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Introduction

The Dirichlet Process Mixture Model algorithm presented here aggregates the vari-
ational inference method presented by Bishop in [1], the use of a Beta prior on
the Dirichlet process responsible for the mixing proportions in [2] and the use of a
Gamma prior on the concentration parameter of the Dirichlet process proposed by
[3].

The current variational inference algorithm approximates the posterior distri-
bution of the dataset by a mixture of multivariate Gaussians, inferring the mixing
proportions from a stick-breaking process which concentration is inferred from a
Gamma distribution.

1 Derivation

Our goal is to approximate the model evidence P (x) and the posterior distribu-
tion P (W |x) by a variational distribution q(W ) using a method called mean field
approximation, where W is a set of latent variables learnt by the algorithm.

1.1 Kullback-Leibler divergence

This is achieved using the reversed Kullback-Leibler defined in equation 1 where θ
is a set of hyperparameters used by the prior distribution.

DKL(q||p) =
∫
q(W ) ln q(W )

p(W |x,θ)dW (1)

The KL divergence is equal to 0 when q(W ) = p(W |x). We thus want to
minimize this divergence to obtain q(W ) as close as possible to the true posterior
distribution.

DKL(q||p) = −
∫
q(W ) ln p(W |x,θ)

q(W ) dW

DKL(q||p) = −
∫
q(W ) ln p(W ,x|θ)

q(W ) dW + ln p(x|θ)

ln p(x|θ) =
∫
q(W ) ln p(W ,x|θ)

q(W ) dW +DKL(q||p)

ln p(x|θ) = L(q,θ) +DKL(q||p)

Maximizing the lower bound L defined in equation 2 is equivalent to minimizing
DKL(q||p).

L =
∫
q(W ) ln p(W ,x|θ)

q(W ) dW (2)
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Optimizing equation 2 is also achieved by maximizing the log marginal likelihood
defined in equation 3 where Eq is the expectation with respect to the distribution
q.

ln p(x|θ) ≥ L(q,θ)

≥
∫
q(W ) ln p(W ,x|θ)

q(W ) dW

≥ Eq[ln p(W ,x|θ)]− Eq[ln q(W )]

(3)

The algorithm described thereafter provide a deterministic way to optimize the
lower bound. The result obtained by equation 3 should thus increase at each it-
eration. This equation can thus be used to check implementation errors in the
algorithm.

1.2 One exponential family to rule them all

The current algorithm approximates the data using a mixture of exponential-family
distributions. To perform this approximation,the parameters of these likelihoods
will averaged or sampled from their base distribution, a.k.a the posterior.

In order for the model to represent accurately a wide range of inputs, the deriva-
tion of the algorithm has been performed in exponential family. This representa-
tion allows the algorithm to handle numerous probability distributions with little
changes.

The mapping of several probability distributions with their exponential family
representation is given in appendix A. Most distributions are interesting choices for
likelihoods, for which the exponential family representation of their base distribu-
tion is given in appendix B.

Exponential-family likelihoods and conjugate priors

Table 0.1 gives possible choices of representations based on the format of a given
feature or set of features. Note that any bounded continuous data can be scaled if
the bounds are known to fit between [0, 1] or [0,+∞[. The conjugate prior of the
Dirichlet was introduced in [4].

Given the exponential-family likelihood of a mixture model containing an infinite
number of components (equation 4 where [z = i] is the Iverson bracket), the base
distribution is computed in equation 5 where λ1 has the same dimension as η∗

i

and λ2 is a scalar. η∗
i and λ respectively contain the natural parameter(s) of the

likelihood and the natural parameters of the base distribution. The base distribution
has thus one parameter more than the likelihood.
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p(xn|zn,η∗) =
∞∏
i=1

(
hl(xn) exp(η∗T

i T (xn)− al(η∗
i ))
)[zn=i]

(4)

p(η∗
i |λ) = hb(η∗

i ) exp(λT1η∗
i + λ2(−al(η∗

i ))− ab(λ)) (5)

Here, we distinguish the base measure h and the log-partition a of the likelihood
and the base distribution with a subscript. Since the parameters alone allow this
distinction, we did not include it in the remaining of this study.

Data description Domain Multivariate Likelihood Conjugate prior
Float ∈ [0, 1] [0, 1] No Beta ∝

(
Γ(α+β)

Γ(α)Γ(β)

)λ0
xα0 y

β
0

Float ∈ [0, 1] [0, 1] Yes Dirichlet ∝ 1
B(α)η e

−
∑d

t=1 vtαt

Integer ∈ [0,+∞[ N No Poisson Gamma

Integer ∈ [0,+∞[ N Yes Multivariate
Poisson ?

Float ∈ [0,+∞[ R+ No Gamma ∝ pα−1e−βq

Γ(α)rβ−αs

Float ∈ [0,+∞[ R+ Yes Multivariate
Gamma ?

Float ∈]−∞,+∞[ R No Normal Normal-Gamma

Float ∈]−∞,+∞[ R Yes Multivariate
Normal Normal-Wishart

Boolean {True, False} No Binomial Beta

Boolean {True, False} Yes Multivariate
Binomial ?

String, Boolean Any number of
distinct values No Multinomial Dirichlet

Table 0.1 – Likelihood and conjugate prior according to data format

Data transformations and constraints

In Table 0.1, rows highlighted in light gray describe cases for which the conjugate
prior still has to be investigated while dark gray rows describe cases where the
analytical form of the normalization factor for the conjugate prior is not known.
Due to this proportional form, we cannot compute Eq[η∗] and Eq[−a(η∗)] where
η∗ represents the natural parameter(s) of the likelihood. This computation requires
indeed the derivative of the unknown log-partition (normalization factor) of the pos-
terior which is unknown since the posterior has the same form as the conjugate prior.
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To solve this constraint, we here apply a transformation on the data1 so
that univariate and multivariate data for which the domain is [0; 1] or [0; +∞[
now become defined in ]−∞; +∞[ and can thus be approximated by a mixture of
multivariate normal instead of using Beta or Gamma univariate distributions. Let
φp(x) be the cumulative distribution function (CDF) of a probability distribution
p and F−1

p (x) be the inverse cumulative distribution (quantile function) of this
distribution,

For x ∈ [0, 1], F−1
N (x) ∈] − ∞,+∞[. Similarly if x ∈ [0,+∞[, φΓ(F−1

N (x)) ∈
]−∞,+∞[. Note that the inverse mapping can be applied to the transformed data
and results in the original data without any loss of information.

The CDF and inverse CDF of N(0, 1) are given in Figures 1 and 2, while fig-
ures 3 and 4 show the CDF and inverse CDF of Γ(1, 2) (shape and scale parameters).

Figure 1 – φN (x), µ = 0, σ = 1 Figure 2 – F−1
N (x), µ = 0, σ = 1

Figure 3 – φΓ(x), k = 1, θ = 2 Figure 4 – F−1
Γ (x), k = 1, θ = 2

1F−1
N (Beta(α, β), µ0, σ0) 6= N(µ, σ) except for F−1

N (Beta(1, 1), µ0, σ0) = N(µ0, σ0). So we can’t
really give a prior on the data, nor get the inverse parameter mapping for the posterior. Hence
prior parameters will have to be given for normal distributions instead of Beta or Gamma.
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It must eventually be noted that multivariate distributions are able to efficiently
express the correlations between features, while a loss of information will occur when
using a product of distributions to represent a set of features. However, the Poisson
distribution is very well suited to represent natural numbers. This is why using a
product of mixtures of Poisson distributions must be compared with using a mix-
ture of multivariate normal distributions when dealing with multivariate features
for which the domain is N.

1.3 Approximating the underlying distribution
Variational inference allows us to approximate likelihood and posterior distributions
from a Dirichlet Process mixture prior. We now make the assumption that the data
can be described by a product of probability distributions:

q(W ) =
M∏
i=1

qi(Wi) (6)

We here choose the following approximation of the true posterior, setting W =
{v,η∗, z, w}:

q(v,η∗, z, w) = qα,β(v) · qτ (η∗) · qr(z) · qg1,g2(w) (7)

Where qα,β(v) is a beta distribution, qτ is an exponential-family distributions
and qr(z) is a multinomial on the cluster assignment variable z. Note that the prod-
uct of exponential-family distributions is an exponential-family distribution, which
allows qτ to include Normal-Wishart, Gamma and Dirichlet posterior distributions.

The mixing proportions π computed in equation 8 are obtained from from a
Dirichlet process, hence the use of a Beta distribution (equation 13) to sample the
cluster weights vi from a stick-breaking process (vi ∼ Beta(1, w)).

πi(v) = vi

i−1∏
j=1

(1− vj) (8)

w can be given as prior parameter, though it has a significant effect over the
weight of each component and thus the number of components actually used by
the fitted approximate posterior. This is why our model integrates over w, which
become a latent variable.

A truncation parameter K on the number of clusters is used, which implies that
πK(v) = 0 for k > K, thus q(vT = 1) = 1. The current algorithm will be later
extended by learning the truncation level K by variational inference, hence allowing
an infinite number of clusters depending on the data complexity.

Notice that the first parameter of the Beta distribution is fixed to 1. We could
have allowed a hyperparameter α0 instead taking arbitrary values, then q∗α,β(v) (eq.
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20) would still be a Beta distribution of parameters αk = α0 + Nk while βk would
be unchanged (eq. 23). However, we could no longer integrate out w as q∗g1,g2(w)
(eq. 28) would no longer be a Gamma distribution.

We now write in equation 9 the joint probability of the random variables, with
θ = {λ, s0, r0}.

p(x,v,η∗, z, w|θ) = p(x|z,η∗)p(z|v)p(η∗|λ)p(v|w)p(w|s0, r0) (9)

Defining hereafter the distributions, with N the size of the dataset:

p(x|z,η∗) =
N∏
n=1

K∏
k=1

(
h(xn) exp(η∗T

k T (xn)− a(η∗
k))
)znk (10)

p(z|v) =
N∏
n=1

K∏
k=1

Mult(πk(v))

=
N∏
n=1

K∏
k=1

πk(v)znk

=
N∏
n=1

K∏
k=1

(vk
k−1∏
j=1

(1− vj))znk

(11)

p(η∗|λ) =
K∏
k=1

h(η∗
k) exp(λT1η∗

k + λ2(−a(η∗
k))− a(λ)) (12)

p(v|w) =
K∏
k=1

Beta(1, w) (13)

p(w|s0, r0) = Γ(s0, r0) (14)

Where s0 and r0 are respectively the shape and rate parameters of the Gamma
prior on w.

1.4 Coordinate ascent algorithm

Since equation 7 is an approximation of equation 9, we now perform the derivation of
each term of 7. Below, the star in qr∗(z) denotes the expectation of this factor under
all latent variables except z. Those computation start from the joint probabilities
defined in equation 9.
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Figure 5 – Graphical model representing the Dirichlet Process Mixture Model
according to the plate notation

ln q∗r (z) = Ev,η∗,w[ln p(x, v,η∗, z, w)] + const

= Eη∗ [ln p(x|η∗, z)] + Ev[ln p(z|v)] + const

=
N∑
n=1

K∑
k=1

znk
(

ln h(xn) + Eq[η∗
k]TT (xn) + Eq[−a(η∗

k)]

+ E[ln vk] +
k−1∑
i=1

E[ln(1− vi)]
)

+ const

(15)

Taking the exponential of both sides, we get

q∗r (z) ∝
N∏
n=1

K∏
k=1

ρznknk

With

ln ρnk = ln h(xn) + Eq[η∗
k]TT (xn) + Eq[−a(η∗

k)]

+ E[ln vk] +
k−1∑
i=1

E[ln(1− vi)]
(16)

Where h(xn) and T (xn) are respectively the base measure and sufficient statis-
tics of the likelihood distribution. Remember that ∀n ∑K

k=1 znk = 1 and znk ∈
{0, 1}. We can get rid of the proportionality by performing the following normal-
ization:

q∗r (z) =
N∏
n=1

K∏
k=1

rznknk (17)

rnk = ρnk∑K
i=1 ρni

(18)

Thus
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E[znk] = rnk (19)

The current q distribution makes an approximation by setting an upper bound
K on the number of clusters resulting in the truncation of the stick breaking process
represented by the following beta distribution. This implies q(vK = 1) = 1.

ln q∗α,β(v) = Eη∗,z,w[ln p(x,v,η∗, z, w)] + const

= Ez[ln p(z|v)] + Ew[ln p(v|w)] + const

=
N∑
n=1

K∑
k=1

E[znk]
(

ln vk +
k−1∑
i=1

ln(1− vi)
)

+
K−1∑
k=1

(
(1− 1) ln vk

+ (E[w]− 1) ln(1− vk)− (ln Γ(1) + ln Γ(E[w])− ln Γ(1 + E[w]))
)

+ const

=
N∑
n=1

K∑
k=1

rnk

(
ln vk +

k−1∑
i=1

ln(1− vi)
)

+
K−1∑
k=1

(
(E[w]− 1) ln(1− vk)− lnB(1,E[w])

)
+ const

=
K−1∑
k=1

(
E[w] +

N∑
n=1

K∑
i=k+1

rni − 1
)

ln(1− vk) +
N∑
n=1

rnk ln vk

− lnB(1,E[w]) + const

(20)

Where B(α, β) = Γ(α)Γ(β)
Γ(α+β) . Taking the exponential of both sides, we recognize

q∗α,β(v) as a Beta distribution.

q∗α,β(v) =
K−1∏
k=1

Beta(αk, βk) (21)

With

αk = 1 +Nk (22)

βk = E[w] +
N∑
n=1

K∑
i=k+1

rni (23)

Where Nk = ∑N
n=1 rnk

The next term of q is:
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ln q∗τ (η∗) = Ev,z,w[ln p(x,v,η∗, z, w)] + const

= Ez[ln p(x|η∗, z)] + ln p(η∗|λ) + const

=
N∑
n=1

K∑
k=1

E[znk]
(
ln h(xn) + η∗T

k T (xn)− a(η∗
k)
)

+
K∑
k=1

(
ln h(η∗

k) + λT1η∗
k − λ2a(η∗

k)− a(λ)
)

+ const

=
N∑
n=1

K∑
k=1

(
ln (h(xn)rnkh(η∗

k)) + (rnkT (xn) + λ1)T η∗
k − (λ2 + rnk) a(η∗

k)

− a(λ)
)

+ const

(24)

The exponential of this term is an exponential-family distribution taking the
following parameters:

q∗τ (η∗) =
K∏
k=1

h(η∗
k) exp(τTk1η

∗
k + τk2(−a(η∗

k))− a(τk)) (25)

τk1 = λ1 +
N∑
n=1

rnkT (xn) (26)

τk2 = λ2 +
N∑
n=1

rnk (27)

Eventually, the last term of q is:

ln q∗g1,g2(w) = Ev,η∗,z[ln p(x,v,η∗, z, w)] + const

= Ev[ln p(v|w)] + ln p(w|s0, r0) + const

=
K−1∑
k=1

(
(w − 1)Eq[ln(1− vk)]− ln Γ(w) + ln Γ(w + 1)

)
− ln Γ(s0) + s0 ln r0 + (s0 − 1) lnw − r0w + const

= (w − 1)
K−1∑
k=1

Eq[ln(1− vk)] + (K − 1) ln wΓ(w)
Γ(w)

− ln Γ(s0) + s0 ln r0 + (s0 − 1) lnw − r0w + const

= (s0 − 2 +K) lnw −
(
r0 −

K−1∑
k=1

Eq[ln(1− vk)]
)
w

− Eq[ln(1− vk)]− ln Γ(s0) + s0 ln r0 + const

(28)
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q∗g1,g2(w) is thus a Γ distribution with shape g1 and rate g2.

g1 = s0 +K − 1 (29)

g2 = r0 −
K−1∑
k=1

Eq[ln(1− vk)] (30)

The expectations required to compute equation 19 are defined below, with ψ
the derivative of the Γ function:

E[ln vk] = ψ(αk)− ψ(αk + βk) (31)

E[ln(1− vk)] = ψ(βk)− ψ(αk + βk) (32)

E[w] = g1
g2

(33)

E[lnw] = ψ(g1)− ln g2 (34)
Note that E[ln(1−vK)] must be set to 0. E[η∗

k] and E[−a(η∗
k)] depend on the an-

alytical form of the posteriors and are detailed in Appendix B for most distributions.

This algorithm iterates between an expectation and maximization steps until a
convergence is reached. The expectation step is composed of equations 31 to 34 and
19 which requires the expectation of the sufficient statistic terms depending on the
underlying exponential-family distribution (See Appendix B). The maximization
step contains equations 22, 23, 26, 27, 29 and 30. Equation 35 is used to monitor
convergence, i.e. the iterations should stop when this bound does not increase more
than a given threshold ε.

After convergence, the predictive density of a new data point is computed in
equation 47.

1.5 Lower bound
We now continue the derivation of equation 3 by inserting the joint probability from
equation 9 and the q distribution from equation 7.

ln p(x|θ) ≥ Eq[ln p(x, z,η∗,v|θ)]− Eq[ln q(z,η∗,v)]
≥ Eq[ln p(x|z,η∗)] + Eq[ln p(z|v)] + Eq[ln p(η∗|λ)]
+ Eq[ln p(v|w)] + Eq[ln p(w|s0, r0)]− Eq[ln qα,β(v)]
− Eq[ln qτ (η∗)]− Eq[ln qr(z)]− Eq[ln qg1,g2(w)]

(35)

Each term can be computed as follow, by taking the corresponding expectation
of the logarithm under certain variables:
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Eq[ln p(x|z,η∗)] =
N∑
n=1

K∑
k=1

rnk
(
ln h(xn) + E[η∗

k]TT (xn) + E[−a(η∗
k)]
)

(36)

Eq[ln p(z|v)] =
N∑
n=1

∞∑
k=1

rnk

(
Eq[ln vk] +

k−1∑
i=1

Eq[ln(1− vi)]
)

=
N∑
n=1

∞∑
k=1

 ∞∑
i=k+1

rni

Eq[ln(1− vk)] + rnkEq[ln vk]


=

N∑
n=1

K∑
k=1

(
q(zn > k)Eq[ln(1− vk)] + q(zn = k)Eq[ln vk]

)
(37)

We truncated the summation at K, so E[ln(1− vK)] = 0 and q(zn = k) = 0 for
k > K where

q(zn > k) =
K∑

i=k+1
rni (38)

q(zn = k) = rnk (39)

Eq[ln p(η∗|λ)] =
K∑
k=1

(
ln h(η∗

k) + λT1E[η∗
k] + λ2E[−a(η∗

k)]− a(λ)
)

(40)

Eq[ln p(v|w)] =
K∑
k=1

(
(E[w]− 1)E[ln(1− vk)]− ln Γ(E[w]) + ln Γ(E[w] + 1)

)
(41)

Eq[ln p(w|s0, r0)] = s0 ln r0 − ln Γ(s0) + (s0 − 1)E[lnw]− r0E[w] (42)

Eq[ln qα,β(v)] =
K∑
k=1

(
(αk − 1)E[ln(vk)] + (βk − 1)E[ln(1− vk)]

− ln Γ(αk)− ln Γ(βk) + ln Γ(αk + βk)
) (43)

Eq[ln qτ (η∗)] =
K∑
k=1

(
ln h(η∗

k) + τTk1E[η∗
k] + τk2E[−a(η∗

k)]− a(τk)
)

(44)

Eq[ln qr(z)] =
N∑
n=1

K∑
k=1

rnk ln rnk (45)

Eq[ln qg1,g2(w)] = g1 ln g2 − ln Γ(g1) + (g1 − 1)E[lnw]− g2E[w] (46)
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1.6 Predictive density
For a new data point xN+1, the predictive density is:

p(xN+1|x,θ) =
∫ ∞∑

k=1
πk(v)p(xN+1|η∗

k)dp(v,η∗|x,θ)

≈
K∑
k=1

Eq[πk(v)]Eq[p(xN+1|η∗
k)]

(47)

Since πk(v) is given in equation 8 and vi follows a Beta distribution, we obtain

Eq[πk(v)] = αk
αk + βk

k−1∏
i=1

(
1− αi

αi + βi

)
(48)

This density is approximated by using a Monte Carlo estimate, i.e. we draw
1000 samples of η∗

k from the approximation of the posterior q∗τ (η∗), each allowing
us to compute the corresponding likelihood p(xN+1|η∗

k). The estimated likelihood
for a given component is obtained by averaging the likelihood under each sample.

For a Normal likelihood and a Normal-Wishart approximation of the posterior,
this density is a mixture of Student’s t-distributions[1] given in equation 49. µk,
λk, Vk and υk are the parameters of the Normal-Wishart distribution obtained from
the inverse parameter mapping of τk.

p(xN+1|x,θ) =
K∑
k=1

(
αk

αk + βk

k−1∏
i=1

(
1− αi

αi + βi

)
St (xN+1|µk,Lk, υk + 1− d)

)
(49)

With

Lk = (υ + 1− d)λk
1 + λk

Vk (50)

We also report approximations of the log likelihood of a multivariate normal
with Σ−1 = Lk (Bishop. Note that Lk ≈

∑m
W (Vk,υk)
m ) in equation 51. The first

approximation is must faster co compute, although we second one should be more
accurate. Both remain rough approximations of the ground truth, which is the
Student’s distribution with Lk and a dedicated υ.

lnN(x|mk,

(∑mW (Vk, υk)
m

)−1
) ≈

∑m lnN(x|mk,W (Vk, υk)−1)
m

(51)

1.7 Incremental training
In a production environment, the ideal model would be a never-ending learning
one. Instead of adapting the whole algorithm in order to handle streaming data to
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perform an incremental training, the simplest way to keep this model up to date
with the current data flow while taking into account the data previously seen is to
make the model evolve by performing periodic batch training where today’s prior
takes the value of yesterday’s posterior.

Conclusion and future work
The following tasks have been achieved:

• Mean field variational inference for mixture of exponential-family distributions

• Handle several data types and complete derivation for most distributions re-
quired by the previous genericity

– Float and integers of various ranges with data transformations and mix-
tures of multivariate normal and Poisson distributions

– Strings with a mixture of categorical distributions

• Use a Dirichlet process to compute the the mixing proportions with a Beta
prior

• Put a Gamma prior on the the scaling parameter w used by the Dirichlet
process

Future work includes:

• Learn the truncation level K by variational inference

• Handle lists of actions by including HMM in the variational inference

• Distribute the algorithm

Additional steps while extending the algorithm are:

• Benchmark the algorithm on Amadeus’ datasets

• Compare the algorithm to others, such as GMM, Collapsed Gibbs sampling
and truncated Gibbs sampling

13



Appendix A

Derivation of exponential-family
distributions

Exponential-family distributions are probability distributions which can be written
into a specific form described in equation A.1, where h(x) is a known function, η(θ)
is the natural parameter, T (x) the sufficient statistics and A(θ) the normalization
factor of the exponential-family distribution.

h(x) exp(η(θ) · T (x)−A(θ)) (A.1)

Table A.1 describes the mappings between the original distribution and its
exponential-family representation. The inverse parameter mapping allows the com-
putation of the distribution parameters from the natural parameters.
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Distribution Parameter(s) θ
Natural

parameters η

Inverse parameter

mapping

Base

measure h(x)

Sufficient

statistic T (x)
Log-partition A(θ)

Binomial (known

number of trials n)
p ln p

1−p
1

1+e−η

n
x

 x −n ln(1− p)

Multinomial (known

number of trials n)

p1, · · · , pk with∑k
i=1 pi = 1


ln p1
...

ln pk



eη1

...

eηk

 with ∑k
i=1 e

ηi = 1 n!∏k

i=1 xi!


x1
...

xk

 0

Beta α, β

α− 1

β − 1


η1 + 1

η2 + 1

 1

 ln x

ln(1− x)

 ln Γ(α) + ln Γ(β)− ln Γ(α+ β)

Dirichlet α1, · · · , αk


α1 − 1

...

αk − 1



η1 + 1

...

ηk + 1

 1


ln x1
...

ln xk

 ∑k
i=1 ln Γ(αi)− ln Γ

(∑k
j=1 αj

)

Gamma α, β

α− 1

−β


η1 + 1

−η2

 1

ln x

x

 ln Γ(α)− α ln β

Poisson λ lnλ eη 1
x! x λ

Multivariate normal

(k dimensions)
µ,Σ

 Σ−1µ

−1
2Σ−1


−1

2η
−1
2 η1

−1
2η
−1
2

 (2π)− d2

 x

xxT

 1
2µ

TΣ−1µ+ 1
2 ln |Σ|

Wishart

(k dimensions)
V , n

−1
2V
−1

n−d−1
2


 −1

2η
−1
1

2η2 + d+ 1

 1

 x

ln |x|

 n
2 (d ln 2 + ln |V |) + ln Γd(n2 )

Normal-Wishart

(k dimensions)
µ0, λ,V , n



n−d
2

−1
2(µ0µ

T
0 λ+ V −1)

µ0λ

−1
2λ





− η3
2η4

−2η4(
−2η2 + η3ηT3

2η4

)−1

2η1 + d


(2π)− d2



ln |Λ|

Λ

xTΛ

ΛxxT


−d

2 lnλ+ nd
2 ln 2 + n

2 ln |V |+ ln Γd(n2 )

Conjugate prior of Gamma

f(α, β|p, q, r, s) ∝ pα−1e−βq

Γ(α)rβ−αs

p, q, r, s



r

s

ln p

−q





eη3

−η4

η1

η2


1



ln Γ(α)

α ln β

α

β


ln p

Conjugate prior of Beta

π(α, β|λ, x0, y0) ∝
(

Γ(α+β)
Γ(α)Γ(β)

)λ0
xα0 y

β
0

λ0, x0, y0


λ0

ln x0

ln y0



η1

eη2

eη3

 1


ln
(

Γ(α+β)
Γ(α)Γ(β)

)
α

β

 0

Table A.1 – Exponential-family representation of several probability distributions
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Multivariate normal
We here took advantage of following property tr(aT · b) = vec(a) · vec(b) with a
and b vectors. We thus assume a vectorization of the matrices at the second-to-last
step of the Normal and Normal-Wishart derivations. This allows us to use the trace
property: tr(aTBc) = tr(caTB).

Let d be the dimension of the space,

N(x|µ,Σ) = (2π)−
d
2 |Σ|−

1
2 e−

1
2 (x−µ)TΣ−1(x−µ)

= 1
√

2πd
exp(−1

2 ln |Σ| − 1
2(x− µ)TΣ−1(x− µ))

= 1
√

2πd
exp(tr

(
Σ−1µxT

)
− 1

2 tr
(
Σ−1xxT

)
− 1

2µ
TΣ−1µ− 1

2 ln |Σ|)

= 1
√

2πd
exp


 Σ−1µ

−1
2Σ−1


T

·

 x

xxT

− (1
2µ

TΣ−1µ+ 1
2 ln |Σ|)


= h(x) exp(η(θ) · T (x)−A(θ))

(A.2)

This gives us the following parameter and inverse parameter mappings:{
η1 = Σ−1µ

η2 = −1
2Σ−1

{
µ = −1

2η
−1
2 η1

Σ = −1
2η
−1
2

Wishart

W (x|V , n) = |x|
n−d−1

2 e
− tr(V −1x)

2

2nd2 |V |n2 Γd(n2 )

= exp(−1
2 tr(V −1x) + n− d− 1

2 ln |x| − nd

2 ln 2− n

2 ln |V | − ln Γd(
n

2 ))

= exp


−1

2V
−1

n−d−1
2


T

·

 x

ln |x|

− (n2 (d ln 2 + ln |V |) + ln Γd(
n

2 ))


= h(x) exp(η(θ) · T (x)−A(θ))

(A.3)

Where Γd is the multivariate gamma function and the parameter mappings are{
η1 = −1

2V
−1

η2 = n−d−1
2

{
V = −1

2η
−1
1

n = 2η2 + d+ 1
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Normal-Wishart

The following derivation also assumes a preliminary vectorization of the matrices
as explained above.

Λ|V , n ∼W (Λ|V , n) (A.4)

µ|µ0, λ,Λ ∼ N(µ|µ0, (λΛ)−1) (A.5)

(µ,Λ) ∼ NW (µ0, λ,V , n) (A.6)

NW (x,Λ|µ0, λ,V , n) = |Λ|
n−d−1

2 e
− tr(V −1Λ)

2

2nd2 |V |n2 Γd(n2 )
(2π)−

d
2 |(λΛ)−1|−

1
2 e−

1
2 (x−µ0)TλΛ(x−µ0)

= 1
√

2πd
exp(tr

(
λΛµ0x

T
)
− 1

2 tr
(
λΛxxT

)
− 1

2µ
T
0 λΛµ0

− 1
2 ln |(λΛ)−1| − 1

2 tr(V −1Λ) + n− d− 1
2 ln |Λ| − nd

2 ln 2

− n

2 ln |V | − ln Γd(
n

2 ))

= 1
√

2πd
exp(n− d− 1

2 ln |Λ|+ d

2 lnλ+ 1
2 ln |Λ| − 1

2µ
T
0 λΛµ0

− 1
2 tr(V −1Λ) + tr

(
λΛµ0x

T
)
− 1

2 tr
(
λΛxxT

)
− nd

2 ln 2

− n

2 ln |V | − ln Γd(
n

2 ))

= 1
√

2πd
exp

(


n−d
2

−1
2(µ0µ

T
0 λ+ V −1)

µ0λ

−1
2λ



T

·



ln |Λ|

Λ

xTΛ

ΛxxT


− (−d2 lnλ

+ nd

2 ln 2 + n

2 ln |V |+ ln Γd(
n

2 ))
)

= h(x) exp(η(θ) · T (x)−A(θ))
(A.7)

Which results in the following parameter mappings
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η1 = n−d

2
η2 = −1

2(µ0µ
T
0 λ+ V −1)

η3 = µ0λ

η4 = −1
2λ



µ0 = − η3
2η4

λ = −2η4

V =
(
−2η2 + η3ηT3

2η4

)−1

n = 2η1 + d

Conjugate prior of the Beta distribution

The hyperparameters of this prior are λ0, x0 and y0. However, its normalization
factor does not have a closed form which limits the possible uses of this distribution.

π(α, β|λ0, x0, y0) ∝
( Γ(α+ β)

Γ(α)Γ(β)

)λ0

xα0 y
β
0

∝ exp
(
λ0 ln

( Γ(α+ β)
Γ(α)Γ(β)

)
+ α ln x0 + β ln y0

)

∝ exp



λ0

ln x0

ln y0


T

·


ln
(

Γ(α+β)
Γ(α)Γ(β)

)
α

β




= h(x) exp(η(θ) · T (x)−A(θ))

(A.8)

Where the parameter mappings are
η1 = λ0

η2 = ln x0

η3 = ln y0


λ0 = η1

x0 = eη2
y0 = eη3

Conjugate prior of the Gamma distribution

The hyperparameters of this prior are p, q, r and s.
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f(α, β|p, q, r, s) ∝ pα−1e−βq

Γ(α)rβ−αs

∝ pα−1e−βqΓ(α)−rβαs

∝ exp ((α− 1) ln p− βq − r ln Γ(α) + αs ln β)

∝ exp





r

s

ln p

−q



T

·



ln Γ(α)

α ln β

α

β


− ln p


= h(x) exp(η(θ) · T (x)−A(θ))

(A.9)

Where the parameter mappings are
η1 = r

η2 = s

η3 = ln p
η4 = −q


p = eη3

q = −η4

r = η1

s = η2
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Appendix B

Derivation of conjugate priors in
exponential family

Given an exponential-family likelihood expressed in equation B.1, its base distribu-
tion is given by equation B.2, where λ1 has the same dimension as η∗ and λ2 is a
scalar. The base distribution has thus one parameter more than the likelihood.

p(x|η∗) = hl(x) exp(η∗TT (x)− al(η∗)) (B.1)

p(η∗|λ) = hb(η∗) exp(λT1 η∗ + λ2(−al(η∗))− ab(λ)) (B.2)

In the case of a conjugate prior, the posterior is thus

p(η∗|τ ) = hb(η∗) exp(τT1 η∗ + τ2(−al(η∗))− ab(τ )) (B.3)

We can then compute the expectation of each term of the sufficient statistics:

E[η∗] = ∂ab(τ1, · · · )
∂τ1

(B.4)

E[−al(η∗)] = ∂ab(· · · , τ2)
∂τ2

(B.5)

More generally, given a likelihood and a prior, the posterior is
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p(η∗|x1:n, λ) ∝ p(η∗|λ)
n∏
i=1

p(xi|η∗)

= hb(η∗) exp(λT1 η∗ + λ2(−al(η∗))− ab(λ))

· (
n∏
i=1

hl(x)) exp(η∗T
n∑
i=1

T (xi)− nal(η∗))

∝ hb(η∗) exp

(λ1 +
n∑
i=1

T (xi)
)T

η∗ + (λ2 + n)(−al(η∗))


(B.6)

The parameters of the posterior are thus{
τ1 = λ1 +∑n

i=1 T (xi)
τ2 = λ2 + n

Beta - Conjugate prior of Binomial likelihood

p(η∗|λ) = h(η∗) exp(λT1 η∗ + λ2(−a(η∗))− a(λ))

= exp
(
λ1 ln p

1− p + λ2n ln(1− p)− a(λ)
)

=
(

p

1− p

)λ
1

(1− p)nλ2e−a(λ)

= p(λ1+1)−1(1− p)(nλ2−λ1+1)−1e−a(λ)

= pα−1(1− p)β−1

B(α, β)

(B.7)

We recognize a Beta distribution with parameters{
λ1 = α− 1
λ2 = β+α−2

n

{
α = λ1 + 1
β = nλ2 − λ1 + 1

The expectation of terms of the sufficient statistics for the posterior are given
thereafter, where ψ is the digamma function.

E[η∗] = ∂a(τ1, · · · )
∂τ1

= ∂

∂τ1
(ln Γ(τ1 + 1) + ln Γ(β)− ln Γ(τ1 + β + 1))

= ψ(τ1 + 1)− ψ(τ1 + β + 1)
= ψ(α)− ψ(α+ β)

(B.8)
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E[−a(η∗)] = ∂a(· · · , τ2)
∂τ2

= ∂

∂τ2
(ln Γ(α) + ln Γ(nτ2 − τ1 + 1)− ln Γ(α+ nτ2 − τ1 + 1))

= nψ(nτ2 − τ1 + 1)− nψ(α+ nτ2 − τ1 + 1)
= nψ(β)− nψ(α+ β)

(B.9)

Dirichlet - Conjugate prior of Multinomial likelihood

p(η∗|λ) = h(η∗) exp(λT1η∗ + λ2(−a(η∗))− a(λ))

= exp

λT1


ln p1
...

ln pm

− a(λ)


=

m∏
i=1

p
(λ1i+1)−1
i e−a(λ)

= 1
B(α)

m∏
i=1

pαi−1
i

(B.10)

We recognize a Dirichlet distribution with parameters
λ1 =


λ11
...

λ1m

 =


α1 − 1

...
αm − 1


λ2 = 0

α =


λ11 + 1

...
λ1m + 1


The expectations for the posterior are
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E[η∗] = ∂a(τ1, · · · )
∂τ1

= ∂

∂τ1

(
m∑
i=1

ln Γ(τ1i + 1)− ln Γ
(

m∑
i=1

(τ1i + 1)
))

=


ψ(τ11 + 1)− ψ (∑m

i=1 τ1i + 1)
...

ψ(τ1m + 1)− ψ (∑m
i=1 τ1i + 1)



=


ψ(α1)− ψ (∑m

i=1 αi)
...

ψ(αm)− ψ (∑m
i=1 αi)



(B.11)

E[−a(η∗)] = 0 (B.12)

Gamma - Conjugate prior of Poisson likelihood

p(η∗|λ) = h(η∗) exp(λ1η
∗ + λ2(−a(η∗))− a(λ))

= exp(λ1 lnλ0 − λ2λ0 − ln Γ(α) + α ln(β))

= βα

Γ(α)λ
λ1
0 e−λ2λ0

= βα

Γ(α)λ
α−1
0 e−βλ0

(B.13)

We recognize a Gamma where λ0 is the parameter of the Poisson distribution.{
λ1 = α− 1
λ2 = β

{
α = λ1 + 1
β = λ2

The expectations are

E[η∗] = ∂a(τ1, · · · )
∂τ1

= ∂

∂τ1
(ln Γ(τ1 + 1)− (τ1 + 1) ln β)

= ψ(τ1 + 1)− ln β
= ψ(α)− ln β

(B.14)
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E[−a(η∗)] = ∂a(· · · , τ2)
∂τ2

= ∂

∂τ2
(ln Γ(α)− α ln(τ2))

= α

τ2

= α

β

(B.15)

Normal-Wishart - Conjugate prior of Normal likelihood

p(η∗|λ) = h(η∗) exp(λT1η∗ + λ2(−a(η∗))− a(λ))

= (2π)−
d
2 exp

λT1
 Σ−1µ

−1
2Σ−1

+ λ2

(
−1

2µ
TΣ−1µ− 1

2 ln |Σ|
)
− a(λ)


= (2π)−

d
2 exp

(
λT11Λµ− 1

2λ
T
12Λ− 1

2λ2µ
TΛµ− 1

2λ2 ln |Λ−1| − a(λ)
)

= (2π)−
d
2 exp

(
(µ0λ0)TΛµ− 1

2(µ0µ
T
0 λ0 + V −1)Λ− 1

2λ0µ
TΛµ

+ 1
2((n− d− 1) + 1) ln |Λ| − a(λ)

)
= (2π)−

d
2 exp

(
tr(λ0ΛµµT0 )− 1

2µ
T
0 λ0Λµ0 −

1
2 tr(λ0ΛµµT )− 1

2 tr(V −1Λ)

+ n− d− 1
2 ln |Λ|+ 1

2 ln |Λ| −
(
−d2 lnλ0 + nd

2 ln 2 + n

2 ln |V |+ ln Γd(
n

2 )
))

= |Λ|
n−d−1

2 e
− tr(V −1Λ)

2

2nd2 |V |n2 Γd(n2 )
(2π)−

d
2 |λ0Λ|

1
2 e−

1
2 (µ−µ0)Tλ0Λ(µ−µ0)

(B.16)

We recognize a NW (µ,Λ|µ0, λ0,V , n) distribution with the following param-
eters. The previous derivation used transformations such as |λA| = λd|A| or
|A−1| = |A|−1 and assume the vectorization of the matrices.


λ11 = µ0λ0

λ12 = (µ0µ
T
0λ0 + V −1)T

λ2 = λ0

λ2 = n− d



µ0 = λ11
λ2

λ0 = λ2

V =
(
λ12 −

λ11λT11
λ2

)−T
n = λ2 + d

Which implies the constraint λ0 = n−d. We used the notation B−T = (B−1)T .
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The expectations for the posterior are given below, where E[η∗] contains a vector
and a matrix and E[−a(η∗)] is a scalar. τ is the natural parameter of the posterior,
corresponding to λ for the prior. We also used the previous inverse parameter
mapping.

E[η∗] =

 ∂a(τ11,··· )
∂τ11

∂a(··· ,τ12,··· )
∂τ12

 (B.17)

∂a(τ11, · · · )
∂τ11

= ∂

∂τ11

(
− d

2 ln τ2 + (τ2 + d)d
2 ln 2 + τ2 + d

2 ln

∣∣∣∣∣∣
(
τ12 −

τ11τ
T
11

τ2

)−T ∣∣∣∣∣∣
+ ln Γd

(
τ2 + d

2

))

= ∂

∂τ11

(
−τ2 + d

2 ln
∣∣∣∣∣τ12 −

τ11τ
T
11

τ2

∣∣∣∣∣
)

= ∂

∂τ11

(
−τ2 + d

2 ln
((

1− τ
T
11τ

−1
12 τ11
τ2

)
|τ12|

))

= ∂

∂τ11

(
−τ2 + d

2 ln(τ2 − τT11τ
−1
12 τ11)

)
= (τ2 + d)(τ−1

12 + τ−T12 )τ11

2τ2 − 2τT11τ
−1
12 τ11

(B.18)

Where we used |B − xxT | = (1− xTB−1x)|B| and ∂xTBx
∂x = (B +BT )x.

∂a(· · · , τ12, · · · )
∂τ12

= ∂

∂τ12

(
− d

2 ln τ2 + (τ2 + d)d
2 ln 2 + τ2 + d

2 ln

∣∣∣∣∣∣
(
τ12 −

τ11τ
T
11

τ2

)−T ∣∣∣∣∣∣
+ ln Γd

(
τ2 + d

2

))

= ∂

∂τ12

(
−τ2 + d

2 ln
∣∣∣∣∣τ12 −

τ11τ
T
11

τ2

∣∣∣∣∣
)

= ∂

∂τ12

(
−τ2 + d

2
(
ln
(
τ2 − τT11τ

−1
12 τ11

)
+ ln |τ12|

))
= −τ2 + d

2

(
τ−T12 τ11τ

T
11τ

−T
12

τ2 − τT11τ
−1
12 τ11

+ τ−T12

)
(B.19)
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Using ∂aTX−1b
∂X = −X−TabTX−T and ∂|X|

∂X = |X|X−T .

E[−a(η∗)] = ∂a(· · · , τ2)
∂τ2

= ∂

∂τ2

(
− d

2 ln τ2 + (τ2 + d)d
2 ln 2 + τ2 + d

2 ln

∣∣∣∣∣∣
(
τ12 −

τ11τ
T
11

τ2

)−T ∣∣∣∣∣∣
+ ln Γd

(
τ2 + d

2

))

= − d

2τ2
+ d

2 ln 2 + ∂

∂τ2

(
− τ2 + d

2

(
ln
(
τ2 − τT11τ

−1
12 τ11

τ2

)
+ ln |τ12|

)

+
(
d(d− 1)

4 ln π +
d∑
i=1

ln Γ
(
τ2 + d

2 + 1− i
2

)))

= − d

2τ2
+ d

2 ln 2 + 1
2

d∑
i=1

ψ

(
τ2 + d+ 1− i

2

)
+ ∂

∂τ2

(
− τ2

2 ln
(
τ2 − τT11τ

−1
12 τ11

)

+ τ2
2 ln τ2 −

τ2
2 ln |τ12| −

d

2 ln
(
τ2 − τT11τ

−1
12 τ11

)
+ d

2 ln τ2

)

= d

2 ln 2 + 1
2

d∑
i=1

ψ

(
τ2 + d+ 1− i

2

)
− 1

2 ln(τ2 − τT11τ
−1
12 τ11)

− τ2

2τ2 − 2τT11τ
−1
12 τ11

− 1
2 ln |τ12|+

1
2 ln τ2 + 1

2 −
d

2τ2 − 2τT11τ
−1
12 τ11

= 1
2

(
1− d+ τ2

τ2 − τT11τ
−1
12 τ11

+ d ln 2− ln |τ12|+ ln τ2 − ln(τ2 − τT11τ
−1
12 τ11)

+
d∑
i=1

ψ

(
τ2 + d+ 1− i

2

))
(B.20)
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Conjugate prior of Gamma likelihood

p(η∗|λ) = h(η∗) exp(λT1η∗ + λ2(−a(η∗))− a(λ))

= exp

λT1
α− 1

−β

+ λ2(− ln Γ(α) + α ln Γ(β))− a(λ)


= exp (λ11(α− 1)− λ12β − λ2 ln Γ(α) + λ2α ln β − a(λ))

= (lnλ11)α−1e−λ12β

Γ(α)λ2βαλ2
e−a(λ)

∝ pα−1e−βq

Γ(α)rβ−αs

(B.21)

We recognize the corresponding conjugate prior with the following parameters,
where p, q, r, s > 0 and f(α, β|p, q, r, s) ∝ pα−1e−βq

Γ(α)rβ−αs if α, β > 0, 0 otherwise.
λ11 = ep

λ12 = q

λ2 = r

λ2 = −s


p = lnλ11

q = λ12

r = λ2

s = −λ2

Which implies the constraint r = −s.
The expectation of the sufficient statistic terms cannot be computed for the

corresponding posterior since we don’t have the analytical form of the normalization
factor.

Conjugate prior of Beta likelihood

p(η∗|λ) = h(η∗) exp(λT1η∗ + λ2(−a(η∗))− a(λ))

= exp

λT1
α− 1

β − 1

+ λ2(− ln Γ(α)− ln Γ(β) + ln Γ(α+ β))− a(λ)


= exp

(
λ11(α− 1) + λ12(β − 1) + λ2 ln Γ(α+ β)

Γ(α)Γ(β) − a(λ)
)

=
( Γ(α+ β)

Γ(α)Γ(β)

)λ2

(lnλ11)α−1(lnλ12)β−1e−a(λ)

=
( Γ(α+ β)

Γ(α)Γ(β)

)λ2

(lnλ11)α(lnλ12)βe−a(λ)−λ11−λ12

∝
( Γ(α+ β)

Γ(α)Γ(β)

)λ0

xα0 y
β
0

(B.22)
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We recognize the corresponding conjugate prior π(α, β|λ0, x0, y0) with the fol-
lowing parameters

λ11 = ex0

λ12 = ey0

λ2 = λ0


λ0 = λ2

x0 = lnλ11

y0 = lnλ12

As previously, the expectations for the posterior cannot be computed due to the
missing analytical form of the normalization factor.
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