1}. Now introduce a
diagonal matrix in which the m*® diagonal element is equal
toi™~1, je.,

J = diag(1,4,-1,-1,1,...),

and modulated versions thereof, J; = i~%J. Using these-

matrices we get
x(k) = HI; (3 d(k)) + n(k)
(HI;1)b(k) + n(k)

which shows that we are close to the BPSK case. How-
ever, the matrices (HJ ;') are time-varying and as a result,
the vector process x(k) is not stationary but cyclostation-
ary, which hampers the time-averaging process for obtain-
ing covariance estimates. However, by down-modulating
the received vectors x(k), we get

z(k) = i x(k) = (HI"1)b(k) + i *n(k)
= (HI"1)(Jrd(k)) + i Fn(k)

where z(k) is now a stationary vector process. The MSK
communication system is thus equivalent to a BPSK system
where the channel matrix and the input signals are replaced
by HI ! and i~*Jd(k) respectively. Taking the real and
imaginary parts of the model gives

a(k) = [ Re{z(k)} ]

T {a(})}
[ 600y + | Totien)

Re{HJ"!}

Im{HJ"1}
Note that the channel matrix is now low rank but has a
slightly different structure compared to (1). However, com-
paring this new channel matrix with the original one sug-
gests that also the new matrix is identifiable from its column
space, this even if the original channel is only one dimen-
sional.

Re{i~*n(k)} ] _
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6 Alternative subspace fitting

Another way to exploit the one dimensional symbol con-
stellation property is to note that the complex Gaussian
noise is circularly symmetric but the data symbols are not.
This can be formulated mathematically by

E{n(k)a” (k)} =0,
E{d(k)d’(k)} = E{d(k)d"(k)} = R,

where (-)T denotes transpose. Now, study the expected
value of x(k)xT (k),

Reee = E{x(k)xT(k)} = HR4HT, ©)

where (-)¢ denotes complex conjugate. In this way the noise
contribution to the covariance expression disappears but the
channel part is still present. A subspace method based on
R ;- is thus, as long as the noise terms have a circularly
symmetric distribution, insensitive to the noise correlation
structure. If the multichannel representation is obtained by
oversampling with respect to the symbol rate, a correlation
between the noise samples is probable, but using the sug-
gested approach in this section, unbiased identification of
the channel coefficients is still possible. This is not the case
for a subspace fitting approach based on R;. In the simu-
lation we will see how the general subspace fitting method
applied to R instead of R, is more robust with respect
to the additive noise properties.

Within this alternative approach, one particular compu-
tationally simple channel estimate can be obtained as fol-
lows. Observe from (2) that the column spaces of H and of
R are the same. This leads us to introduce the following
subspace fitting criterion

R 2
ppfn-n, o
where ||.]|» denotes Frobenius norm and h is a vector con-
taining the channel parameters. The matrix B has the same
dimensions as H and is fixed. Its choice influences the qual-
ity of the channel estimate. The criterion is separable in h
and Q. Minimizing w.r.t. Q first yields

Q= (F*F)"'F*H, F=R.:B.
Substitution in (3) yields
. 2
min [ PEH];,
where Py = I—Pg and Pr = F(F*F)~1F*. This criterion

has to be minimized subject to a non-triviality constraint on
h. If we choose |[h|| = 1, then we get

h = arg max Tr{H'PgH} = arg max h*Fh,
g max Tr{H'PrH} = arg max



where J can easily be constructed from Pr. The solution
for h is hence the eigenvector of F corresponding to its
maximum eigenvalue. As far as the choice of B is con-
cerned, it appears that B = H° would be optimal, consid-
ering the structure of R,.c. Simulation results confirm that
this choice of B is optimal or very close to optimal. Hence a
two-step procedure suggests itself: solve the above problem
twice, once with B an arbitrary selection matrix, yielding
a consistent estimate h. Then solve the problem a second
time with B = H¢ in which the channel estimate from the
first step, h is used. In the simulation runs the selection ma-
trix, B, in the first step is chosen as the first columns of the
identity matrix. This low complexity method differs from
the other approaches in that no eigendecomposition of the
complete covariance matrix is necessary. The only eigen-
decomposition necessary is the computation of one eigen-
vector of a matrix which is of the same dimension as the
total channel length (M + 1) L. In the following simulation
section this last method is referred to as the low complexity
algorithm.

7 Simulation results

The suggested methods have been applied to the sub-
space algorithm based on the orthogonality property and
tested in simulation runs. In all simulations the signal to
noise ratio is defined according to

E{||lHd (%)%}
* E{llnk)I2} ’

and the estimation error covariance according to

SNR = 10log

- E{||F - H|?}
COV = 10log,, TH[? .
In the above definitions H and H are the channel matrices
obtained with the temporal window length, IV, equal to 1.
The expected value in the covariance definition of the chan-
nel estimates is replaced by the sample average in the sim-
ulations. The presented results are throughout this section
the averages over 2000 different noise realizations.

In the first simulation setup the BPSK and the MSK ap-
proaches were applied to the same single communication
channel with the channel coefficients equal to

[1.0 + 1.04,0.45 + 0.00¢, —0.70 + 1.20%,
0.42 + 0.13¢, —0.32 + 0.583].

The Iength of the temporal window was chosen to N = 6
and 500 symbols were used for the estimation of the co-
variance matrix. The results are shown in Figure 1. The
simulation indicates that in both the case of BPSK signals
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and MSK signals, it is possible to identify the single com-
plex communication channel with an algebraic approach
for reasonable signal to noise ratios. However, the results
vary with the transmission channel. Sometimes the case of
BPSK signaling works better and sometimes MSK signal-
ing. With only one complex communication channel avail-
able, the identification method is very sensitive to the place-
ment of channel zeros in the complex plane. This sensitivity
agrees well with the identifiability conditions.

Figure 1. Identification of a single complex
channel.

Next we study the case of a multichannel (4 channels)
communication link. The signaling on the channel is in this
case of BPSK type. The simulation compares the general
subspace fitting approach with the suggested algorithms in
this paper. The order of the four channels is M = 4, the
length of the temporal window N = 3 and 500 symbols
were used for the estimation of the covariance matrix. The
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Figure 2. Identification of four channels.

general subspace fitting approach is marked with a solid
line, the low complexity algorithm as described in section
6 with a dashed line, the separation approach in section 4



with a dashed-dotted line and finally the subspace fitting ap-
proach where R is used instead of R, is marked with
a dotted line. The simulation shows that the method where
the received data is separated into a real and imaginary part
outperforms the other methods for all signal to noise ratios.
All the other methods behave approximately the same. Note
that the low complexity algorithm behaves equally well as
the more complicated general subspace fitting method. For
the low complexity algorithm to perform well, the second
step in the algorithm is essential. To illustrate this, the ac-
curacy of the estimates obtained in the first and second step
of the low complexity algorithm is compared in Figure 3.

Figure 3. Low complexity algorithm, first and
second steps.

Finally we demonstrate the fact that if the noise is corre-
lated among the channels, the methods using the circularity
property of the noise will be the only ones that have unbi-
ased estimates. Except for the noise the same simulation
setup is used as in the previous case. The noise in the four
channels has the following structure of the covariance se-
quence,

1 05 0 O
. 05 1 05 0

E{n(k)n*()} = o2 0 05 1 o5 |Sk=D.
0 0 05 1

The simulation agrees well with intuition. For small sig-
nal to noise ratios, i.e. where the noise structure affects the
estimates significantly, the circular approach is the best al-
ternative to use. As the signal to noise ratio improves, the
circular approach coincides with the general approach and
the separation approach behaves the best.

8 Conclusions

In this paper the symbol constellation properties are used
to improve the quality of the channel estimates for a large
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Figure 4. Correlated noise.

class of blind identification algorithms. In addition we show
that in the case of a one dimensional symbol constellation,
it is possible to obtain a multichannel representation of the
communication system using only one complex communi-
cation channel. This enables the use of efficient algorithms
using only the algebraic structure of the second order statis-
tics also for one dimensional systems. A generalization of
the method to MSK signals is also presented. Finally, in the
case of circular noise, a low complexity alternative subspace
fitting method has been presented.
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