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Fractionally Spaced Equalization of Linear
Polyphase Channels and Related Blind Techniques
Based on Multichannel Linear Prediction
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Abstract—In this paper, we consider the problem of linear for channel identification since it results in the presence of
equalization of polyphase channels and its blind implementation. phase information in the cyclic second-order statistics (SOS)
These channels may result from oversampling the single output ot yhe gutput. It is exactly this property that allows for blind
of a transmission channel or/and by receiving multiple outputs of . o .
an antenna array. A number of recent contributions in the field of identification of polyphase channels from SOS, as shown in
blind channel identification have shown that polyphase channels [4]-{6].
can be blindly identified using only second-order statistics (SOS) Instead of being interested in the identification of the
of the output. In this work, we are mostly interested in the blind  channel itself, in this paper, we will rather focus on the
linear equalizationof these channels: After some elaboration on blind acquisition of simple equalizer settings whose output
the specifics of the equalization problem for polyphase channels, . . . . -
we show how optimal settings of various well-known types of est!matgs th-e transrmtted symbols.|r.1 compliance with §ome
linear equalization structures can be obtained blindly using only Optimality criterion. Linear and decision-feedback equalizers
the output's SOS by using multichannel linear prediction or implemented through tap-delay lines have been extensively
related techniques. used in order to equalize received signals in many communica-

tion systems; however, their calibration had to be based on the

I. INTRODUCTION use of a training sequence (a sequence of fixed symbols). Blind
N DIGITAL communications, a sequence of symbald) equalizers that were baseq on implicit (e.g., decis[on—directed
gets modulated and transmitted over a channel. We assufhe3USsgang-type) or explicit (cumulant-based) higher order
the modulation to be linear and the channel to be a linear tima@tistics (HOS's) have been proposed since the 1970's in order
invariant system with additive white circular noise. In practicd® @void the use of training signals. In this work, we will show
small degrees of nonlinearity and slow variations in time cfPVV Second-order blind equalization can be performed in the
always be accommodated. Lé(#) be the overall impulse light of the recent results on SOS identifiability of polyphase

response of modulation and channel. Then, the continuo§82nnels. We will also examine some further implications of

time received signal can be written as pglyphase channels on linear equalization, irrespective of the
- blind aspect.
(t) = Z a(i)h(t — iT) + v(t) (1) The rest of the paper is organized as follows. In Section I,

we introduce the channel-equalizer model and some notation.
Section Il focuses on nonblind aspects of linear zero-
where v(t) is the additive noise. The signal part of thiforcing (ZF) equalization of polyphase channels, whereas
single-input single-output (SISO) system is cyclostationaiy Section IV, we present multichannel linear prediction
with periodZ’, which is the symbol period. Its cycle spectrumechniques for blind equalization. In Section V, we analyze
is the discrete sefa,,, = %, m = 1,2,...}. In the presence minimum-mean-square-error (MMSE) polyphase equalization
of stationary noise, the noisy received signal has the samed show its connections with ZFE. Section VI shows
cyclostationarity properties. some simulation results, whereas Section VIl presents some
If we sample the received continuous-time signéd) at a conclusions. In this paper, we shall focus on the interpretations
rate 22 greater than the symbol ratg (m > 1), the discrete- of polyphase channels arising from oversampling. However,
time received signal is also cyclostationary with peridénd apart from some discussions in Section Ill, most of the results
containsm distinct cycle frequencies. On the other hand, #ipply to any polyphase channel.
m were chosen to be equal to 1, the sampled signal would be
purely stationary. This manifestation of cyclostationarity asthe ||, | iNeAR FRACTIONALLY -SPACED EQUALIZATION
sampling rate exceeds the baud rate is of critical importanc

i=—00

€rr i . . .
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Manuscript received February 18, 1997; revised August 4, 1998. Thgssymptions that will be used throughout the rest of the paper.

33@7}23}553‘;?P‘i‘(’,ﬁ“ggﬁ‘;}”g.t{}jnrf,;'gﬁ of this paper and approving it f‘frhe continuous-time channélt) is assumed to be FIR with
C. B. Papadias is with Bell Laboratories, Lucent Technologies, Holmdeduration of approximativelyN7. The oversampling factor

NJ 07733-0400 USA (e-mail: papadias@bell-labs.com). (OF) is assumed to be:, and the sampling instants for the
D. T. M. Slock is with the Eugcom Institute, Sophia Antipolis, France . . . j—1 for i i

(e-maill: slock@eurecom.fr). received signak(t) in (1) areto + 1T'(k + L) for integer
Publisher Item Identifier S 1053-587X(99)01330-6. andj = 1,2,...,m. j represents the» symbol rate sampling

1053-587X/99$10.00] 1999 IEEE



642 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999

phases of the oversampling pattetp.represents the initial (k)

sampling time instant. In principle, it suffices to introduce a w1(k) i

restricted¢, € [0,7") to be fully general. However, we shall alh) n o " Hlbmd—n)
take ty = t;, + dT’', wheret; € [0,7) in order to incorporate ;_M)

also an inherent delay due to transmissiénis chosen as the H, & F,

smallest integer such that
Fig. 1. Polyphase representation of ffigm fractionally spaced channeland

{h(tg +dT)--- h<t6 + <d + mT_1>T>} £0. (2) equalizer form = 2.

The channel being causal implies thbwill be non-negative. equalizer output produces an estiméaté—d—n) of the delayed
We now introduce theolyphase descriptioaf the oversam- symbols with part of the delag) due to the inherent delay in
pled received signal, channel impulse response, and additike channel and paft.) intentional for improved performance

noise, respectively. (see further). In what follows, we shall ignore the inherent
-1 delay d.
zj(k) = x(to + T<k + —)) In the frequency domain, the-transform of the channel
,~m1 response at the sampling rafe is given as
hj(k)=h<t0+T<k+‘l;>> j=12,....,m (3) ”
m .
P H(z) =Y 2 O"VH(z"). 9)
UJ(/{})IU<t0+T</€+J—>> i=1
m

Sf'milarly, the z-transform of the fractionally spaced%)

In the sequel, we will refer to the polyphase components 0 ualizer can also be decomposed into its polvphase com-
such gquantities aphases The oversampled received signaFgnents as P polyp

can now be represented in vector form at the symbol rate &S

N-1 mo
_ (=1 m
x(k) = 3 h(i)a(k — i) + v(k) = Hy A (k) + v(k) (4) Fz) = ;’ E (). (10)
:=0
wherex(k), h(k), v(k) are defined as Although the equalizer defined by (10) is slightly noncausal,

this does not cause a problem because the discrete-time filter is
z1(k) v1(k) hi(k) not a sampled version of an underlying continuous-time func-
x(k) = |, vk)=| : |, hk)= : tion. In fact, a particular equalizer phagé—") F;(»™) follows
h(k) ] in cascade the corresponding channel phasé~" H; (=)
(5) SO that the cascadg;(»"™)H;(~™) is causal. We assume the
equalizer phases to be causal and FIR of length

() (k)

The subchannels are defined as -
H; =[hi(0) - hi(N—1)] (6) Fi(z)=> fi(k)z™* j=1,....m. (11)
k=0

and the channel matrill  is am x N matrix defined as
We also denote b¥i(k) the 1 x m vector that contains thith

hl_(o) hl(N' -] sample of each one of the equalizer phases and y;, a
Hy = : : 1 x Lm vector that contains thé consecutive vector§(k),
hon(0) -+ (N —1) ] k=0, L—1

CH,
(k) = 1 EY... m k

=[h0) --- h(N-1]=]: [. (7) ;;‘L)Zg(é)?.-f{L(—)l])]. (12

LH

Finally, we introduce the following multichanneltransforms

i r N x1
Finally, we denote byd 5 (k) the N x 1 symbol vector of the channel and the equalizer:

An(k) = [a(k) - --a(k = N+ D))" (8) N1
We formalize the finite duratioA7” assumption of the channel H(z) = > h(i)z " =[Hi(2) - Hp(2)]"
as follows. i=0 (13)
C1): FIR Assumption:h(0) # 0, h(N — 1) # 0 and =
h(7)=0fori<Ooré> N. F(z) =Y f(i)z7" = [Fi(2) -+ Fu(2)].
1=0

In order to equalize the fractionally spaced channel, we will
use a fractionally spaced linear equalizer, whose output is {iih the delay operatog—* (such thaty—ta(k) = a(k — 1)),

sum of the outputs of symbol rate linear filtef§ in each e can represent the vectorized received signal as
subchannel. The channel-equalizer cascade in the case of an

oversampling factorn = 2 will then look as in Fig. 1. The x(k) = H(g)a(k) + v(k (14)
pling g
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in which the signal parH(q)a(%) corresponds to a single-or equivalently
input multiple-output (SIMO) system. Assuming the transmit-
ted symbols and independent noise to be stationary, the vec- Fr7r(Hy) = [01n 1 On(vtL4n—2)] (19)

torization has turned the cyclostationary scalar sigria) + where we define, (x) as a (block) Toeplitz matrix with/

Tk + 750) Into a stationary vector _5|gnai(k). Thus f_ar, Igblock) rows andx 0, (y—1)] as first (block) row £ is the
we have obtained multiple received signals by unraveling the 7
nlélrznber of rows inx).

multiple phases of the oversampled continuous-time receive ; . . .
: . ) . . Equation (19) is a linear system d@&f + N — 1 equations
signal. An alternative way to arrive at the same picture is .
. in the Lm unknownsf(0),...,f(L —1). For the existence of
to have several antennas. Each of the antenna signals can, .. ; .
) .~ dasolution, the vector on the right-hand side of (19) needs to
then be oversampled or not [if not, then the representations at . . .
. . e in the row space of ,(Hy). This can possibly happen
oversampled rate as in (9) or (10) are not applicable]. Hence .
; : . Of very short values of_. Indeed, if, e.g., after removal of
the total number of received signals is the product of t - . .
. . e coefficienth(n) the rows inHy are linearly dependent,
number of antennas times the oversampling factor. The Sl .
) . then L = 1 suffices. In general, however, the matéix(H y )
deconvolution problem now boils down to the calculation o
. ) L N needs to have full column rank. This imposes
of the optimal equalizer coefficientg;(¢), 7 = 1,...,m,

t=20,...,L—1. —
t e LZLZ[N 1}

pe—] (20)

Il FIR ZERO-FORCING (ZF) EQUALIZATION on the equalizer lengtil [2]. The matrix 7, (Hy) is a
- generalized Sylvester matrix. It can be shown that/for L,
A. FIR Equalizability it has full column rank if the following condition holds:

We consider first the noise-free case. In the absence ofC2): No-Common-Zeros Condition:H(z) # 0, Vz,
noise, the optimal equalizer is a zero-forcing equalizer, i.¢hat is, if the subchannel#;(z) have no zeros in common.
one whose cascade with the channel gives a (possibly delaygd same condition was given (in a different form) by Tong
Dirac impulse response. The transform of the equalizer et al. in [4] and by Tugnait in [8]. Indeed, it is easy to

outputa(k — n) can be written as see that if the subchannels have a zero in common, then
A(z) = F(2)H(2)A(2). (15) this zero can be factored out, and the equalization for this

factor becomes the equalization of a SISO system for which

In order to achieve zero-forcing equalization in the absence'®? FIR solution exists. It may occur that subsets of the
noise, we should havel(z) = A(z)z~", where we allowed subchannels have a shorter length (théh In that case L

for a certain delay.. This gives the following ZF condition N€€ds to be replaced by the minimum of (20) over all sets
for the equalizer parameters: of subchannels. On the other hand, if the rowsIbf are

not linearly independent, then in (20) needs to be replaced
F(x)H(z) =27", ne{0,1,...,N+L—-2}. (16) by meq = rankHy) < min{m, N}, which is the effective
number of (linearly independent) channels (as remarked in
. Therefore, we have the following result.
heorem 1: Under the FIR channel assumption, a ZF FIR

In the polyphase representation depicted in Fig. 1, we ¢
recognize the channel and the equalizer to correspond t
qascade of an anaIyS|s. fllt_erbank flolllowed by a Syntheséaualizer can be found from (19), provided that the equalizer
filterbank. The ZF equalization condition corresponds to ﬂ?@ngthL satisfies

perfect reconstruction property for the filterbank. In the filter-
bank literature [7], it is well known that perfect reconstruction
is possible with a FIR synthesis bank for a FIR analysis

bank. Equation (16) is the ZF condition in thedomain. The N
counterpart of (16) in the time domain is and that the channdll(z) has no zeros [condition C2)].

In the formula for L in (21), we get, for the case of a
£(k) «h(k) = 6(k —n) (17) frequency flat channdlV = 1), 3 = 1. A sufficient condition
for any channel without zeros i6 > N — 1. However, if we
Bonsider the channel coefficients as random with continuous
distributions, then the equalizer length condition in (20) is
[f(0) --- f(L-1)]x necessary and suf_“ficient with probability one. We WiI_I hence-
h e h(N — forth assumel as in (20). Form = 2 channels, the minimal
(0) (N 1) Ornxl Ornxl . . . .
_ ) equalizer length ig, = N — 1, which is about the same as
Omx1  h(0) h(N -1) - : the channel lengtiV. However, the minimal equalizer length
: . . 0 decreases with the number of channels. In particdlas 1
' ' o f = N channels. Assuming that the multiple channels
Orn,><1 e Orn,><1 h(O) U h(N - 1) Ol:. m = ¢ ’ . 9 P
T arise due to the use of multiple antennas only, then such an
Onx1 equalizer corresponds to a purely spatial filter or beamformer.
= 1 (18) Hence, for a given delay spread, a pure beamformer can
O+ L—n—2)x1 perform equalization if enough antennas are used, as remarked

(21)

o it

rank{Hy} — 1

where denotes convolution. By expressing this convolutio
as a matrix-vector product, (17) takes the form
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in [10]. The advantage of the spatio-temporal approach is that (k) ik
A . a(k) ‘.@_. () F(2) —.@_.a(k)
ZF equalization can be done with fewer antennas.
Discussion: The mUItIChan_nel FIR equallzablllty IS. n re? Fig. 2. Multirate representation of fractionally spaced channel and equalizer.
markable contrast to the single-channel problem, in which

case

discussed here are time-invariant filters corresponding to a
(22) fixed delay.
One important issue raised by Theorem 1 is the practical
ignificance of the “no-common-zeros” condition C2): How

where Hi(z) has been factored into its minimum- an elv is it tical ch 't tisfy thi dition?
maximum-phase factor&™*(z) and H™**(z), respectively Ikely 1S 1t for a practical channél o sa isty this conartion=
Sporadic answers to this question can be found in the liter-

(assuming f11(z) has no zeros on the unit circle). Sinceature The occurrence of exact zeros in common is a zero
1/H™"(z) is lIR and causal whilel/H{"**(z) is IIR and .

anticausal,F (=) is noncausal and doubly infinitely long. ForpmbabIIIty evtentfas olllsc_uslsed 'rr'] [17]'| I_n [1?]’ a number O;
a given approximation erro} (=) can be truncated to be of Measurements of real wireless channel impulse responses has

finite length and made causal for a judiciously chosen del%fen performed and analyzed: Often enough, the subchannels

n. The length required foF, (=) depends on the proximity of these impulse responses have several zeros close to each
the zeros ofH,(z) to the unit circle other when oversampled in time. However, these close-to-

The polvphase representation of (16) is common zeros do not always Ie_ad to significant performance
Poyp P (16) degradation of the corresponding equalizers. On the other
m . hand, Ding has shown in [19] that there exist some specific
> Fi(:)Hi(z) = = (23)  classes of realistic multipath channels that always suffer from
=1 the problem of common zeros when oversampled in time, thus
which for n = 0 is known as the Bezout identity [ll]_concluding their unidentifiability from second-order statistics

This identity states the existence of FIR equalizers for FIRRNd unequalizability with FIR equalizers). However, it was
subchannels that are coprime. Therefore, the Bezout identf§er Shown in [20] that the same channels do not suffer
is well known in the control literature and in the filter-fOM this problem when oversampled in space (with the
bank/transmultiplexing literature. It appeared in the commuriSe of uniform linear antenna arrays). Temporal and spatial
cations literature for the first time in [12], where it was applie@versampling may thus lead to different conditionings with
over finite fields in convolutional coding. Indeed, a rajen  "€SPeCt to this problem.
convolutional coder allows an-channel representation. An
FIR decoder then is, in fact, a multichannel equalizer that Z& Multirate Representation
gqua_lizes the filtering ir)tr(_)duced by the gncoder. The Bezoutrhe ypsampled by a factdr version of a discrete signal
identity was also used in image processing [13], although tQ?kT) (with 7 = 1) is defined as
formulation there was in continuous time (or rather, space).
Fractionally spaced equalizers were introduced in the mid , . u< <T>> B {x(kT), if kmodL =0

(kTL) =z k| = = L

—n

_ 1 z
- Hinin(z) Hinax(z)

Fi(z)H1(z) = 27" = F1(z)

1970’s [14], [15]. However, it was not until much later [16] * L 0, else

that it was realized that such equalizers are, in general, FIR (25)

when the channel is FIR. The next step, after the establishment

of the existence of FIR equalizers as done by the Bezaphereas the downsampled by a factaf version of z(kT)

identity, is then the issue of the minimal FIR equalizer lengt defined as

required: the subject of Theorem 1. It appears that this issue

was first addressed in [2], [9], and [16]. xd(kT;\g) = sY(K(TM)) = z(kMT). (26)
FIR equalizability was addressed in a different fashion in

[4], [6]. There, a packet oriented transmission mode w&he corresponding relations in thedomain are

considered. In the absence of noise, the packet of received

data can be written as X"(2) = Z(z"(kT})) = X(z") (27)
B | M-l L
Xu (k) = T (Hy) Aprn -1 (F) (24) X42) = 2(«(k13)) = 37 D X(w'z7)  (28)

whereX (k) = [x" (k) - --x" (k—M+1)]". Hence, a packet =
mode ZF equalizer isdyyn 1(k) = T (HN)Xum(k), wherew — ¢—i% (see [7]). We may now formulate the
whereTﬁ (=(Ty{ Ta)~' T, ) denotes the pseudo-inverse ofollowing theorem.

Th. SinceT;; Ty = Iy, We have indeed ZF equalization, Theorem 2: The fractionally spaced channel and equalizer
and sinceM is finite, the equalization is FIR. Now, every rowcorresponding to an integer oversampling factolOdf = m

in 77 can be interpreted as an FIR (MMSE) ZF equalizetan be represented as in Fig. 2, whéiéz) and F(z) are
corresponding to a certain delay (that is different for everyefined in (9), (10), respectively.

row). However,Tjjjé corresponds to a time-varying equalizer Qutline of Proof: With G(2) = F(z)H(z) denoting the
(T,jjE is not block Toeplitz). The 4-domain) FIR equalizers channel-equalizer cascade and with= =%, the i/o relation
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in the z-domain for the setup of Fig. 2 is o1

G(f) fa > -
m—1 m—1 ; 1 ;
Z V % l/rn _ < Z G % l/rn ) ( ) _7 T *’
=0 =0
(29) :

sinceV(z) = G(z)A(z™). Combining (29) W|th (9) and (10),
we get, after some computatiad(z) = L >t G(wizt/™)
A(z) =31 Fi(2)H;(2) A(%), which concludes the proof. ) el
l:l ) ) 2T
Therefore, the SISO setup of Fig. 2 is an alternative to the — |
polyphase representation of Fig. 1. The polyphase aspect is |
now contained in the upsampling and downsampling elements,
as well as in the construction of the oversampled (fractionally
spaced) channel and equalizer. The oversampling setup of
Fig. 2 has been applied advantageously to CDMA in [21]. Fig. 3. Nyquist condition for the oversampled channel.
An interesting interpretation of the ZF condition in the

light of the setup of Fig. 2 is the foIIoerngl FOC‘US'”Q OMA graphical representation of the condition (32) can be found
(29), it is clear that the transfer function; ;" G(w'z"/™) in Fig. 3, which shows the two different situations that may
represents just a downsampled byafa@ﬂar/ersmn ofi(2) arise when (32) is satisfied or not, respectively. Now, as
[compare with (23)]. Noyv let us g:onsider the phases of G(f) = F(f)H(f), in order to haveG(f) satisfy (32), it
g(k) = f(k)*h(k)in the time domaing, (k) = g(mk+i—1), s necessary thaH(f) satisfies it as well. This leads to the
i =1,...,m. The ZF requirement then takes the form following theorem.
g1(k) = 8(k —n). (30) Theorem 3:Let fh denote the bandwidth of.t_he (_:hannel
transfer functionH (f). Then, a necessary condition in order
Therefore, in order to be ZBne onlyamong them different  to achieve zero ISI in the multichannel setup is that
symbol-rate phases of the channel-equalizer cascade needs to 1
be a delta function, whereas the other phases can be arbitrary. g (33)
This increase in degrees of freedom, keeping the number 21
of constraints fixed, is another way to explain the FIR ZFheorem 3 gives us some insight on whether bandwidth
equalizability of a polyphase channel. The ZF requiremelimitations influence (or not) the channel estimation problem.
(30) is the oversampling equivalent of the continuous-timéthe channel is bandlimited with bandwidf] € (5, 2),
Nyquist condition [22], which states that the symbol-ratthis poses no particular problem for the determmatlon of a ZF
sampled version of the continuous-time equalizer (RX filtegqualizer (assuming infinite lengthy( < 3% |s desirable in
and channel (TX filter) cascade should be a delta function.order to exploit all excess bandwidth). Jf]‘} < QT, however,
no aliasing occurs even at symbol rate sampling. SHgéz)

o -
N

1 1 ) 1
EX - Lo o f, —
T 2t ¢ ¢ ar

= =1

C. Equalizability in the Frequency Domain is them-downsampled version of—! H( =), we get from (28)
Therefore, from (29), the ZF condition in the frequency m—1 . .
domain is [withG(f) = G(e/>7/T/™) and delayn = 0] Z ef2m (=)= 1)H<f - T)
— i 1 1 k=1 (34)
il — Y= _ — =1,...,m.
Z <f T) T < <gp (31)

By replacingG(f) with H(f) in Fig. 3, it is now clear that if
G(f) is a periodic function with periodn/T, but the left- f} < 5, the polyphase components,(f) of the channel
hand side in (31) is periodic with period/Z". Equation will be zero simultaneously in the frequency regions that
(31) is the Nyquist condition for oversampling and is vergorrespond to nonoverlapping, rendering ZF equalization im-
similar to the corresponding condition in continuous time. Thaeossible. Therefore, Theorem 3 is the infinite length equivalent
following interpretation can now be drawn: In order to havef the condition C2) of no common zeros in the FIR case.
(31) satisfied, there needs to be some aliasing between adjadéste that Theorem 3 is only a necessary condition, however,
frequency characteristic&(f — %) (otherwise, if there are whereas C2) is necessary and sufficient.
some frequency regions with no aliasing, it will be impossible
to have a nonzero sum within these regions). Let us supp@seZF Equalization and Noise Enhancement
now thatG(f) is bandlimited with a bandwidttf,. Since the
distance between adjacent frequency pulses in (31j45and
each pulse occupies a frequency range of wizifl, it turns
out that the condition for aliasing is

In this section, we will work in the frequency domain
in order to study the problem of noise enhancement of ZF
equalizers in polyphase systems. We begin with a remark: We
consider the case: = 2 channels and, w.l.0.gn = 0 delay
1 (32) [for infinite length (and noncausal) equalizers, the delay is

> — ; X i :
Ja 27" irrelevant; for causal equalizers however, the delay is crucial].
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We assume that the setting® = [I? [F3] corresponds The solution is

to a ZF equalizer and, therefore, satisfiB$(z)H(z) = 1. HY(f) HY(f)

Now, consider another setting, namelf!(z) = F°(z Fuy === = 39
g. namely(z) = Eo(o) + - BwseaelD) = o e gy 0

G(2)[—H2(z) Hi(2)], whereG is any stable filter of finite or
infinite length. It can be easily verified th& (z)H(z) = 1, where ¥ denotes Hermitian transpose. This is the optimum
which means thaany equalizer of this form is also ZF. The (MMSE) infinite-length ZF equalizer. We remark that the
variety of filtersG that can be used represents a lot of degreRBMISE ZFE consists of a cascade of the MISO filldF (f)

of freedom to determine different ZF equalizers for a giveflhe matched filter) followed by a SISO filtefH(f)|| 2.
equalizer length. These will be all equivalent in the absengge matched filter combines the signal components inithe
of noise; however, one will be optimal in the presence of noiggannels into a single signal in an optimal fashion. The SISO
in terms of noise enhancement. A linear equalizer with del#iter that follows then performs the zero forcing. The minimal

n = 0 is a linear estimator of the symba}, in terms of the noise variance (MMSE) at the ZF equalizer output is
received signal. The noise at the ZF equalizer output is the

error in estimatingz, and its variance is the MSE. Now, the 2 _ 02/ a (40)
optimal equalizer for a given length is only a special case of MMSEZEE = T — [HCHIP

an equalizer of greater length, which can still be optimize L .

(due to the degrees of freedom introduced by increasing t 2 gau? insight in the_tdea%ndence of the MMSE on the
length), resulting in a better performing ZFE (lower MSE)? annels, we can rewrite (40) as

=

We can sum up this discussion as follows. O MSE 2P E
¢ For an FIR polyphase channel, an FIR ZF equalizer exists 1 1 m \Hi(f)2
if the FIR ZFE filter is long enough. If the ZFE filter = of/ TN H <1 — 7—2> df. (41)
length is longer than the minimum required value, then -3 [H1(f)] i=2 > he1 Hi(f)]

an infinity of FIR ZFE's exist. Among these, an optimalrhe first factor in the integral represents the contribution to

;rlleE)exists in terms of noise enhancement (the MMS(E%FE,min of the case of symbol-rate samplitge = 1). The

: ] _ other factors (which are smaller than 1) represent the reduction
* By increasing the length of the ZFE further, the noisg, MSE obtained by adding more channels. It is useful to

enhancement can be further reduced. compare the SNR of the MMSE ZFE with the matched filter
We now focus on the derivation of the optimal infinite-lengtibound (MFB), which is an upper bound on the SNR at the
ZF equalizer. output of any (unbiased) equalizer. The MFB SNR is the SNR

1) Optimal Infinite-Length ZF EqualizerConsidering at the output of the matched filter. Therefore, we have
white noise(Ev(k)vi (i) = 026;;), the variance at the ZF

-1
equalizer output is o2 o2 2 _
g P SNRymvsk7FR = —5——— = — / B2 df
m I—1 mo .l SMMSEZFE v \/-1
2 2 2 _ 2 2 L
Ghre =0ty S ILWE =0ty [T IR @) o2 [t
i=1 k=0 =17"% < ;/ ) IH(f)II> df = SNRyFB. (42)
ks _E

using Parseval’s identity. In the case of an infinite-length

. . N - Zl'—;or a single channel, the performance of a ZFE can be
equalizer, we get the following optimization criterion:

quite suboptimal whenH;(f)| shows significant dips. For

_ I m ) multiple channels, and with sufficient diversity, the chance
;n(lj{l)/ 2 NEDFE A that the|H;(f)| have a dip at the same frequency and, hence,
' Tr=l (36) that |[H(f)|| shows a dip becomes smaller as the number
subject tOZ F(HH(f) =1 of channels increases. In fadtH(f)|| tends to show less
= variation with frequency as: increases. Ideally, iffH(f)]|

) ) ) o _ becomes constant (allpass channel), then equality is obtained
which reduces to the following frequency-wise criterion (sincg, (42): the MMSE ZF equalizer then performs maximum

the constraint is frequency-wise and the cost function sums iRslihood detection (equals the Viterbi equalizer). For mul-
non-negative contributions at different frequencies) tiple channels obtained by oversampling, it is interesting to

m investigate performance in terms of oversampling factor in the

min STIEWDP case of limited excess bandwidth. It can be shown that if the

i . (37) oversampling exceeds the Nyquist sampling frequency, then
subject toZHi(f)Fi(f) =1

2 +oo
= SNRura =2 [ HOPH @)

at any frequencyf. Using vector notation, we get where we used the fact that = mN, /7 with N, /2 is the

min|[F7(f)|? power spectral density of the white noise per component, and
{F(f). . . (38) H(Jf) is the Fourier transform ok(¢). Since the expression
subject to(H*(f),F~ (f)) = 1. in (43) does not depend on, we see that once the Nyquist
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sampling frequency has been exceeded, further oversamplfgMultichannel Linear Prediction

does not lead to a further increase in MFB. , In a first step, we are interested in identifying the channel
Another interesting comparison is with the work in [23}efficients of the SIMO setup based on linear prediction.
and [24]. In that work, an optimal receiver front end iShen e will use this channel estimate in order to derive

used, consisting of a continuous-time matched filter (matchgfimal MISO equalizers. We consider the following (forward)
to the continuous-time channel impulse response) followgq,, prediction problem:

by symbol-rate sampling. This approach is impractical since

it is hardly possible to know the continuous-time channel. Predictx(k) as a linear combination of the
Therefore, the approach taken here is to oversample and components oK, (k—1).

use simple antialiasing filters (which leave the noise white)

before sampling. Thereforg;(t) includes the anti-aliasing The predicted vector sample can be written as

filter (which becomes transparent if the oversampling satisfies

Nyquist). The MFB for the optimal approach in [23] and X(k) = pix(k— 1)+ -+ prx(k— L) =P X(k - 1)
[24] is given by (43) as well [withH(f) not including (45)
the anti-aliasing filter]. Therefore, the oversampling approach

equals the optimal approach once the oversampling exceddgre{p;} arem x m matrices and represent the LP coeffi-
the Nyquist sampling frequency. The MMSE ZFE SNR fogients, andPz, = [p, --- pz]. The prediction error can then
the optimal approach in [23] and [24] can be found to be be written as

SNRvMSE zFE x(k)|x, 1y = x(k) — %(k)|x, o—1)
02 L k = —Pr]Xpp(k). (46)
- | L ()

whereH () again does not include the anti-aliasing filter. The

MMSE ZFE SNR in (44) is again inferior to the MFB in (43)

unless the sum in (44) is constant. On the other hand,

optimal MMSE ZFE SNR in (44) is an upper bound to th

one in (42) and is again reached as the oversampling excee

the Nyquist frequency for the channel. Igin[_[nl —PLIR} 1 [In _PL]H _ ff,gc,L (48)
L

The m x m prediction error variance is by definition

2\ ! -t
) df (44)

Ei(k)iH(k) = [Im _PL]RE+1[Inl _PL]H (47)

here R = E(Xp(k)X¥(k)). The minimization of the
fediction error variance leads, therefore, to the following
B’gsimization problem:

IV. ZFE AND CHANNEL ID BY which gives

MULTICHANNEL LINEAR PREDICTION
_ _ _ [l —PrlR} =03, 0---0]. (49)
It is well known that in the case of symbol-rate sampling, ’
the channel can be identified by spectral factorization if it Equations (49) are the normal equations. By partitioning
minimum-phase (MP) [i.e., if its scalar channel respoHse) R¥ .., (49) can be written as

has no zeros out of the unit circle]. The counterpart of spectral

factorization in the time domain is linear prediction: In the ro r
absence of noise, the input sequence equals the innovations [Im _PL][ =[o%, 0---0] (50)
process (prediction errors) if the channel is MP. This provides

an elementary SOS technique for SISO blind equalization

r Bx

However, this approach is highly restrictive as it only applie\'élh'Ch gives
to MP SISO channels, which are rare in practice. o2, =ro—r(RE)#rl
On the other hand, the MP property is much less restrictive PL’ — r(R’L‘)#. (51)

in the SIMO case. A SIMO channel is again minimum phase _ o _

if its (vector) channel respondd(z) has no zeros outside theEquation (51) shows how both the prediction error variance
unit circle (nozo with |z| > 1 exists for whichH(z,) = 0). and the prediction coefficients can be computed from the SOS
Hence, all channels that satisfy the no-common-zero conditi6h the cyclostationary received signal. We now proceed to
C2) are by definition MP (as they have no zeros at afbtain channel estimates and optimal equalizers from these
much less outside the unit circle). TherefdE(z) is typically ~quantities.

MP, even though none of its component(z) is MP.

This fact has lead to frequency-domain blind SOS techniquBsLP-Based Multichannel Identification/ZF Equalization

for SIMO channel equalization that are based on spectralye il perform LP on the noise-free sign@al(¢) = 0). The

factorization [5], [25]. In this section, we will investigateinn,t_output relation of the SIMO channel can be written in
the time-domain counterpart of this approach; namely, Wge ahsence of noise as in (24). Hence, the covariance matrix

will study the possibility of blind SIMO equalization and/orRaLc of the received signak(k) has the following structure:
channel identification (ID) based on linear prediction (LP) of

the polyphase channel output. ¥ = Tr(HN)RG, v_ 77 (Hy) (52)
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where R¢ = EAL(k)AZ(k) > 0. The R¥ is of dimension and therefore
Lm x Lm, and its rank isL + N — 1 [assuming C2) and
L [ s WFO) il ~Pr)Tosa(Hy) = [ Opyni]  (6D)

L > L]. Therefore, we have
) fullrank, L < L where h#(_O) = (h(0)h(0))~*h"(0). Therefore, we have
L= {singulac L>L. (53) the following result. _
Theorem 4:When the transmitted data are uncorrelated,
When R7% is singular, each further increase bfby 1 results the channel satisfies the no-common-zeros condition C2) and
in an increase of rarfli¥¥) by 1 and an increase of theL > L; then, a (0O delay) ZF equalizer can be found from

dimension of its nullspace by. — 1 (in fact, H%ﬁn_ linear prediction as
T Lopo L). Note that in the presence of white noise, F75, 0 =0%(0)[l, —Pr] (62)

we haveo- = )\mm(R") for L > L, and hence, the noise- freeN h il he closed-f luti 62) all
covariance matrix can always be found & — 021,,,r.. ote that to implement the closed-form solution (62), all we

When L > L, 7;(Hy) has full column rank. Hence, need_ are the S_OSS%’L‘+1. AIternativer, I(_aast-squares linear
estimation in terms oy (k — 1) = 7, (Hx) Az n—1(k — pred;cyon_, applied to the noise-free signal (SOS), can _be
1) boils down to estimation in terms afi; x_.(k — 1). modnﬁed into a total Iea_st-square.s approach for the noisy
Therefore, we get signal. Appropriate adaptive algorithms can be extrapolated

from [26].
x(k)|x, (k—1) Using (60), we could also determine the chanigl
up to a scalar multiple. We may note that (60), written in

=x(k —1y = x(k) —x(k o
By sty = X00) = KBy vy the z-domain, is nothing butP(z)H(z) = h(0); hence,

N—-1 N-1

_ P H(z) = P~!(»)h(0). This is a relationship between two MP
B ; B(@a(k = Z b Dlaz st filters. AlthoughP~1(z) is IIR, P~*(2)h(0) is FIR. Note
N1 N1 that the singular (becaus;e,%’C><> is singular) vector process
= > h(a(k— i) = Y h(i)a(k - i) x(k) = Y5 h(ia(k —i) = =i, pix(k — i) +h(0)a(k)
i=0 i=1 is, at the same time, MA and AR. Therefore, in addition,
—h(0)a(k)|4, . v\ (k-1) the linear prediction approach is robust to channel length
= B(0)a(k) |4y s n (ke 1)- (54) overdetermination. If the normal equations (50) are solved

in an order-recursive fashion (using, e.g., the multichannel
Now, let us consider the prediction problem for the transmittddevinson algorithm), the recursions will terminate at the
symbols. We get, similarly correct orderZ, as is typical when predicting an AR process.
The channel can alternatively be found from

a(k) Ay k—1) = QMAM( -1) (55) g
1~ QulRSy =2yl 0---0]  (56) FinoB (Xpp ()X (k+ N = 1))
= a5 [b(N —1)---h"(0)]. (63)
where now, the elements & ,, are scalars. From (54) and o
(56) for M = L + N — 1, we find In the uncorrelated case, the prediction problem allows us
(in theory) to also check whether th¥;(z) have zeros in
x(k)|x, k1) common. Indeed, the common factor colors the transmitted

=[In —PrXp1(k) = [In —P]Tp41(Hy) ALy (k) Symbols (MA process), and hence, omge,, becomes of rank
= h(0)a(k)|.a, , v\ ke1) = HO)1 —Qu iy _1]ALyn (k). 1, its one nonzero eigepvalu%L.,JrN,71hH(0)h(0) continges
(57) to decrease as a func't|on of since for an MA processy;
is a decreasing function af.
2) Correlated Input Sequencdf the transmitted symbols
are correlated, we proceed as follows (Pisarenko-style [27, p.
o3 =04 pon_1h(0)h"(0). (58) 500]). Linear prediction corresponds to the LDU factorization
LR*L" = D. The prediction filters are rows df, whereas
Therefore, forZ, > L, the prediction error variance; ; is e prediction variances are the diagonal elemenis.dfet us
rank 1. Moreover (58) allows us to firl(0) up to a “scalar take! prediction filters corresponding to singularitiesZinand
multiple from o ;. At this point, we consider two caseS;sgume the longest one has block lenftiTherefore, we ob-
separately. _ tain F% of sizel x Lm. We introduce a block-componentwise
1) Uncorrelated Input Sequencen this case,R}, y = transposition operatof, viz.
o2l . Combining with (56), this gives
HY = [(0)---h(N - 1)]' = [a7(0)---h" (N — 1)]

_ 2 _ 2
Qrin-1=01x(z+N-1); 05 4N—1 = Ta- (59) F?\ =[£(0)---£(N — 1)]t _ [fT(O) » .fT(N ~1)]

Hence, the minimum prediction error variance is

(64)

Since (57) is valid for alldr,. ~(k), we have where 7' is the usual transposition operator. Due to the
I —Prl7r4i(Hy)=h(0)[I —Qrin_i] singularities, we have
=h(0)[1 Oryn_1] (60) Fi 7, (Hy) =0 HYTy (FY) = 0. (65)
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SinceF‘iXL(k) = 0 for the noise-free signal, we cdﬂ‘i a set V. MMSE POLYPHASE EQUALIZATION
of blockingequalizers. We find that { L+ N —1) > mN —1,

th Minimum-mean-square-error equalizers (MMSEE’s) are
en

known to perform better in general than ZFE's in the presence

dim(RangeL{TN (Fbt)}) -1 (66) of noise. When the channé|H(f)||) has very deep spectral
L ' nulls, then the noise enhancement introduced by a ZF equalizer

In that case, we can identify the chand#/’ (up to a scalar is very high (in the extreme case of channel zeoosthe

multiple) as the last right singular vector di(F"Lt). In unit circle, the noise enhancement introduced by the ZFE is
particular, leth(0)* be m x (m — 1) of rank m — 1 such infinite). On the other hand, MMSEE'’s avoid this problem by
that h(0)-#h(0) = 0; then, withL = L + 1 andl = m — 1, compromising the noise amplification and the ISI reduction.
we can take In this section, we are interested in (especially blind) MMSE
equalization in the context of the multichannel setup. In order

Fii =h(0)*7[L, —Py]. (67) to justify the superiority of MMSE equalizers, however, we

) ) . first provide a comparison of ZF and MMSE equalizers in
From (57), we can furthermore identi® ;. v—1, and via terms of noise enhancement. In the following, we assume

(56), this leads to the identification of the (Toeplitz) symbc{h&lt both the inpua(k)} and the noisev(k)} are white of
covariance matrixky , (assumings2 is known). variances?, o21,,, respectively

3) Arbitrary-Delay ZFE We have previously been able to @
blindly obtain zero-d_elay ZF equalizers. As it is well knowrk Comparison of ZF and MMSE Equalization Performance
that for most practical channels, a better performance 'is
achieved by equalizers that introduce some greater delay, wén the frequency domain, the MMSEE minimizes the fol-
are interested in blindly obtaining such solutions as well. Thi8wing quantity (assuming infinite length equalizers)
is possible if instead of one-step-ahead prediction, as above, 2

we usen-step-ahead prediction. This will allow us to avoid o2 = min /5 o2 iHi(f)E(f) -1
the dependence oh(0). The (n + 1)-step-ahead (forward) F(DJL ¢ =
linear prediction of the noise-frer(k) of order L > L can
be written as -
—M%me@ df (71)
i=1

%] (k) = %(k)|x, (h—n—1) = Py

2,7
? L.,n

(@)x(k) = > h(i)ar;

i= which represents the SNR at the equalizer output. In the right-

(68) hand side of (71), the first term represents the ISI and the

) o ] second term the noise contribution. It is actually due to this
where P (z) is the prediction error filter. The use of thesecond term that the MMSEE differs from the ZFE [compare
optimal predictor results, indeed, in the last expression in (6&)th (36)]. Now, the solution to the problem (71) is
for the prediction error, which is the part &f%) that cannot be HH
predicted fromX (k—n—1) or, hence Apy n_1(k—n—1). Fuvse(f) = iz (72)
For n = 0, we retrieve the results of Section IV-B. Note IH()I? + Z
that we can regard) (k) as the received signal from a : : o ’ ,
truncated channel. If we now apply backward linear predictid’ﬁh'Ch, gives the optimal mﬂmte—lengt_h MMSE equallz.e_r.
of sufficient orderM [replaceN by n+ 1 in the expression in Equation (72) should be compared with (39). The additive

(20) for L] to the signalx’ (), we then obtain, as optimal term in the denominator of the expression appearing in (72)
L LinA ™2 ' tects against the infinite noise enhancement that can be
prediction error pro g

produced by a ZFE since the denominator in (72) is always
x4 (k) = Py, (q)f{{ (k) =h(n)ar_n_u. (69) strictly positive.
M ’ It is also worth noting that in contrast with the symbol-rate
From (69) and (68), we deduce that we can obtain a Zfase in which the problem of infinite noise amplification of
equalizer with delay: + M (with M depending om) as the ZFE appears when the channel has zeros on the unit circle,
IF i according to (39) and (72), in the multichannel case, this will
Fripan—1ngn (2) =07 (n)Pse (z)Piﬁ,n (2)- (70) " 4nly happen when the subchannels have zeros in common on

_ ) the unit circle.
Notice that in (70), the dependence b(0)—see (62)—has | the noiseless case, according to (72) and (39), the

been replaced by the dependenceldn). This should allow ,qma| (infinite-length) MMSE and ZF equalizers coincide.

for better conditioning of the solution in the presence of nOiﬁ%wever, in the noisy case, the MMSE equalizer has a superior
in most cases. A better way to use these results should BSrformance since

perhaps, through the combination of several ZFE’s correspond- :

ing to different delays(=0,1,...,n) such that the chance 9 o [z df
for 3", |h(¢)||* being small becomes small. The outputs ~“MMSE = U’”L IHH|2 +
of these ZFE'’s should be properly delayed to align them at :

the samez;_,, (see [28] and [29] for approaches along thedsee (40)]. Therefore, as in the symbol-rate case, the optimal
lines). MMSE equalizer will always be superior to the corresponding

2
77 < PMMSEZFE (73)

2
Cr(l
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ZF equalizer. We now proceed to the derivation of the MMSE 4) Compute an estimate of the channel impulse response

equalizer. H using (58) to findh(0) (up to a scalar multiple) and

(62) combined with (19) or (63) to estimate the channel.
B. Blind MMSE Polyphase Equalization 5) ComputeF}')'S" from (78) and (75).

Based on Channel Estimation The above algorithm allows for the blind computation of the

The MMSE criterion is of the form MMSE equalizer corresponding to a given delaybased on
the channel estimate given by the LP method of Section IV.

I%inE(|a(k—n) —Fr X (k) (74) In the sequel, we are interested in alternative approaches
L

to compute blindly the MMSE equalizer by side stepping
whereF, is the sought-after equalizer settingjs the delay the channel estimation stage (in order to improve estimation
(lag) that allows the equalizer to be noncausaldgamples accuracy and computational complexity). We call thdsect
(and whose choice, as mentioned, may influence the equalizgthods.
performance considerably), a®t, X (k) = a(k — n) is an
estimate ofa(k — n). The solution to the criterion (74) is theC. Direct Methods for Blind MMSE Polyphase Equalization

MMSE equalizer corresponding to delaywhich is given by 1y 7614 pejay MMSEE:A straightforward blind approach
the closed-form solution to obtain the MMSE solution in the zero-delay case=f 0
. . . . : : .
F%I’lr\LISE = E(a(k - n)Xi{(k)) [E(XL(k)Xf(k))] in _(74)] is the following. We have from Section IV (using the
1 noisy signal now)
= dn (RL) . (75) 2 1
I, —-Prl=o03;ln 0---0(R¥,;) 79
Notice that the form of the equalizer given in (75) is the same | 2] ik ]( L+1) (79)
as the one of the classical (symbol-rate) MMSE equalizen the case of zero delay, according to (75) and (78), the
the only difference being the different composition of th&MSE equalizer takes the form

regression and equalizer vectors. In the presence of noise, the

channeli/o relationship takes the form FYNSE = 520 (0)[1,, 0---0](RE) ™. (80)
X (k) = Tr(Hn) Ay nv_1 (k) + Vi(k) (76) From (79) and (80), we deduce that
and therefore, the matri&* is equal to Fyo°F = o2 (0)03 3 _ [T —Pr_a]. (81)
Y =To(HN)RY v 7 (Hy) + RY (77) Equation (81) offers an alternative for the blind computation of

i the zero-delay MMSE equalizer. Now, the MMSEE is obtained
whereas the cross-correlation vectbr has the general form py herforming first linear prediction (using the denoised SOS)
(keeping in mind that the input is white of varianag) and requires only the inversion of the x m prediction-error

dp,=02[0---0 h#(N—1)---h¥(0) 0.--0] (78) variance matrix. In [30], a similar approach has been taken,

N but only =1 (%) is predicted fromX,(k — 1). The resulting

where the number of zeros preceding and succeeding fHediction error ish; (0)as. In that case, the zero-delay MMSE
channel coefficients depends an (for low or high values ZF equalizer is also an unbiased MMSE equalizer and, hence,
of n, some channel coefficients may not appear at all,jn is just proportional to the corresponding MMSE equalizer
e.g., forn = 0 d,, takes the formd, = o2[bf(0) 0-..0]). [filtering x1(k) and X (k — 1) to obtaina(k)].
Concerning the delay., the only way to find its best value 2) Maximal Delay MMSE:The maximal delay for the
is to evaluatesd sy ,, = 02 — d,(RE)~td for all n. A channel impulse response still to be containeddp is
practical guideline is that the delay should be such that &ll= L — 1. For such a delay, the following two-step approach
the channel coefficients appeardn and preferably near the can be used:
middle. When not all channel coefficients are contained,in Step 1) Do blind zero delay ZF equalization. The equalizer

performance may degrade significantly. output will be (M +1 > L)
According to (75), (77), and (78), the MMSE equalizer . -
can be determined blindly if the channel has already been a(k) = a(k) + Fyp 0V (k). (82)
identified. The following algorithm can, hence, be used for . . L .
blind MMSE equalizatign' g Step 2) ObtairF}'}'> as a linear combination of a Wiener
Algorithm 1—LP-Based Blind MMSEE Using Channel Es- fiter with Xr(k) as input vector,a(k — L +

1) as desired response, and the backward linear
prediction filter on the vectoX (k). Preferably,
L > N.
For Step 1, the computation d&%},, , has been discussed
before. For Step 2, consider the FIR Wiener filtering problem

timation:

1) Choose the delay parameterin (74).

2) EstimateR¥, ; from the received datfx(k)}, estimate
o2 (e.g. from the minimal eigenvalues @tz ,), and
subtract the noise contribution frof; , , using (77).

3) Compute the prediction coefficien;, and error vari- . N w

Elalk—L+1)-F; X (k
anceo? ; from (50) and (51). P ja( 1) - FEXa(h)

2

(83)

v
L



PAPADIAS AND SLOCK: FRACTIONALLY SPACED EQUALIZATION OF LINEAR POLYPHASE CHANNELS 651

which leads to the normal equations Algorithm 2—LP-Based Direct Blind MMSE:

1) Choose the delay parameterin (74).

2) EstimateR* from the received datéx(k)}, estimater2
(e.g., from the minimal eigenvalues &f), and compute
R** = R* — o2l

3) ComputePy, . Py, h(n’) from normal equations
of the type 2{50) and'(58).

4) Use (70) to compute the ZF equalizer corresponding to

wheref(0) represents the first vector coefficient Eﬁﬁrw. delay n.

Now, consider the multichannel backward prediction problem 5) Use (90) to obtain the-delay MMSE equalizer.

(on the noisy signal)

FY RS = Ea(k — L+ )X (k)
= Ea(k — L+ )X (k)
+ Fi 1 0EVarga(k — L+ DV (k)
= FYYSERX 10,0 £(0)]0 (84)

(85) D. Discussion
In the above, we have shown that MMSE equalization can

%, (k) = %(k - L+ Dlx, 4y = P Xy (k)

whereP;, = [-P;  I,] with normal equations be blindly achieved with the help of SOS and linear prediction.
e e This approach has a number of advantages over other blind
Py x =100 02, ]. (86) equalization methods, including the following.

r-t « Asymptotic optimality The proposed blind equalizers
achieve asymptotically optimal Wiener (MMSE) perfor-
mance. This improves on CMA equalizers that converge
at best (i.e., even if they attain their global optima) to the
vicinity of a Wiener solution—their output MSE contains
nonvanishing bias terms w.r.t. the Wiener MSE (see [31],
[32]).

e ConvergenceAs a result of the above property, these
LP-based techniques do not suffer from the problem of

3) Arbitrary-Delay Blind MMSEE:A simple approach to ill-convergence, which is typically encountered by blind
blindly acquire then-delay MMSE equalizer can be obtained ~ €qualization methods.
by exploiting the relationship between ZF and MMSE equal- * Flexibility: The proposed approach allows us to choose

izers. Then-delay MMSEE can be written as the delay parametet to optimize the performance. This
is typically not the case in most blind equalization al-

gorithms that are not able to preselect the valuenof
For example, the CMA may converge to solutions corre-
s . . . sponding to different’s, depending on its initialization.
where }_EL’ represents the nm;gless (_:orrelatlon matrix (npte, RobustnessThe proposed LP-based blind methods are
thatd,, is unaffected by the additive noise). The corresponding  ,,,,,st in that

(MMSE) ZFE is given by a) they can cope with colored input signals;

From (84) and (86), we conclude that

MMSE w 2 —2
Frroi=Fp - a,,/.f(())aibLilPisL_l. (87)
In this expression foFr))y'5E, all quantities can easily be

found by adaptive filtering (an estimate fof also results as
a byproduct of Step 1).

Fumsen = dn (B + UVEILm)_l (88)

(89) b) they are insensitive to the distance of the input signal

X, S #
Fore, =d.(R;")". iani
ZFE, ( L ) to Gaussianity;

c) they alleviate asymptotically the effects of additive
white Gaussian noise;

From (88) and (89), we obtain

YN0 = do ()™ = da (R RE" (RE) ™

=FL(RE — ollun) (RY) ™

d) channel order overestimation does not degrade the
performance (provided that a good delay has been

. chosen).
=F (Im — ol (RY) ). (90) . Data efficiencyAs these LP-based methods are based on
the SOS of the channel output, they will also be more
The second equality in (90) holds beca#&*)# R} is the data efficient than their HOS-based (batch) counterparts,
projection matrix on the signal subspace (the column space of which need to collect more data to estimate higher order
RY®), andd! belongs to the signal subspace. Equation (90) cumulants. This may, however, not necessarily always
shows that there exists a simple linear relation that allows usto be the case for adaptive HOS algorithms such as the

obtain an MMSEE from the corresponding ZFE #owy given
delayn. The merit of (90) is in that it allows the MMSEE to
be obtained directly and blindly for an arbitrary delaince

CMA, which are gradient-type and often converge to
a local minimum at a relatively high speed (especially
when they are normalized—see [33]). It is quite con-

the corresponding ZFE can be obtained by multichannel ZFE, ceivable, however, that other SOS-based techniques such
as per Section IV. Hence, the following algorithm can be used as subspace fitting [1], [6] or maximum-likelihood [1],
for direct blind polyphase MMSE equalization. [2], [34] may yield better statistical efficiency at the cost
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of higher computational complexity and possibly channel Channel impulse response: real part
order overestimation problems. 08

0.6
VI. COMPUTER SIMULATION EXAMPLES 0.4

We first derive the expression of the output SNR for theo2r
multichannel setup that will be used in the sequel as a measures-
of eql_JaIizer performance. If we denote bg'(L)} the (symbol _,
rate) impulse response of the channel-equalizer cascade, then
the equalizer output can be written as

ik —n) = FL nxmk) A
(1)} B SRR EREE .............. IQ .............. ............................................. .|
(k) + > glia(k — i)+ b(k) (91) A 5
i#n 0 X =0 x.\é ......... >(l ...... ! XX/QX\G .;(’G"-x\ .......... X8 X~o 3
. ) x\d/ N 7 P - Ve
where b(k) represents the noise at the equalipetput The : : g : :
output noise{b(k)} is the input noise filtered by the equalizer ! s 10 15 20 25
bank Fig. 4. Wireless channel impulse response.
m L—1
=3 wlk =) iG) (92)
=1 j=0
Therefore, the variance of the equalizer output is 20— O MSE cdualzalon erotele)
: : : MMSE : : : : :
2
Ela(k)]? = (k) + > g(i)alk — i) + b(k)
i#n
m L—1 35,
= oo | g+ D 1@ | +o2 DD 1RGP 3
i#n i=1 j=0 ‘%

(93) / ; 5 : 5 5 5 5
assuming the symbol sequence to be white. Therefore, the / ; : : : 5 5 : 5 :
SNR at the equalizer output is T A S e

* : : : : : : : : :
2| ( )|2 2(‘)0 4(‘)0 6(‘)0 ségumbL?IOO?dat;z;oaompl;:loo 16‘00 18‘00 20‘00
SNR, = : g . (94)
03 Ei;én |9('L)|2 + 05 E E |fz( )| Fig. 5. Blind LP-based equalizer performance as a function of data sample
size.

In order to demonstrate the performance of LP-based blind
equalizers, we consider the multipath radio channel given in
[35], which has been oversampled twige = 2). The real and
imaginary parts of the channel impulse response are shownin ®——— = T T
Fig. 4. Fig. 5 shows an example that demonstrates the output ' '
SNR’s (in decibels) achieved by the linear prediction-based *°
equalizer for different sizes of data samples. The channel of
Fig. 5 has been truncated to retain tNe= 5 most important G
coefficients of its two phases, and we assume an SNR of 30;
dB. As mentioned in Section IV, the truncation allows us to 2
achieve good performance with a zero-delay equaliéd ) %
not too small). The fractionally spaced equalizer used also ha§15
lengthl. = 5 and was computed based on the estimated sample
data covariance matrix of the received signal according to (81). *°
Notice the good performance of the equalizer (dashed line), as : :
well as how fast it approaches the ideal MMSE solution [the 5[ T ' ‘ ; o B T
solid line is (80) using the true quantities]. ' '

In order to demonstrate the dependence of the equalizer °“ & 15 5 20 25 30 35 40 45 50
performance on the delay parametefsee (75)], we show in lag
Fig. 6 the output SNR of the ideal MMSE equalizer (75) as Fig. 6. MMSEE performance: Influence of the lag.
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a function of the delay: for the channel of Fig. 4. We now [10]
use the full length of the channel (no truncatia, = 14)

and plot the output SNR as a function of all the achievablgy
delays for al. = 40 tap/phase equalizer (the maximum delaji2]
equalsL + N — 1 = 53). Notice how very small and very 13]
large values of: lead to degraded performance, whereas an

important number of intermediate delays provide practically

the best achievable MMSE-type performance for the givgiy,
equalizer length.

It is also worth commenting on the comparison betweet[l%]
Figs. 5 and 6: in Fig. 5, the zero-delay equalizer has a satis-
factory performance becaudg0) of the truncated channel
is not small. On the other hand, in Fig. 6, the Iow—dela§l6
performance is poor (due to a negligith€0)); however, the
optimal performance is better that the one of Fig. 5 because
d,, captures all the channel energy and is filled up with zerdd’

on both ends (equalizer long enough).
[18]

VII. CONCLUSION [19]
In this work, we have focused on the linear equalization
of polyphase linear SIMO channels and have been interesjgg|
in both nonblind (equalizability) and blind (SOS-based tech-
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