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Optimal Precoders for Tracking
the AoD and AoA of a mmWave Path

Nil Garcia, Henk Wymeersch Member, IEEE, Dirk T. M. Slock Fellow, IEEE

Abstract—In millimeter-wave channels, most of the received
energy is carried by a few paths. Traditional precoders sweep the
angle-of-departure (AoD) and angle-of-arrival (AoA) space with
directional precoders to identify directions with largest power.
Such precoders are heuristic and lead to sub-optimal AoD/AoA
estimation. We derive optimal precoders, minimizing the Cramér-
Rao bound (CRB) of the AoD/AoA under a given uncertainty
range, assuming a fully digital architecture at the transmitter
and spatial filtering of a single path. The precoders are found by
solving a suitable convex optimization problem. We demonstrate
that the accuracy can be improved by at least a factor of two
over traditional precoders, and show that there is an optimal
number of distinct precoders beyond which the CRB does not
improve.

I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) communication is ex-
pected to be one of the key enablers of 5th generation

cellular networks [1]. Operating in mmWave frequencies offers
a few advantages. First, there are large portions of underuti-
lized bandwidth which could be used for multi-gigabit com-
munications [2]. Second, due to the much shorter wavelength,
MIMO systems consisting of many antennas can be compacted
into much smaller sizes. However, in order to compensate for
the stringent path loss characteristic of millimeter wave, highly
directional beamforming is necessary at the transmitter and/or
receiver [3]. Since optimal precoding in communications can
only be achieved after learning the channel, it is critical that
fast and precise channel estimation techniques are developed.

The mmWave channel can be considered parsimonious
in the sense that only a few multipath components carry
non-negligible energy [4], [5]. This structure inherent to
the mmWave channel is leveraged in many techniques for
performing quicker and/or finer channel estimation [6]–[10].
Channel estimation can be categorized in (a) initial access,
or (b) tracking. Typically, the output of initial access is a
set of angle-of-departures (AoD), angle-of-arrivals (AoA) and
channel gains of the individual paths. Due to the mobility of
the users and the variability of the environment [11], [12], the
validity of the initial access estimates come with an expiration
time, and so it is necessary to estimate/track the channel pe-
riodically. The main idea behind tracking is that channel state
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information (CSI) is carried over to the next iteration, thus
increasing the channel estimation accuracy and/or reducing the
channel estimation overhead [13]–[16]. Because the channel
parameters can be connected to the environment (such as is the
case in geometric models), statistical CSI may also be obtained
through extraneous positioning and sensing technologies such
as GPS, radars and cameras [12], [17]. For instance, if prior
knowledge on the user position is available through GPS, then
the set of possible directions between the base station and the
user can be considerably reduced [18]–[20].

Whether initial access or tracking, the most common proce-
dure for estimating the mmWave channel consists in sweeping
the channel with beams at the transmitter and/or receiver [8],
[21], [22]. By detecting the time at which the received power
is the largest, the correct pair of beams can be identified
and the AoD and/or AoA estimated for each path. While
intuitive, such beams may not necessarily yield the best
achievable estimation accuracy. To the best of our knowledge,
the literature in mmWave precoding has not addressed what are
the fundamental limits in terms of AoA and AoD estimation
when performing optimal precoding at the transmitter.

In this work, we seek to find the best transmit precoders
for estimating the AoD and AoA, for a single-path channel,
assuming that the AoD and AoA are known to lie within
certain ranges of angles. Coarse knowledge on the AoD/AoA
may be available, for instance, through initial access or by
tracking the AoD/AoA. To abstract the analysis from specific
estimators, we use the Cramér-Rao bound (CRB) from [23] as
a proxy metric for the variance of the AoD and AoA estimates.
Indeed, the CRB is a lower bound on the variance of any
unbiased estimator and it is tight at high SNR under some
mild conditions [24]. Our main contributions are:

1) Novel formulation of the optimal precoders according to
the CRB on the AoD/AoA, with the option to include
array gain constraints.

2) Global optimization of the proposed non-convex prob-
lems by leveraging tools of convex optimization and
majorization theory.

3) Qualitative interpretation of the CRB expressions, and
analysis of the optimal beampatterns.

The remainder of this paper is organized as follows. In Sec-
tion II the system model and problem are described. Section
III contains the formulation of the proposed precoders as well
as the solution strategy and different extensions. Numerical
results are presented in Section IV, followed by conclusions
in Section V.
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II. SYSTEM MODEL

Assume a transmitter (Tx) and a receiver (Rx) with NTx

and NRx antennas, respectively. The Tx sends M consecutive
training sequences (or pilots) consisting of K symbols each,
precoded by the vectors f1, . . . , fM ∈ CNTx×1. The precoders
are normalized to ‖fm‖22 = 1/M for all m, so that increasing
its number does not result in increased transmitted energy.
We assume a narrow-band model where the signal bandwidth
is much smaller than the carrier frequency. The equivalent
discrete baseband signal for the k-th symbol of the m-th
training sequence at the Rx is

ym,k = WH
P∑
p=1

αp aRx(φp)a
H
Tx(θp) fmsk + nm,k, (1)

where αp, φp, θp are the channel gain, AoA and AoD, respec-
tively, of path p, aTx(θ) ∈ CNTx×1 and aRx(φ) ∈ CNRx×1

are the array responses at the Tx and Rx, nm,k ∼ CN (0, σ2I)
is white1 Gaussian noise, and W = [w1, . . . ,wL] ∈ CNRx×L

is a fixed combining matrix. The matrix W may correspond
to a hybrid array with L < NRx RF chains, e.g., when the
Rx is a low-complexity user terminal. For the Tx we assume
a fully digital architecture.

We assume that the P paths are well-separated in terms of
AoD and that the Tx knows that the dominant path (p = 1)
has an AoD and AoA which are known to be within a
small range of angles2: θ1 ∈ RTx and φ1 ∈ RRx. These
ranges represent a priori uncertainty regarding the AoD/AoA,
originating from mobility of the Rx, or from uncertainty
in the tracking algorithm, or from uncertainty in location-
aided communications [18]–[20]. This assumption allows us
to simplify (1) to

ym,k = α1 WHaRx (φ1) aH
Tx (θ1) fmsk + nm,k, (2)

provided aH
Tx (θp) fm ≈ 0 for p 6= 1 and all m. So going

forward the path index will be omitted. Let x∗ be the complex
conjugate of x. After coherent combining across time k per
precoder fm, we find ym =

∑K
k=1 s

∗
k ym,k, leading to the

following matrix observation

Y =
1

‖s‖2
[
y1 · · · yM

]
= α‖s‖2WHaRx (φ) aH

Tx (θ) F + N

(3)

where F = [f1 · · · fM ], s = [s1, . . . , sK ], and the components
of N are i.i.d. Gaussian variables with variance σ2. For
notational convenience, and since we assume W to be fixed,
we introduce bRx (φ) = WHaRx (φ).

Our goal is to find optimal precoders F to maximize the
quality of the AoD and AoA estimates, given no knowledge

1The noise is uncorrelated only if the L combiners are pair-wise orthog-
onal, i.e., WHW = I. An example of hybrid architecture with pair-wise
orthogonal combiners is the case of arrays of subarrays where each RF chain
is routed to a disjoint subset of antennas [25]. If the combiners were not pair-
wise orthogonal, by whitening the received signal through (WHW)−

1
2 , we

would reach the same expression (2) but with a different combining matrix
W̃ = W(WHW)−

1
2 .

2If the prior distributions of the AoD/AoA are provided instead, these
ranges may be obtained from the confidence intervals.

of the channel gain α. We tackle this problem by minimizing
the CRB3 on the AoD θ and/or AoA φ.

III. OPTIMAL PRECODERS

To design the precoders, we choose as metric the CRB,
which is a lower bound on the variance of any unbiased
estimator. Such bound is well suited to this problem because
it generally leads to tractable mathematical expressions, and
more importantly, for a sufficiently large SNR and under some
mild conditions [24], the variance of the maximum likelihood
estimator (MLE) is tight to the CRB. If θ and φ are the AoD
and AoA, respectively, of the LOS path, then determining θ
yields the direction from the Tx to the Rx, and determining
φ provides the Rx’s orientation with respect to the Tx. Thus,
for naming purposes and without loss of generality, we refer
to the CRB on the θ as direction error bound (DEB), and the
CRB on φ as orientation error bound (OEB). Once the DEB
and OEB are derived, we will proceed with the optimization
of the precoder.

A. Problem Formulation
From Appendix A, the direction error bound is

var(θ̂) ≥ DEB =

[
2 SNR ‖bRx (φ)‖22(∥∥FHȧTx (θ)

∥∥2
2
−
∣∣aH

Tx (θ) FFHȧTx (θ)
∣∣2

‖FHaTx (θ)‖22

)]−1
, (4)

and the orientation error bound is

var(φ̂) ≥ OEB =

[
2 SNR

∥∥FHaTx (θ)
∥∥2
2∥∥∥ḃRx (φ)

∥∥∥2
2
−

∣∣∣bH
Rx (φ) ḃRx (φ)

∣∣∣2
‖bRx (φ)‖22

]−1, (5)

where ȧTx(θ) , daTx(θ)
dθ , ḃRx(φ) , dbRx(φ)

dφ and

SNR ,
|α|2‖s‖22
σ2

. (6)

Coarsely speaking, the OEB is inversely proportional to the
energy transmitted towards the Rx, ‖FHaTx(θ)‖22; whereas
the term FHȧTx (θ) that appears in the DEB indicates that
it benefits from large variations on the precoders’ radiation
pattern. For more detailed intuitive interpretations of the DEB
and OEB see Appendix B and the examples of Fig. 2.

Both lower bounds depend on the precoders F, but also on
the AoD θ and AoA φ which are unknown. Next, we propose
a min-max approach to the precoders design problem:

Problem 1. AoD-AoA-optimal precoders. Find the precoders
that minimize the worst case DEB or OEB for all possible
values of the AoD and AoA.

min
‖fm‖2=M−1

m=1,...,M

max
(θ,φ)∈RTx×RRx

max {DEB,OEB} (7)

3The use of the CRB requires a high SNR operating condition. While
mmWave communication operates under low SNR without beamforming [26],
our tracking scenario is congruent with a medium-to-high SNR assumption.
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The dependence of the DEB and OEB on θ, φ and F has
been omitted for notation clarity. Alternatively, if the only
parameter of interest is the AoD, the optimal precoders are
the solution to:

Problem 2. AoD-optimal precoders. Find the precoders that
minimize the worst case DEB for all possible values of the
AoD and AoA.

min
‖fm‖2=M−1

m=1,...,M

max
(θ,φ)∈RTx×RRx

DEB (8)

Conversely, if the only parameter of interest is the AoA, the
optimal precoders are obtained from:

Problem 3. AoA-optimal precoders. Find the precoders that
minimize the worst case OEB for all possible values of the
AoD and AoA.

min
‖fm‖2=M−1

m=1,...,M

max
(θ,φ)∈RTx×RRx

OEB (9)

B. Convex Reformulation

Problems 1–3 are non-convex with respect to F, and there-
fore, computing their global minimum efficiently is challeng-
ing. For a proof of non-convexity, note that the OEB is
concave because it is proportional to ‖FHaTx(θ)‖−2, and the
DEB depends on the concave term ‖FHȧTx(θ)‖−2. In this
section, Problems 1–3 will be reformulated as conic opti-
mization problems, which is a subclass of convex problems.
The conditions upon which the original problems and their
convex reformulations are equivalent (in the sense that yield
the same solution) will be analyzed in the next section. For
reference, Fig. 1 presents a flow chart of the steps described
in this section and the following one for obtaining the optimal
precoders.

The analysis focuses in Problem 1 because the solutions to
Problems 2 and 3 will be shown to be subcases. An equivalent
optimization problem to Problem 1 is

max
‖fm‖2=M−1

m=1,...,M

min
(θ,φ)∈RTx×RRx

min
{

DEB−1,OEB−1
}
. (10)

By introducing a slack variable t, the above problem can be
expressed in the hypograph form:

max
F,t

t (11a)

s.t. min
(θ,φ)∈RTx×RRx

DEB−1 ≥ t (11b)

min
(θ,φ)∈RTx×RRx

OEB−1 ≥ t (11c)

‖fm‖2 =
1

M
m = 1, . . . ,M. (11d)

Grid Approximation: The continuous set RTx×RRx makes
optimizing over constraints (11b)–(11c) challenging. Instead
we approximate it by a grid R̃Tx × R̃Rx such that

R̃Tx =
{
ϑ1, . . . , ϑSTx

}
⊂ RTx (12)

R̃Rx =
{
ϕ1, . . . , ϕSRx

}
⊂ RRx, (13)

where STx and SRx are the number of discrete angles at the Tx
and Rx, respectively, within the prior ranges. Also for notation
brevity, define

aiTx , aTx(ϑi) bqRx , bRx(ϕq)

ȧiTx , ȧTx(ϑi) ḃqRx , ḃRx(ϕq).
(14)

Then, by replacing the continuous set by the grid, and since the
DEB/OEB formulas (4)–(5) decouple into a part that depends
only on θ and another on φ, the left side of (11b)–(11c) can
be expressed as

min
(θ,φ)∈RTx×RRx

DEB−1 ≈

≈ 2 SNRKD min
i∈{1,...,STx}

(∥∥FHȧiTx

∥∥2
2
−
∣∣aiHTxFFHȧiTx

∣∣2∥∥FHaiTx

∥∥2
2

)
(15)

min
(θ,φ)∈RTx×RRx

OEB−1 ≈ 2 SNRKO min
i∈{1,...,STx}

∥∥FHaiTx

∥∥2
2

(16)

where KD and KO are the following constants (they do not
depend on the optimizing variables F or t)

KD , min
q∈{1,...,SRx}

‖bqRx‖
2

2 (17)

KO , min
q∈{1,...,SRx}

(∥∥∥ḃqRx

∥∥∥2
2
−
∣∣∣bqHRxḃ

q
Rx

∣∣∣2 ‖bqRx‖
−2
2

)
. (18)

Combining (11) with (15)–(16), results in

max
F,t

t (19a)

s.t. KD

(∥∥FHȧiTx

∥∥2
2
−
∣∣aiHTxFFHȧiTx

∣∣2∥∥FHaiTx

∥∥2
2

)
≥ t (19b)

KO
∥∥FHaiTx

∥∥2
2
≥ t (19c)

‖fm‖2 =
1

M
m = 1, . . . ,M. (19d)

for i = 1, . . . , STx, where (19b) and (19c) are constraints on
the DEB and OEB, respectively, and (19d) is a constraint on
the total transmit power.

Relaxation on the Energy Constraint: In order to transform
(19) into a convex problem, we propose a relaxation of the
feasible set. If the solution to the newly relaxed problem is
still within the original feasible set, then it is the optimum
solution of the original problem. The first proposed relaxation
consists of replacing ‖fm‖2 = M−1 for m = 1, . . . ,M , by∑M
m=1 ‖fm‖22 = 1. By taking into account that fm is the m-

th column of F and that ‖F‖2F = Tr FFH, the new relaxed
constraint can be expressed as

Tr FFH = 1. (20)

Variable Change: Next, we introduce the following variable
change

X = FFH, rank X ≤M, X < 0, (21)

where ‘< 0’ denotes positive semidefinite matrix. The variable
change is reversible because F can always be retrieved from
X by, for instance, a Cholesky decomposition.
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Rank Relaxation: The second and final relaxation consists
in dropping the rank constraint. Thus, the new optimization
problem after including the two relaxations and performing
the variable change is

max
X,t

t (22a)

s.t. KD

(
ȧiHTxXȧiTx −

∣∣aiHTxXȧiTx

∣∣2
aiHTxXaiTx

)
≥ t (22b)

KO aiHTxXaiTx ≥ t (22c)
Tr X = 1 (22d)
X < 0 (22e)

for i = 1, . . . , STx. Constraint (22b) can be cast as a second
order cone (23b) [27, Chapter 2.3],

max
X,t

t (23a)∥∥∥∥( 2aiHTxX ȧiTx

ȧiHTxX ȧiTx − t
KD
− aiHTxX aiTx

)∥∥∥∥
2

≤ ȧiHTxX ȧiTx −
t

KD
+ aiHTxX aiTx (23b)

KO aiHTxXaiTx ≥ t (23c)
Tr X = 1 (23d)
X < 0, (23e)

where X ∈ CNTx×NTx and i = 1, . . . , STx. Problem (23) is
a conic program [28], and consequently convex, because it is
composed of linear constraints, second order cones (23b) and
a positive semidefinite cone (23e). An advantage of having
reformulated our problem as a conic program is that they are
well studied in the literature and very efficient solvers exist
[29], [30].

Solving Problem 1 requires knowledge of the combining
matrix W since it is needed for computing constants KD and
KO (23b), (23c). If the combining matrix of choice W is more
beneficial for AoA estimation than AoD estimation, then the
resulting constants, KD and KO, will balance it out by favoring
the optimization of the DEB (which is a bound on the AoD
accuracy) over the OEB. Vice-versa, if W is more beneficial
for AoD estimation, then the resulting constants will favor
the optimization of the OEB. For the solution to Problem 2
simply solve the same problem (23) without constraint (23c).
By deleting (23c) and performing the variable change t

KD
←

t, constants KO and KD disappear, making the optimization
problem independent of the Rx’s array response. To obtain
the solution to Problem 3 delete (23b), and following the same
reasoning, the optimization problem also becomes independent
of the Rx’s array response.

C. Recovery of the Precoders

In the previous section, Problem 1 was transformed into a
convex problem (23) by
A) approximating the prior ranges with a grid (12), (13),
B) relaxing the feasible set by replacing ‖fm‖2 = M−1 for

m = 1, . . . ,M , by
∑M
m=1 ‖fm‖22 = 1.

C) change of variables X = FFH, rank X ≤M , X < 0,

=≈
=

Nonconvex

problem (11)

Nonconvex

problem (19)

Grid approx. (12), (13)

Problem 1

Convex

problem (22)a) Energy relaxation: 

(19d) → (20)

b) Variable change: (21)

c) Rank relaxation:

≤

Conic

problem (23)

(Same solution)

Optimization variable: Optimization variable: 

Algorithm 1

≤ rank >

Cannot recover

optimal precoders

Fig. 1. Flow chart of the multiple steps for obtaining a tractable optimization
problem. The nonconvex and convex reformulations are colored in blue
and green, respectively. The optimal precoders are obtained by optimizing
problem (23) and executing Algorithm 1. We have verified numerically that
the grid approximation is accurate when sufficiently dense.

D) relaxing the feasible set by dropping rank X ≤M .
We abuse the notation and call X the global optimum of (23)
instead of the optimizing variable. It turns out that the grid
approximation (A) is very accurate when made dense enough.
Moreover, the trace constraint in (23d) induces a low-rank
solution [31], [32]. Hence, if the number of precoders M is
sufficiently large, then it will occur that rank X ≤ M , and
the relaxation (D) will not affect the solution. Thus, in the
remainder of this section we discuss the effect of (B) and (C)
assuming (A) is exact and (D) is satisfied. These two later
assumptions will be validated numerically in Section IV-A.

Given X, the variable change (C) can be reversed by
performing a Cholesky decomposition [33]. However, we are
interested in a decomposition from X to F that also satisfies
‖fm‖2 = M−1 for m = 1, . . . ,M (B). If such decomposition
existed, then F could be recovered from X and satisfy all the
constraints to the original Problem 1 in its hypograph form
(11). In summary, we need to find F such that

C1) FFH = X
C2) diag

(
FHF

)
= M−11

where diag(FHF) denotes a vertical vector stacking the entries
on the main diagonal of FHF. Define R , rank X ≤ M
where the latter inequality follows from assumption (D). From
C1 we infer that rank F = R. Sufficient conditions for
satisfying C1 and C2 can be obtained by expanding F and
X by their compact singular value decomposition (SVD) and
eigendecomposition (ED), respectively,

F = UΣVH (24)

X = QΛQH, (25)

where U = [u1 · · ·uR] ∈ CNTx×R is a matrix of left singular
vectors, V = [v1 · · ·vR] ∈ CR×R is a matrix of right
singular vectors, Q = [q1 · · ·qR] ∈ CNTx×R is a matrix
of eigenvectors, and Σ and Λ are diagonal matrices whose
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diagonal elements are the singular values µ1 · · ·µR and the
eigenvalues λ1 · · ·λR, respectively.

Substituting F and X in C1 with (24) and (25), respectively,
leads to a new form of C1, UΣ2UH = QΛQH. This equation
is solved by matching the eigenvectors and eigenvalues on both
sides of the equation, i.e.,

um = qm (26)

µm =
√
λm, (27)

for m = 1, . . . , R. Similarly, substituting (24) and (25) into
C2 yields the new condition

diag
(
VΣ2VH

)
= M−11. (28)

The (diagonal) elements of Σ have been fixed by (27), hence,
only V can be adjusted to meet the new condition. Notice that
Z , VΣ2VH may be regarded as the eigendecomposition
of a matrix whose non-zero eigenvalues are µ2

1 . . . , µ
2
R and

their corresponding eigenvectors v1, . . . ,vR. Consequently,
condition (28) is equivalent to the existence of a matrix Z
with prescribed non-zero eigenvalues µ2

1 . . . , µ
2
R and M−1 in

all entries of the main diagonal. Fortunately, for the particular
case of constant diagonal, the Schur-Horn theorem [34, B.1.
in p. 218] states that Z always exists, and it can be obtained
by the Bendel-Mickey algorithm [35], [36].

In summary, the different pieces of a valid F satisfying C1
and C2 can be obtained as follows: its left singular vectors by
(26), its singular values by (27) and its right singular vectors
by finding a matrix satisfying (28) with the Bendel-Mickey
algorithm and computing its eigenvectors. All these steps are
summarized in Algorithm 1.

Algorithm 1 Retrieval of the optimal precoders F from X

inputs: X,M
outputs: F

1: compute the compact ED of X = QΛQH where the
diagonal elements of Λ are λ1, . . . , λR and R = rank X

2: execute the Bendel-Mickey algorithm [35], [36] to find
an Hermitian matrix Z of size M × M with non-zero
eigenvalues λ1, . . . , λR and all diagonal elements equal
to M−1

3: compute the ED of Z and denote v1, . . . ,vR the eigen-
vectors associated to eigenvalues λ1, . . . , λR

4: set F = QΛ
1
2 [v1 · · ·vR]H

Remark: The solution to (28) is in general not unique,
and so the Bendel-Mickey algorithm is designed to return a
random solution in the solution set. Consequently, the solution
to Problems 1–3 is random as well.

Examples: Given a set of precoders F = [f1 · · · fM ], define
the transmit array gain and the aggregated gain (which is the
equivalent gain if the energy of the M training sequences are
coherently combined at the Rx) as

g(θ, fm) , 10 log10

∣∣aH
Tx(θ)fm

∣∣2
Pav/(4π)

[dB] (29)

gT(θ,F) , 10 log10

∑M
m=1

∣∣aH
Tx(θ)fm

∣∣2
Pav/(4π)

[dB], (30)

where Pav/(4π) = M−1
∑M
m=1 Pm/(4π) is the average

emitted energy per precoder normalized by the radiated power
of an isotropic antenna, and Pm is the emitted energy by the
m-th precoder computed according to [37, Eq. (33)].

Fig. 2 plots the radiation patterns (gain vs. azimuth) of the
AoD-AoA-optimal precoders. The yellow zone in the figures
represents the prior range on the AoD. Furthermore, we define
the term ‘worst aggregated gain’, as the lowest aggregated gain
within the prior range. As expected from the interpretation in
Appendix B, where it was argued that the OEB is optimized
when the aggregated gain is maximized, in Fig. 2c the AoA-
optimal precoders’ worst aggregated gain is 14.1 dB, which is
the highest among the three subfigures. The AoD-optimal pre-
coders in Fig. 2b show a large number of ripples, which is also
consistent with the interpretation in Section III. The intuitive
explanation is that the Rx identifies the AoD by observing
the changes of received signal strength and phase changes for
the M training sequences. Thus, in order to increase the AoD
estimation accuracy, the Tx’s precoders gain and phase for
closely spaced AoD must be as different as possible. The
worst aggregated gain of the AoD-optimal and AoD-AoA-
optimal precoders are 11.6 dB and 13.6 dB, respectively. The
AoD-AoA-optimal precoders offer a good trade-off in terms
of aggregated gain and ‘ripples’. Because the AoA estimation
accuracy is optimized by maximizing the aggregated gain
towards the Rx, the AoA-optimal precoders spill much less
energy outside the prior Tx range of angles than the AoD-
optimal precoders. To explicitly reduce energy transmitted
outside the prior Tx range, Section III-D2, introduces an extra
constraint that when added to problem (23) enforces a certain
out-of-range attenuation.

D. Additional Constraints

The proposed precoders are purely designed to minimize the
CRB of the AoD and/or AoA. However, in practice some adi-
tional constraints may be desired, such as null steering towards
certain directions in order to mitigate multiuser interference
or cancel certain paths. Next, it is shown how some of these
constraints can easily be added to the original optimization
problems.

1) Identifiability of the AoD and AoA: A necessary con-
dition for correctly estimating the AoD and/or AoA is that
they are identifiable. Otherwise, even in the absence of noise,
we may suffer from large estimation errors due to signal
ambiguities. The AoA and AoD are identifiable provided that
the received signals (3) in absence of noise are different

αbRx(φ)aH
Tx(θ)F 6= α′ bRx(φ′)aH

Tx(θ′)F, (31)

for all possible θ 6= θ′ in RTx, φ 6= φ′ in RRx, or α 6=
α′. Since the signals are rank 1 matrices, by applying the
substitution bRx(φ) = WHaRx(φ) the condition decouples
into pair-wise linear independence between steering vectors at
the Rx and Tx:

WHaRx(φ) 6= βWHaRx(φ′) (32)

FHaTx(θ) 6= γ FHaTx(θ′) (33)
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Gain precoder f1
Gain precoder f2
Gain precoder f3
Aggregated gain

70°90°110°

0dB

10dB

(a) AoD-AoA-optimal precoders
(Problem 1). The rank of X is 2.

70°90°110°

0dB

10dB

(b) AoD-optimal precoders (Prob-
lem 2). The rank of X is 2.

70°90°110°

−10dB

0dB

10dB

(c) AoA-optimal precoders (Prob-
lem 3). The rank of X is 3.

Fig. 2. Array gain of the precoders vs. azimuth for all M precoders. The Tx and Rx are equipped with 30-antenna half-wavelength inter antenna spacing
uniform linear array (ULA) [38]. The number of training sequences is M = 3. The AoD (same for the AoA for simplicity) is known a priori to lie in the range
[90°, 100°], indicated by the yellow shaded area. According to Section III-C, the optimality of these precoders is ensured because for all cases M ≥ rankX.

for all complex β and γ, different than zero. From these ex-
pressions we can conclude that the combining matrix impacts
the identifiability of the AoA, and that the precoding matrix
impacts the identifiability of the AoD only. For the particular
case of a fully digital Rx (W = I), the AoA is identifiable for
most common types of arrays [39], [40], whereas for arbitrary
combiners, the conditions for which the AoA is identifiable
are not known in the literature to the best of the authors’
knowledge (and also beyond the scope of the current study).

Since this work deals with the design of the
precoders, we turn to condition (33) which imposes
pair-wise independence and can also be expressed as
|aH

Tx(θ)F FH aTx(θ′)|2‖FH aTx(θ)‖−22 ‖FH aTx(θ′)‖−22 < 1.
Thus, in order to ensure that the AoD is identifiable we
propose to add the following constraints to problem (23):∣∣∣aH

Tx(ϑi)F FH aTx(ϑi
′
)
∣∣∣2

‖FH aTx(ϑi)‖22 ‖FH aTx(ϑi′)‖22
≤ ρ (34)

for all i, i′ such that such that ϑi − ϑi′ > D(mod 2π), where
0 ≤ ρ < 1 and D is the angular resolution of the array4. By
performing the variable change X = FFH and some algebraic
manipulations [27], (34) can be expressed as a second order
cone (convex constraint):∥∥∥∥( 2 aiHTxX ai

′

Tx√
ρaiHTxX aiTx −

√
ρai

′H
Tx X ai

′

Tx

)∥∥∥∥
2

≤ √ρaiHTxX aiTx +
√
ρai

′H
Tx X ai

′

Tx, (35)

where the shortened notation (14) was used. To ensure the
AoD can be correctly estimated, this condition must be added
to optimization problem (23) for the AoD- and AoD-AoA-
optimal precoders.

4The resolution of the array is typically related to the antenna aperture
and is different for each array configuration. In practice, one could start
with an approximate value and then tweak this parameter. For instance, for
an N -antennas half-wavelength inter-antenna spaced uniform circular array
(UCA) [38], the angle resolution has been checked numerically to be well
approximately by 1.6 sin(π/N) [radians].

2) Out-of-Range Attenuation: From Fig. 2, we can observe
that the precoders radiate some non-negligible energy in
directions outside the prior range RTx, even though an initial
assumption was that the precoders do not illuminate any paths
other than the desired one. In addition, there may be some
operational constraints such as low sidelobe ratio [41] for
improved inter-user interference or the placement of nulls in
certain areas of the beampattern.

Let {πq}Sa
q=1 be the AoDs for which we wish to enforce

a lower transmitting power, and recall {ϑi}STx
i=1 is the grid

of angles within the prior range (12). The total transmitted
energy in direction πq over the M training sequences is
‖FHaTx(πq)‖22. Let Aq < 1 be the desired attenuation factor,
then, we propose to add the following constraint to problem
(23), ∥∥FHaTx (πq)

∥∥2
2
≤ Aq

∥∥FHaTx

(
ϑi
)∥∥2

2
(36)

for q = 1, . . . , Sa and i = 1, . . . , STx, which can be
transformed to linear constraints after performing the variable
change X = FFH,

aH
Tx (πq) X aTx (πq) ≤ Aq aH

Tx

(
ϑi
)
X aTx

(
ϑi
)
. (37)

These SaSTx constraints can be reduced to Sa + STx by
incorporating a dummy variable z,

aH
Tx (πq) X aTx (πq) ≤ Aq z q = 1, . . . , Sa (38)

aH
Tx

(
ϑi
)
X aTx

(
ϑi
)
≥ z i = 1, . . . , STx. (39)

Examples: Fig. 3 plots the left hand side of (34) when
the precoders are obtained with or without the identifiability
constraint. Ideally, only the anti-diagonal across the white
square should be red as is the case in the right figure. The left
figure, has two red stripes, and therefore, there are pairs of
AoDs within the range RTx which result in the same signals,
and consequently are not identifiable even in the absence of
noise.

In Fig. 4 two sets of AoD-AoA-optimal precoders are
generated. The first set of precoders has no constraint on the
aggregated gain (30) towards directions outside of the range
of interest RTx. The second set of precoders imposes a 20 dB
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(a) Without identifiability con-
straints (34).
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(b) With identifiability con-
straints (34) and ρ = 0.1.

Fig. 3. Colormap of left hand side of (34) versus θ and θ′ when employing
AoD-AoA-optimal precoders. The Tx and the Rx have, each, a 30-antennas
uniform linear array (ULA) [38]. The number of training sequences M = 4
and the rank of X is 4. It is known a priori that the AoD lies in the interal
RTx = [90°, 100°]. The white square indicates the region RTx ×RTx.
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Fig. 4. Aggregated gain (30) of the AoD-AoA-optimal precoders vs. azimuth.
The Tx and Rx are equipped with 30-antenna half-wavelength inter antenna
spacing UCA. The number of training sequences is M = 3 and the rank
X is 2, ensuring the precoders are optimal. The AoD (same for the AoA
for simplicity) is known a priori to lie in the range [70°, 90°], indicated by
the grey shaded bin. Two different sets of precoders are used. First set is
the optimum solution to Problem 1. The second set is the optimum solution
to Problem 1 while imposing a 20 dB attenuation in the range [150°,220°]
indicated by the yellow shaded bin, and a null at 310° indicated by the green
shaded bin.

attenuation in the range [150°,220°] and a null at 310°. Note
that the aggregated gain within the range is virtually the same
for both sets of precoders.

IV. NUMERICAL RESULTS

The performance of the optimal precoders is illustrated
next. To this end, we define the following figures of merit
which are in fact the square roots of the objective functions
of Problems 1–3, respectively,

Worst case rEB = max
(θ,φ)∈RTx×RRx

√
EB (40)

Worst case rDEB = max
(θ,φ)∈RTx×RRx

√
DEB (41)

Worst case rOEB = max
(θ,φ)∈RTx×RRx

√
OEB, (42)

where EB = max{DEB,OEB} and the ‘r’ denotes square
root. The following experiments simulate the signal model (3)

4 6 8 10
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Number of precoders (M )
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st
ca
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d
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E
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[°

] rDEB, AoD-optimal
rOEB, AoA-optimal
R = [80°, 90°]
R = [80°, 100°]
R = [80°, 110°]

Fig. 5. Lower bounds on the estimation accuracy vs. the number of different
precoders used at the Tx. The total training time is fixed, and consequently the
duration of each training sequence (precoder) decreases inversely proportional
to M . Both, the Tx and the Rx, equip a ULA. For simplicity, the prior range
on the AoD and AoA are set equal, i.e., R , RRx = RTx.

and use the above metrics to evaluate the performance of the
proposed set of precoders. We assume 30-antenna uniform
linear arrays (ULA) [38] with an inter-antenna spacing of
half wavelength at the Tx and Rx. The Tx has a fully digital
architecture and the Rx equips an array of subarrays [25] with
5 RF chains. Since this work did not deal with the design
of the combining matrix, we implement a simple strategy
which consists in associating each RF chain to a combiner
with maximum gain towards equispaced directions within the
prior range of angles at the Rx. This is achieved by matching
each combining vector to the array response in that direction,
i.e.,

W =

aRx(φ̃1) 0
. . .

0 aRx(φ̃L)

 , (43)

where φ̃1, . . . , φ̃L are the equispaced directions within the
interval RRx, and aRx(φ) ∈ C

NRx
L ×1 because each RF chain

is routed to NRx

L antennas only. The SNR (6) is fixed to −5 dB.
The number of transmitted training sequences, each precoded
differently, is M = 5. Parameter ρ defined in Section III-D1,
which ensures identifiability of the AoD, is set to ρ = 0.6
for the AoD- and AoD-AoA-optimal precoders. The prior
ranges on the AoD and AoA are, both, R , RTx = RRx =
[90°, 100°].

A. Impact of the Number of Precoders

The convex reformulation in Section III-B of our original
Problems 1–3 led to optimization problem (23) which does
not depend on M . Thus, the optimal DEB and/or OEB do not
change as a function of the number of precoders M provided
that a feasible precoding matrix exists, i.e., rank X ≤ M as
explained in Section III-C. To showcase this, Fig. 5 plots
the worst case (w.c.) rDEB and rOEB for the AoD- and
AoA-optimal precoders, respectively, versus the number of
precoders for different widths of the prior ranges. For the
cases where M < rank X, no values of the w.c. rDEB
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and rOEB are plotted because the optimal precoders are
unknown. The smallest value of M in every curve is the
rank of X (e.g., rank X = 5 for the AoA-optimal precoders
with R = [80°, 100°] in Fig. 5). Therefore, the rank of
X can be regarded as the minimum precoding diversity M
necessary for achieving optimal estimation accuracy. Increas-
ing M beyond this optimum value does not translate into
better estimation accuracy5. Naturally, the required precoding
diversity increases with the size of the ranges of angles R.
The accuracy difference in terms of rDEB and rOEB is due to
the fact that the Rx’s hybrid array projects the received signal
from an NRx-dimensional space to an L-dimensional subspace
through a non-optimal combining matrix, hence, lowering the
quality of the observations. While not plotted here, we have
observed that the rDEB and rOEB have similar accuracy when
the Rx array is fully digital.

B. Estimators and Ambiguities

Let θ̂ be an estimate on the AoD. Then, the worst case root
mean square error on the AoD is defined as

Worst case rMSE = max
(θ,φ)∈RTx×RRx

√
E
(
θ̂ − θ

)2
. (44)

If the MSE is tight to the DEB, such as is the case of the
ML estimator, then the w.c. rMSE is tight to the w.c. rDEB.
To evaluate its tightness and the effect of the parameter ρ
(introduced in Section III-D1), we run a Monte Carlo simu-
lation with 100 random experiments. For each experiment we
generate a random received signal (3) where the channel phase
is distributed randomly over the interval [0, 2π], the noise
samples are drawn from a complex Gaussian random variable
with variance σ2, and the AoD/AoA are drawn from a uniform
distribution over the range R = [90°, 100°]. The channel gain
and training sequence energy are fixed to |α| = ‖s‖2 = 1, and
consequently, in order to obtain a −5 dB SNR at the Rx, the
noise variance is fixed to σ2 = SNR−1.

Fig. 6 plots the w.c. rMSE for the MLE6 for different values
of ρ. As expected, the MLE’s w.c. rMSE converges to the
w.c. rDEB for a sufficient large SNR. For decreasing values
of ρ, the SNR threshold (which is the SNR value at which
the estimators’ accuracy matches the lower bound) is shifted
to the left. For ρ = 1, the identifiability constraint is removed
and the MLE fails to always correctly estimate the AoD for
any given SNR. Coarsely speaking, ρ controls the degree of
maximum similarity between the received signals for any two
pair of AoD, where ρ = 0 imposes signal orthogonality and
ρ = 1 removes the constraint. Thus, as ρ decreases from 1 to
0, the received signals for any two AoD become less similar
and more resilient to noise.

5Note that Problems 1–3 are set up such that the total transmitted energy is
constant regardless of M . If the transmitted energy scaled up with the number
of precoders, certainly the accuracy would improve.

6The MLE requires maximizing the likelihood function (45) over the
unknown parameters (α, θ, φ). The ML estimate of the channel gain requires
solving a least squares whose solution can be computed analytically as a
function of θ and φ. Then, the ML estimate of the channel gain is plugged
back to the log-likelihood function, and perform en exhaustive search over
the two remaining variables (θ, φ) using a discrete grid.
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Fig. 6. AoD estimation accuracy vs. SNR for different values of ρ (defined
in Section III-D1). RRx = RTx = [90°, 100°].

C. Comparison with Traditional Beams

Traditionally, in mmWave channel estimation, the precoders
and combiners are designed such that they steer energy to-
wards few directions. The channel is sounded sequentially
in time with all possible pairs of precoders and combiners,
and by detecting the pair leading to the largest power at the
Rx, one can estimate the AoD and/or AoA with beamwidth
accuracy. Its widespread use is due to the simplicity of the
approach, despite not necessary being optimal in the sense
of minimizing the mean error. Two of the most common
approaches are sector beams [6], [16], [26] and maximum-
gain beams [22], [42], [43], which we refer to “sectors”
and “beams”, respectively, for short. Since this work does
not deal with the design of optimal combiners, we compare
the proposed optimal precoders with sectors and beams at
the Tx only. Sectors split the ranges RTx, evenly, into M
subregions; each sector has a large constant array gain within
one subregion and low array gain outside. Beams maximize
the energy towards each direction without seeking to create a
flat beampattern within each subrange. To design the sectors
we use classical tools from filter design [44, Chapter 1.5.1],
whereas the beams are designed by matching the precoder to
the steering vector in that direction.

Fig 7 plots the w.c. rDEB for the AoD-optimal precoders,
beams and sectors. As outlined in Section IV-A, the accuracy
of the AoD-optimal precoders remains constant for any M
larger than rank X, which in this particular case is 4. The
AoD-optimal precoders is two to four times more accurate
than the beams and sectors, respectively.

D. AoA Versus AoD Estimation

A common belief is that when estimating the angle of a
path at an array, operating as a receiver and estimating the
AoA of the incoming path is more precise than operating as a
transmitter and estimating the AoD of the outgoing path. For
instance, in [45] the authors argue that if a base station has
more antennas than the user, then for estimating the direction
from the base station to the user, uplink AoA estimation is
more accurate than downlink AoD estimation. While it may
be true for non-optimal precoders, we show that if both arrays
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Fig. 7. Performance comparison between AoD-optimal precoders, beams and
sectors. RRx = RTx = [90°, 100°].
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Fig. 8. Comparison between AoD and AoA estimation. The sum of the
number of antennas at the Tx and Rx are kept constant to 60 antennas; so as
the number of Tx antennas increases, the number of Rx antennas decreases,
and vice-versa. RRx = RTx = [90°, 100°].

are fully digital and the Tx is performing optimal precoding,
both approaches yield approximately the same accuracy.

Fig. 8 plots the bounds on the AoD/AoA estimation ac-
curacy (40)–(42) versus the number of antennas at the Tx
and Rx, assuming the total number of antennas is 60. The
goal is to observe the effect of accumulating more antennas
at the Tx or Rx on the estimation accuracy of the AoD and
AoA. For a fair comparison, we begin by assuming that both
arrays have fully digital architectures (represented as solid
lines in the figure). For the case where the Tx and Rx have
the same number of antennas (i.e., NTx = NRx = 30),
the accuracy is very similar whether estimating the AoD or
AoA (∼ 0.2°). However, for the two extreme cases where
the Rx has 50 antennas and the Tx only 10 (∼ 0.1° at the
left side of the figure), the AoA estimation accuracy slightly
outperforms the AoD accuracy for the case the Tx has 50
antennas and the Rx only 10 (∼ 0.2° at the right side of the
figure). Jumping to the case where the Rx equips a hybrid
array with 5 RF chains, we notice that the AoD and AoA
estimation accuracy worsens, in particular for the AoA. This
loss of accuracy caused by the hybrid Rx is expected because,
mathematically, the Rx is compressing the received signal onto
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Fig. 9. Average duration for obtaining the AoD-AoA-optimal precoders
which involves solving problem (23) and running Algorithm 1. The two main
parameters affecting the number of variables and constraints are the number
of antennas at the Tx, NTx, and the number of grid points STx.

a L-dimensional subspace. Thus, in general, the AoD and AoA
estimation accuracy will differ. However, in the particular case
where both arrays have the same number of antennas, are
fully digital, and the Tx performs optimal precoding, operating
as a Tx and estimating the AoD, or operating as a Rx and
estimating the AoA, result in similar accuracy.

E. Complexity Analysis

Obtaining the optimal precoders requires solving prob-
lem (23). This is a conic (hence, convex) optimization prob-
lem [46] because the constraints are composed of second-
order cones (23b) and a positive semidefinite cone (23e).
Conic problems can be efficiently solved by the interior-
points method [30]. Second-order cone programs (SOCPs)
and semidefinite programs (SDPs) are particular instances of
conic problems where all constraints are second-order cones
or positive semidefinite cones, respectively. These categories
are important because, while both types of problems have
polynomial complexity, for equal number of variables and
constraints, SDPs are generally substantially more compu-
tationally complex than SOCPs. By leveraging the Schur
complement, the proposed conic problem (23) could be refor-
mulated as an SDP by transforming all second-order cone into
positive semidefinite cones. However, it would not be wise in
terms of computational complexity. Unfortunately, to the best
of the author’s knowledge, the computational complexity of
conic problems with mixed cones is not well understood in
the literature, and an analysis on its SDP form would lead
to too pessimistic bounds. Thus, we resolve to a numerical
analysis on the computational complexity.

Fig. 9 plots the average duration of solving problem (23) and
executing Algorithm 1 with MATLAB in a laptop computer
with 2 GHz clock speed. From the figure we observe that the
duration appears to be linear with the number of grid points
and superlinear with the number of antennas.

V. CONCLUSIONS

This paper dealt with the design of precoders for mmWave
communication, optimized for estimating the AoD and AoA
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under a given uncertainty range. Our focus was on a single
propagation path, assuming that such a path has been identified
for precoding and combining so that weaker paths can be
ignored. The design is based on minimizing the worst-case
CRB of the AoD and AoA, which is a tight lower bound to the
variance of MLE at medium-to-high SNRs. Through a convex
reformulation, optimal precoders are recovered, leading to a
two-fold or larger improvement on the estimation accuracy
with respect to traditional schemes. We found that beyond
a certain number of precoders at the Tx, the CRB on the
AoD/AoA does not improve and that the minimum number
of precoders for optimal performance is a side-product of the
optimization procedure. Finally, numerical evidence shows an
array can estimate the direction of a path in transmit (AoD) or
receive (AoA) mode with similar accuracy when performing
optimal precoding.

APPENDIX A
FISHER INFORMATION MATRIX AND CRAMÉR-RAO BOUND

The log-likelihood function of the observations (3) after
neglecting constant terms is proportional to

log ρ (Y|θ, φ, α) ∝ − 1

σ2

∥∥Y − α‖s‖2bRx (φ) aH
Tx(θ)F

∥∥2
F
.

(45)
According to the analysis of [23], the Fisher information
matrix of the unknown parameters turns out to be

J =


Φθ,θ Φθ,φ Φθ,<α Φθ,=α
Φθ,φ Φφ,φ Φφ,<α Φφ,=α

Φθ,<α Φφ,<α Φ<α,<α 0
Φθ,=α Φφ,=α 0 Φ=α,=α

 , (46)

where7

Φθ,θ = 2 SNR ‖bRx(φ)‖22
∥∥∥ḃTx(θ)

∥∥∥2
2

(47a)

Φφ,φ = 2 SNR
∥∥∥ḃRx(φ)

∥∥∥2
2
‖bTx(θ)‖22 (47b)

Φ<α,<α = Φ=α,=α =
2‖s‖22
σ2

‖bRx(φ)‖22 ‖bTx(θ)‖22 (47c)

Φθ,φ = 2 SNR<
[
bH
Rx(φ)ḃRx(φ)bH

Tx(θ)ḃTx(θ)
]

(47d)

Φθ,<α =
2‖s‖22
σ2

‖bRx(φ)‖22<
[
α ḃH

Tx(θ)bTx(θ)
]

(47e)

Φθ,=α =
2‖s‖22
σ2

‖bRx(φ)‖22=
[
α ḃH

Tx(θ)bTx(θ)
]

(47f)

Φφ,<α =
2‖s‖22
σ2
<
[
αbH

Rx(φ)ḃRx(φ)
]
‖bTx(θ)‖22 (47g)

Φφ,=α =
2‖s‖22
σ2
=
[
αbH

Rx(φ)ḃRx(φ)
]
‖bTx(θ)‖22 , (47h)

bTx(θ) , FHaTx(θ), ḃTx(θ) , d
dθF

HaTx(θ) and SNR =
|α|2‖s‖22σ−2. The CRB requires inverting the FIM. Define

J11 =

[
Φθ,θ Φθ,φ
Φθ,φ Φφ,φ

]
(48)

J12 = JT21 =

[
Φθ,<α Φθ,=α
Φφ,<α Φφ,=α

]
(49)

7Contrary to [23], we have not assumed that ‖aTx(θ)‖ = ‖aRx(φ)‖ = 1.

J22 =

[
Φ<α,<α 0

0 Φ=α,=α

]
. (50)

Then, by the block matrix inversion formula, the CRB on the
AoD and AoA is(

J11 − J12J
−1
22 J21

)−1
=

[
DEB 0

0 OEB

]
(51)

where

DEB−1 = 2 SNR ‖bRx(φ)‖22

(∥∥∥ḃTx(θ)
∥∥∥2
2
− |ã

H
Tx(θ)ḃTx(θ)|2
‖bTx(θ)‖22

)
(52)

OEB−1 = 2 SNR ‖bTx(θ)‖22

(∥∥∥ḃRx(φ)
∥∥∥2
2
− |b

H
Rx(φ)ḃRx(φ)|2
‖bRx(φ)‖22

)
.

(53)

When computing the DEB (or OEB) for uniform linear arrays
(ULA), to avoid dealing with zero-information points [47], we
recommend the use of the ‘spatial frequency’ ω , cos(θ)/2
(or ω , cos(φ)/2) as unknown parameter instead of θ (or φ)
as done in [48].

APPENDIX B
INTERPRETATION OF THE DEB AND OEB

The intuition behind DEB’s expression (4), (52) is a bit
cumbersome since it includes multiple terms that depend on
F. For notation convenience, define bTx(θ,F) , FHaTx(θ)
and its derivative ḃTx(θ,F) , d

dθbTx(θ,F). By omitting all
factors that do not depend on F, the DEB may be expressed
as

DEB ∝

(∥∥∥ḃTx(θ,F)
∥∥∥2
2
−
∣∣∣∣ bH

Tx(θ,F)

‖bTx(θ,F)‖2
ḃTx(θ,F)

∣∣∣∣2
)−1

(54)

=
∥∥∥ḃ⊥Tx(θ,F)

∥∥∥−2
2
, (55)

where ḃ⊥Tx(θ,F) is the projection of ḃTx(θ,F) onto the
orthogonal complement of bTx(θ,F). The function bTx(θ,F)
not only appears in the CRB, but careful attention reveals that
it also appears in the signal model (3),

Y = α‖s‖2bRx(φ)bH
Tx(θ,F) + N, (56)

and it carries all information about the AoD. Since the CRB
is a tight lower bound on the variance when the noise tends
to zero, the signal bTx(θ,F) should be analyzed for the case
where a small perturbation is applied to the AoD, in which
case a good approximation is its first order Taylor polynomial

bTx(θ′,F) ≈ bTx(θ,F) + (θ′ − θ)ḃTx(θ,F), (57)

where θ′ and θ represent two closely spaced AoD. Let
βbTx(θ,F) be the projection of ḃTx(θ,F) onto bTx(θ,F),
then,

bTx(θ′,F) ≈ [1 + (θ′ − θ)β] bTx(θ,F) + (θ′ − θ)ḃ⊥Tx(θ,F).
(58)

From (57) we can infer that if ḃTx(θ,F) is large, bTx(θ′,F)
and bTx(θ,F) will differ more. However, if ḃTx(θ,F) and
bTx(θ,F) are collinear (only differ by a scaling factor), then
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ḃ⊥Tx(θ,F) = 0, and by (58) the two signals will also be
collinear. Since the channel gains are unknown, two collinear
signals will be indistinguishable at the Rx, making the AoD
unidentifiable. Thus, as asserted by the DEB, the accuracy in
estimating the AoD depends on the magnitude of the part of
ḃTx(θ,F) orthogonal to bTx(θ,F).

Regarding the OEB (5), (53), from the Tx’s perspective, its
minimization boils down to maximizing ‖FHaTx(θ)‖22, i.e.,
maximizing the aggregated array gain (30) towards direction
θ, which makes sense because maximizing the received energy
helps combat the noise.
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