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Abstract—In this work, we consider the sum rate performance
of joint processing coordinated multi-point transmission network
(JP-CoMP, a.k.a Network MIMO) in a so-called distributed
channel state information (D-CSI) setting. In the D-CSI setting,
the various transmitters (TXs) acquire a local, TX-dependent,
estimate of the global multi-user channel state matrix obtained
via terminal feedback and limited backhauling. The CSI noise
across TXs can be independent or correlated, so as to reflect
the degree to which TXs can exchange information over the
backhaul, hence allowing to model a range of situations bridging
fully distributed and fully centralized CSI settings. In this context
we aim to study the price of CSI distributiveness in terms of sum
rate at finite SNR when compared with conventional centralized
scenarios. We consider the family of JP-CoMP precoders known
as regularized zero-forcing (RZF). We conduct our study in
the large scale antenna regime, as it is currently envisioned to
be used in real 5G deployments. It is then possible to obtain
accurate approximations on so-called deterministic equivalents
of the signal to interference and noise ratios. Guided by the
obtained deterministic equivalents, we propose an approach to
derive a RZF scheme that is robust to the distributed aspect of
the CSI, whereby the key idea lies in the optimization of a TX-
dependent power level and regularization factor. Our analysis
confirms the improved robustness of the proposed scheme with
respect to CSI inconsistency at different TXs, even with moderate
number of antennas and receivers (RXs).

Index Terms—Multiuser channels, cooperative communication,
coordinated multi-point transmission network, random matrix
theory, limited feedback, limited backhaul, linear precoding

I. INTRODUCTION

Joint processing CoMP, whereby multiple cooperating TXs
share the data streams and perform joint precoding [1], is
considered for use in current and next generation wireless
networks. Theoretically, with perfect data and CSI sharing,
TXs at different locations can be seen as a unique virtual
multiple-antenna array serving all RXs in a multiple-antenna
broadcast channel (BC) fashion and well known precoding
algorithms from the literature can be used [2]. However, in
real systems both the feedback through the wireless medium
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and the information exchange through the backhaul place a
burden on overall resources and therefore must be limited.

Joint processing CoMP under limited feedback and imper-
fect backhaul (or fronthaul for cloud radio access network,
a.k.a C-RAN systems) has been investigated in many works.
In [3], [4], the capacity limited backhaul is considered and an
information theoretic analysis of the system performance for
joint processing CoMP is provided. In [5]–[7], the compress-
and-forward schemes, cooperative beamforming and resource
allocation for a C-RAN with capacity-limited fronthaul links
are considered. In [8]–[10], the effect of imperfect CSIT due
to limited feedback and/or delay is investigated in a single
TX multiple antennas broadcast channel setting. In [11], [12],
precoder designs for the joint processing CoMP with limited
backhaul are provided. However, most of these contributions
typically assume a centralized CSIT setting, i.e., the precoding
is done on the basis of a single imperfect channel estimate
which is commonly known at every TX.

This assumption of a centralized computing unit is relevant
in the so-called C-RAN architecture, yet it is more and more
challenged in other forms of networks where a pre-existing
optical fiber backhaul is lacking or is considered too expensive
in terms of CAPEX. Other emerging deployment scenarios
are those with a fully heterogeneous infrastructure where the
network’s edge is composed of not just fixed macro base sta-
tions but also small cell base stations, mobile (possibly flying
[13]) access points or relays. In such settings, exchanging
CSI over limited and unreliable backhaul is likely to lead to
additional quantization noise and latencies. As a result, the
global downlink CSI estimate collected by any TX is unique
to that TX, although the CSI noise can exhibit some degree of
correlation from TX to TX. In the rest of this paper, we refer
to this setting as a Distributed CSI setting, which considers
implicitly the possible correlation between the estimates. In
this context we are interested in the design of a distributed
precoder whereby each TX computes the elements of the
precoder used for its transmission based solely on its own
channel estimate.

From an information theoretic perspective, the study of joint
processing CoMP in D-CSI setting raises several intriguing
and challenging questions.

First, while the JP-CoMP with perfect user message sharing
is akin to the information theoretic MISO broadcast channel,
the capacity region of the broadcast channel under a general D-
CSI setting is unknown. In [14], a rate characterization at high
SNR is carried out using degree of freedom (DoF) analysis
for the two TXs scenario. This study highlights the severe
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penalty caused by the lack of a consistent CSI shared by the
cooperating TXs from a DoF point of view, when using a
conventional precoder. It was also shown that classical RZF
[15] do not restore the DoF. Although a new DoF-restoring
decentralized precoding strategy was presented in [14] for the
two TXs case, only partial results are known for the case of
an arbitrary number of users [16]. Furthermore, at finite SNR,
the problem of designing precoders that optimally tackle the
D-CSI setting is fully open. The use of conventional linear
precoders that are unaware of the D-CSI structure is expected
to yield a significant loss with respect to a centralized (and
imperfect) CSI setting. Hence, an important question is how
to reduce the losses due to the D-CSI configuration, i.e., how
to derive a D-CSI-robust precoding scheme.

In this work, we study the average rate achieved when
the number of transmit antennas and the number of receive
antennas jointly grow large with a fixed ratio, thus allowing
to use efficient tools from the field of random matrix theory
(RMT). Although RMT has been applied in many works to
the analysis of wireless communications (See [8], [17]–[20]
among others), its role in helping to analyze cooperative sys-
tems with distributed information has received little attention
before.

In this work, our main contribution are threefold:

• A novel general D-CSI channel model that allows to study
distributed CoMP networks ranging from fully distributed
to fully centralized is introduced.

• A deterministic equivalent of the SINR in D-CSI setting
in the limit of a large number of antennas is derived.

• Building upon this deterministic equivalent, the sum
rate maximization regularization coefficient for the RZF
precoder and the local optimal power allocation for each
TX under a total power constraint can be found. This
leads to a robust distributed RZF precoder design for the
D-CSI setting. The regularization coefficient can either
be optimized individually by each TX or be found by
a low complexity heuristic algorithm assuming that a
single common regularization coefficient is used at all
TX. Simulations show that the low complexity approach
approximates well the performance of the per-TX indi-
vidually optimization.

Notations: In the following, boldface lower-case and upper-
case characters denote vectors and matrices, respectively. The
operators (.)T, (.)H, tr(.),E(.) denote transpose, conjugate
transpose, trace and expectation, respectively. The N × N
identity matrix is denoted IN . The notation [A]i,j , [b]i denotes
the (i, j)th entry of matrix A and the ith entry of vector
b, respectively. diag(.) creates a diagonal matrix with given
entries in the diagonal.

The notation x � y denotes that x− y a.s.−−−−−−−−→
K,MTX→∞

0. The

notation 1a=b returns 1 when a = b and 0 otherwise. The
notation i denotes the imaginary unit. A random vector x ∼
NC(µ,Θ) is circular symmetric complex Gaussian distributed
with mean vector µ and covariance matrix Θ. The notation
, is used in a definition of a scalar, vector or matrix.

II. SYSTEM MODEL

A. Transmission Model

We consider a communication system where n TXs jointly
serve K RXs over a joint processing CoMP transmission
network. Each TX is equipped with MTX antennas, while the
total number of transmit antennas is denoted by M = nMTX.
Every RX is equipped with a single antenna. We assume that
n is a fixed value, which corresponds to a finite TX node
CoMP transmission. We also assume that the ratio of transmit
antennas with respect to the number of users is fixed and given
by

β ,
M

K
≥ 1. (1)

The signal yk received at RX k reads as

yk = hH
k x + nk (2)

and the overall receiving signal at all RXs is described as

y = Hx + n (3)

where y ,
[
y1 . . . yK

]T ∈ CK×1, H ,[
h1 . . . hK

]H ∈ CK×M is the CoMP channel.
hH
k ∈ C1×M is the channel from all transmit antennas

to RX k. x ∈ CM×1 is the transmitted signal and
n ,

[
n1 . . . nK

]T ∈ CK×1 is the noise at
the K RXs. The transmission noise has i.i.d entry
nk ∼ NC(0, 1),∀k = 1, . . . ,K.

The multi-user transmit signal x ∈ CM×1 is obtained from
the symbol vector s , [s1, . . . , sK ]T ∈ CK×1:

x = Ts =

K∑
k=1

tksk (4)

with T ,
[
t1, . . . , tK

]
∈ CM×K being the multi-user

precoder, tk ∈ CM×1 being the beamforming vector for RX k.
We consider an average sum power constraint

tr
(
TTH

)
= P, (5)

where P is the average total transmit power for all TXs. Here
we adopt a sum power constraint, a per TX power constraint
can also be used and the derivation will be similar to the sum
power constraint case.

In addition, the channel to RX k is modeled as:

hk =
√
MΘ

1
2

k zk (6)

where Θk ∈ CM×M is the channel correlation matrix of RX k
and zk has i.i.d complex entries of zero mean, variance 1

M and
eighth order moment of order O( 1

M4 ). The channel correlation
matrices Θk,∀k = 1, . . . ,K are assumed to be slowly varying
compared to the channel coherence time and therefore to be
perfectly known by all TXs.

With the assumption of Gaussian signaling sk ∼
NC(0, 1),∀k and each user decoding with perfect CSIR, the
signal-to-interference-plus-noise ratio (SINR) at RX k is given
by [21]

SINRk =

∣∣hH
k tk
∣∣2

1 +
K∑

`=1, 6̀=k

∣∣hH
k t`
∣∣2 . (7)
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The ergodic sum rate for the CoMP network is then equal to

Rsum ,
K∑
k=1

E [log2 (1 + SINRk)] (8)

where the expectation is taken over the random channel
realizations.

B. D-CSIT Model

Note that while we assume all TXs are endowed with a
perfect copy of the user message packet to be sent on the
downlink to the user terminal (e.g. user contents have been
pre-routed or pre-cached at the TXs), we instead focus on the
limitation of instantaneous CSI acquisition. This assumption is
relevant to all the scenarios where the time scale for payload
distribution to the transmitters is less than the time scale
for CSI distribution. An example is joint precoding from
multiple cache-enabled BS. In this case, the payload is cached
at the BS at off peak hours, while the CSI still required
to be collected on an instantaneous basis. In a setting with
any sort of user mobility (hence finite CSI coherence time),
CDI feedback and distribution is bound to generate the non-
idealities on the CSIT. The transmitter-dependent nature of
such CSI uncertainties will arise from the fact each TX may
combine higher quality locally collected CSI with missing
non-local CSI obtained from backhaul exchange.

For most of previous works on CoMP transmission with
imperfect CSI, a centralized precoding system is considered
[8], [11], [12]. There is a general assumption that there exists a
central unit which can gather instantaneous CSI for all CoMP
channel. Upon receiving this imperfect CoMP CSI, the central
unit can make a robust precoder design based on the single
imperfect CSI and redistribute the precoder choices to all
TX nodes in the CoMP system. However, in this work, we
consider a distributed precoding system, where the decision
is kept at the local level. We assumed that each TX node
preserves its own (presumably high quality) CSI and completes
the full CoMP CSI with the missing (lower quality) CSI
that is collected from backhaul or fronthaul sharing. This is
an interesting case for high mobility systems, for example
a heterogeneous infrastructure where the network’s edge is
composed of not just fixed macro base stations but also small
cell base stations, mobile (possibly flying [13]) access points
or relays. In those scenarios, centralizing the signal processing
is hard to achieve. It also leads to a very bad scalability and the
equation of the size of the cooperation. In contrast, considering
decentralized or partially centralized signal processing allows
to flexibly adapt to any scenario.

In the D-CSIT model, each TX receives its own CSI esti-
mate for the CoMP channel. This multi-user estimate received
at the TXs is the result of feedback and CSI sharing protocols
and is imperfect due to the limited resources available. The
actual feedback and exchange mechanism based on which the
TXs receive the multi-user channel estimate is left unspecified
and arbitrary [22], [23]. Apart from the feedback and exchange
of instantaneous CSI, we assume that each TX can obtain
perfect the statistical information for the full CoMP channel
and all feedback/backhaul/fronthaul links. This is due to the

fact that statistical information has slower variation compared
to instantaneous CSI, therefore we assume perfect knowledge
of statistical information at each TX.

After this CSI sharing step, TX j acquires Ĥ(j) ,[
ĥ

(j)
1 . . . ĥ

(j)
K

]H
∈ CK×M which is the multi-user

channel estimate and designs its transmit coefficients without
any further exchange of information or iterations with the
other TXs.

In state of the art, there exist two models for the imperfect
CSI: the statistical model and the deterministic worst-case
model [24]. In statistical model, the error is viewed as a
random variable which is subjected to certain distribution;
whereas in the deterministic model, the imperfect CSI lies
in the neighborhood of the true channel with a bounded
uncertainty region. In this paper we adopt a statistical model
following the conventional models in the literature [8], [9],
[20], the imperfect channel estimate ĥ(j)

k for RX k at TX j is
then modeled as

ĥ
(j)
k =

√
MΘ

1
2

k

(√
1− (σ

(j)
k )2zk + σ

(j)
k q

(j)
k

)
=

√
1− (σ

(j)
k )2hk + σ

(j)
k δ

(j)
k . (9)

The estimation error δ(j)
k =

√
MΘ

1
2

k q
(j)
k ∈ CM×1, where q(j)

k

has i.i.d complex entries of zero mean, variance 1
M , eighth

order moment of order O( 1
M4 ) and are independent of zk

and nk. The parameter σ(j)
k ∈ [0, 1] indicates the accuracy of

the CSIT relative to the channel to RX k, as seen at TX j.
For example, σ(j)

k = 0 correspond to perfect CSIT, whereas
σ

(j)
k = 1 corresponds to the channel estimate being completely

uncorrelated with the true channel.
Further, we assume that the estimation errors at TX j and

TX j′ satisfy

q
(j)
k = ρ

(j,j′)
k q

(j′)
k +

√
1− (ρ

(j,j′)
k )2e

(j,j′)
k ,∀j, j′, k, (10)

where ρ(j,j′)
k ∈ [0, 1] is the correlation between q(j)

k and q(j′)
k .

The vector e(j,j′)
k has i.i.d complex entries of zero mean,

variance 1
M , eighth order moment of order O( 1

M4 ) and are
independent of q(j′)

k . Hence, the CSI estimation errors satisfy

E

[
δ

(j)
k (δ

(j′)
k )H

]
= Θ

1
2

k E

[
q

(j)
k (q

(j′)
k )H

]
Θ

H
2

k = ρ
(j,j′)
k Θk.

(11)

Note that ρ(j,j)
k = 1,∀j, k.

It should be noticed that in both limited feedback and
limited backhaul/fronthaul sharing, the limited information
exchange is modeled by a quantization procedure which leads
to an additive noise which has the same covariance as the
quantization input. This model is based a specific quantization
implementation with optimal lattice quantizer. Unlike the
instantaneous CSI, the statistical information has slower vari-
ation and therefore we can assume that it is perfectly obtained
by each TX. Since each each TX has perfect knowledge of
statistical information for the full CoMP channel, a whitening
procedure can be applied on the channel vector before the
quantization. The merit of this whitening procedure is that
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TX j’ TX 2

TX j

RX k

Fig. 1: CoMP transmission network with limited CSI feedback
and limited CSI sharing

the whitened channel vector has equal average strength per
dimension. The quantization will not be skewed by the per-
dimensional power differences. Furthermore, this quantization
process also allows to only feedback a reduced number of
dimensions in case the channel is not full rank. After the
whitening procedure, the quantization input vector is quan-
tized by an optimal lattice quantizer, according to [25], this
will introduce an additive wide-sense-stationary and white
quantization noise as q(j)

k and e
(j,j′)
k in Eq. (9) and Eq.

(10). At the receiving side of the limited CSI feedback or
backhaul/fronthaul sharing, since the statistical information is
assumed to be known perfectly, each TX node can apply a
de-whitening procedure to obtain the local version of CSI
estimate. This limited information exchange procedure with
(i) channel whitening (ii) optimal lattice quantization (iii) de-
whitening corresponds to the statistical model presented in Eq.
(9) and Eq. (10).

This D-CSI model which allows for correlation between
the estimate errors at different TXs is very general. It is
particularly adapted to model imperfect CSI backhaul between
TXs where delay and/or imperfections are introduced.

Example 1. Consider a particular CoMP network setting il-
lustrated in Fig. 1. In a LTE FDD downlink channel estimation
scenario, each base station (TX) sends pilots to all the served
users (RXs). The RX k only feedback its downlink CSI to its
associated base station, the TX j. The CSIT seen at TX j for
RX k can then be modeled as

ĥ
(j)
k =

√
1− σ2

FBhk + σFBδ
(j)
k ,

where σ2
FB ∈ (0, 1) parameterizes the feedback quality and

δ
(j)
k ∼ NC(0, I) is the channel independent feedback noise.
Following the LTE-architecture, this channel estimate is

then shared to the other TXs through backhaul/fronthaul

links, e.g., X2 interfaces. During this sharing step, channel
estimate is further degraded due to the limited information
exchange capability between these two TXs. For the TX nodes
information sharing depicted in Fig. 1, the estimate received
at TX j′ is written as

ĥ
(j′)
k =

√
1− σ2

BHĥ
(j)
k + σBHε

(j,j′)
k ,

where σBH ∈ (0, 1) parameterizes the backhaul quality and
ε

(j,j′)
k is the sharing noise independent from hk, δ

(j)
k .

After basic algebraic operation, we exhibit that this scenario
fits a D-CSIT configuration with the following parameters:

σ
(j)
k = σFB

σ
(j′)
k =

√
1− (1− σ2

BH) (1− σ2
FB)

ρ
(j,j′)
k =

σFB

√
1− σ2

BH√
1− (1− σ2

BH) (1− σ2
FB)

(12)

Remark 1. The D-CSIT model bridges the gap between
the two extreme configuration: centralized CSIT and fully
distributed CSIT. Indeed, choosing

σ
(j)
k = σ

(j′)
k , ρ

(j,j′)
k = 1,

∀j, j′ ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,K} (13)

corresponds to the centralized CSIT configuration [8], [9],
while choosing

ρ
(j,j′)
k = 0, ∀j, j′ ∈ {1, . . . , n}, j 6= j′, ∀k ∈ {1, . . . ,K}

(14)
simplifies to the fully distributed CSIT configuration with
uncorrelated estimation errors as previously studied in the
literature [14].

C. Regularized Zero Forcing with Distributed CSI

We consider in this work the analysis of RZF precoder [15],
[26], when faced with CSIT inconsistencies in the large system
regime. Hence, the precoder designed at TX j is assumed to
take the form

T
(j)
rZF ,

(
(Ĥ(j))HĤ(j) +Mα(j)IM

)−1

(Ĥ(j))H

√
P√

Ψ(j)
.

(15)

The scalar Ψ(j) corresponds to the power normalization at
TX j. Hence, it holds that

Ψ(j) , ‖
(

(Ĥ(j))HĤ(j) +Mα(j)IM

)−1

(Ĥ(j))H‖2F. (16)

The regularization factor α(j) > 0,∀j. We also define

C(j) ,
(Ĥ(j))HĤ(j)

M
+ α(j)IM . (17)

Therefore, the precoder at TX j can be rewritten as

T
(j)
rZF =

1

M
(C(j))−1(Ĥ(j))H

√
P√

Ψ(j)
. (18)
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Let EH
j ∈ CMTX×M denote the block selection matrix

defined as

EH
j ,

[
0MTX×(j−1)MTX

IMTX
0MTX×(n−j)MTX

]
. (19)

Upon concatenation of all TX’s precoding matrices, the effec-
tive global precoder denoted by TDCSI

rZF , is written as

TDCSI
rZF ,


µ1E

H
1 T

(1)
rZF

µ2E
H
2 T

(2)
rZF

...
µnEH

nT
(n)
rZF

 , (20)

where the scalar µj > 0 is the transmit power scaling at TX j.
Assume the transmit power allocated at TX j reads

PTXj
= µ2

j tr
(
EjE

H
j T

(j)
rZF(T

(j)
rZF)H

)
. (21)

Based on the sum power constraint,
n∑
j=1

PTXj
=

n∑
j=1

µ2
j tr
(
EjE

H
j T

(j)
rZF(T

(j)
rZF)H

)
= P. (22)

The finite SNR rate analysis under the precoding structure
(20) and the D-CSIT model in (9) is challenging due to the
dependency of each user performance on all channel estimates.
Yet, some useful results can be obtained in the large antenna
regime as shown below.

III. DETERMINISTIC EQUIVALENT OF THE SINR
In this section, the analysis of the so-called deterministic

equivalent of the SINR under the RZF precoding is presented.
In order to derive a deterministic equivalent, we make the

following standard technical assumption on the correlation
matrices Θk and the Gram matrix 1

M (Ĥ(j))HĤ(j) [8].

Assumption 1. All correlation matrices Θk,∀k = 1, . . . ,K
have uniformly bounded spectral norm on M , i.e.,

lim sup
M,K→∞

sup
1≤k≤K

‖ Θk ‖<∞. (23)

Assumption 2. The random matrices 1
M (Ĥ(j))HĤ(j),∀j =

1, . . . , n have uniformly bounded spectral norm on M with
probability one, i.e.,

lim sup
M,K→∞

‖ 1

M
(Ĥ(j))HĤ(j) ‖<∞ (24)

with probability one.

Our approach will be based on the following fundamental
result based on the Stieltjes transform in the analysis of
wireless networks [8], [19].

Theorem 1. [19], [27] Let the matrix U be any matrix with
bounded spectral norm and the ith row hH

i of H be hH
i =√

MΘ
1
2
i z

H
i , where the entries of zi are i.i.d of zero mean,

variance 1
M and have eighth moment of order O( 1

M4 ). Let
Assumption 1 holds true. Consider the resolvent matrix Q ,(

HHH
M + αIM

)−1

with regularization coefficient α > 0. Let

Qo ,

(
1

M

K∑
k=1

Θk

1 +mk
+ αIM

)−1

(25)

where mk satisfies:

mk =
1

M
tr

Θk

(
1

M

K∑
`=1

Θ`

1 +m`
+ αIM

)−1
 . (26)

Then,
1

M
tr (UQ)− 1

M
tr (UQo)

a.s.−−−−−−→
K,M→∞

0. (27)

The fixed point mk can easily be obtained by an iterative
fixed-point algorithm described in [8], [20] and recalled in
Appendix A for the sake of completeness.

Adopting the shorthand notation used in [8], we introduce

c
(j)
0,k , 1−(σ

(j)
k )2, c

(j)
1,k , (σ

(j)
k )2, c

(j)
2,k , σ

(j)
k

√
1−(σ

(j)
k )2.
(28)

We can further define the term Q
(j)
o and m

(j)
k respectively

as Qo and mk in Theorem 1 using instead the local CSI
estimate Ĥ(j) and regularization coefficient α(j) at TX j. A
deterministic equivalent of the SINR under RZF precoding is
therefore provided in the following theorem.

Theorem 2. Let the Assumptions 1 and 2 hold true, then the
SINR of RX k under RZF precoding satisfies

SINRk −SINRo
k

a.s.−−−−−−−−→
K,MTX→∞

0 (29)

with SINRo
k defined as

SINRo
k ,

P

(∑n
j=1 µj

√
c
(j)
0,k

Γo
j,j(IM )

Φo
j,k

1+m
(j)
k

)2

1 + Iok
(30)

with Iok ∈ R given by

Iok , P

n∑
j=1

n∑
j′=1

µjµj′√
Γoj,j(IM )Γoj′,j′(IM )

Γoj,j′(Ej′E
H
j′ΘkEjE

H
j )

−2Γoj,j′(ΘkEjE
H
j )
c
(j′)
0,k Φoj′,k

1 +m
(j′)
k

+Φoj′,kΦoj,kΓoj,j′(Θk)
c
(j)
0,kc

(j′)
0,k + ρ

(j,j′)
k c

(j)
2,kc

(j′)
2,k

(1 +m
(j)
k )(1 +m

(j′)
k )

 . (31)

where Φoj,k ∈ R is defined as

Φoj,k =
tr
(
ΘkEjE

H
j Q

(j)
o

)
M

, (32)

and the function Γoj,j′(X) : CM×M 7→ C is defined in Lemma
8. The transmit power scaling µj for TX j satisfies

n∑
j=1

µ2
j

Γoj,j(EjE
H
j )

Γoj,j(IM )
= 1 (33)

Proof. The proof of Theorem 2 is given in Appendix C.

The theorem demonstrates that in the large system setting,
the SINR expression for each RX can be derived as a given
function of (i) n,MTX ,K that indicate the system dimensions,
(ii) σ(j)

k , ρ
(j,j′)
k ,Θk which reflect the statistics of the channel
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and of CSI estimates at each TX, and (iii) the precoder
regularization coefficients α(j) and power scalings µ(j).

This result is very general and encompasses several impor-
tant results from the literature.

A. Regularized ZF Precoding for Centralized CSI Isotropic
Channel

Choosing σ
(j)
k = σ

(j′)
k = σk, α(j) = α(j′) = α,

ρ
(j,j′)
k = 1,∀j, j′ ∈ {1, . . . , n}, k ∈ {1, . . . ,K}, we obtain

the centralized CSIT configuration. Further assuming that
Θk = IM , m(j)

k is obtained in closed form as

m
(j)
k = mo =

β − 1− αβ +
√

(αβ − β + 1)2 + 4αβ2

2αβ
.

(34)

In this setting, the total power constraint (33) simplifies to

1

n

n∑
j=1

µ2
j = 1 (35)

since

Γoj,j(IM ) =
(mo)2

β(1 +mo)2 − (mo)2
, (36)

Γoj,j(EjE
H
j ) =

1

n
Γoj,j(IM ). (37)

Assume µj = 1,∀j = 1, . . . , n, the transmit power PTXj
at

TX j denotes

PTXj = µ2
jP

Γoj,j(EjE
H
j )

Γoj,j(IM )
=
P

n
(38)

This indicates an equal power allocation per TX. Since Θk =
IM the channel is isotropic, the above setting also indicates
that the signal power for RX k satisfies

PRXk
=
P

K
(39)

which is an equal power per RX.
After simple algebraic manipulations, we can obtain the

deterministic equivalent of SINR in (30)

SINRo
k =

(1− σ2
k)(β (1 +mo)

2 − (mo)2)(
1− σ2

k + (1 +mo)2σ2
k + (1+mo)2

P

) (40)

This coincides with the results in [8, Corollary 2].

B. Regularized ZF Precoding for Fully Distributed CSI
Isotropic Channel

Choosing ρ
(j,j′)
k = 0,∀ j, j′ ∈ {1, . . . , n}, j 6= j′, k ∈

{1, . . . ,K}, the fully distributed CSIT configuration with un-
correlated estimation errors is obtained. Let us further assume
that the same regularization coefficient is used at each TX,
i.e., α(j) = α(j′) = α,∀ j, j′ ∈ {1, . . . , n}, Θk = IM and
µj = 1 indicating equal per TX power allocation.

The deterministic SINR in (30) then becomes

SINRo
k =

P

(
1
n

∑n
j=1

√
c
(j)
0,k

)2
β(1+mo)2−(mo)2

(1+mo)2

Iok + 1
(41)

with

Iok = P − P
n∑
j=1

n∑
j′=1

(
β (1 +mo)

2 − (mo)2
)

Γoj,j′

n2(1 +mo)2mo

·
[
2c

(j)
0,k +mo

(
2c

(j)
0,k − c

(j)
0,kc

(j′)
0,k

)]
(42)

Γoj,j′ =

1
M

∑K
`=1

√
c
(j)
0,`c

(j′)
0,`

(1+mo)2

(mo)2 −
1
M

∑K
`=1c

(j)
0,`c

(j′)
0,`

(43)

This result coincides with [28].

C. Regularized ZF Precoding for D-CSI Isotropic Channel
Assume that Θk = IM ,∀k ∈ {1, . . . ,K} and µj = 1,∀j ∈
{1, . . . , n}, indicating equal per TX power allocation. In this
specific setting, the terms m(j)

k can be obtained in closed form
as

m
(j)
k = m(j) =

β − 1− α(j)β +
√

(α(j)β − β + 1)2 + 4α(j)β2

2α(j)β
.

(44)

After simplification, the deterministic SINR in (30) becomes

SINRo
k =

P

(
1
n

∑n
j=1

√
1−(σ

(j)
k )2

Γo
j,j

m(j)

1+m(j)

)2

1 + Iok
(45)

with Iok ∈ R defined as

Iok = P − P
n∑
j=1

n∑
j′=1

Γoj,j′√
Γoj,jΓ

o
j′,j′

[
2c

(j)
0,k

n2

m(j)

1 +m(j)

−

(
ρ

(j,j′)
k c

(j)
2,kc

(j′)
2,k + c

(j)
0,kc

(j′)
0,k

)
m(j)m(j′)

n2
(
1+m(j)

) (
1+m(j′)

)
 (46)

where Γoj,j′ ∈ R is given by

Γoj,j′=

1
M

∑K
`=1

√
c
(j)
0,`c

(j′)
0,` +

√
c
(j)
1,`c

(j′)
1,` ρ

(j,j′)
`

1+m(j)

m(j)
1+m(j′)

m(j′) −
∑K

`=1

(√
c
(j)
0,`c

(j′)
0,` +

√
c
(j)
1,`c

(j′)
1,` ρ

(j,j′)
`

)2

M

(47)

This result coincides with [29].

IV. APPLICATIONS OF THE THEOREM

The deterministic equivalent of the SINR expression allows
to evaluate the performance of RZF precoding. However, there
is an added benefit here, which is the possibility to optimize
the transmission parameters (i.e., regularization coefficient)
so as to obtain some robustness with respect to the D-CSIT
configuration. The D-CSI configuration reflects the fact that
there are uncertainties in the knowledge of the channel coeffi-
cient. With the statistics information known at all TX nodes, it
further indicates that the amount of uncertainties varies from
one TX to another. A robust transmission parameter design
under D-CSI indicates that we can optimize transmission
parameters so as to guarantee the average performance, i.e., the
expected value of ergodic sum rate over the CSI uncertainties
under D-CSI configuration. These robust designs are discussed
in the following.
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A. Robust Sum Rate Maximizing Regularization

If there exists a predefined per TX power constraint such
that the average transmit power for each TX j is given as
PTXj

= pj , according to Theorem 2, we can find the power
scaling parameter for each TX j as

µj =

√
pjΓoj,j(IM )

PΓoj,j(EjEH
j )
. (48)

Substituting (48) into Theorem 2, the ergodic sum rate be-
comes a function only depending on α(j), j = 1, . . . , n.

1) Robust Regularized ZF: The regularization coefficients
tuple α =

[
α(1), . . . , α(n)

]
which maximizes the system sum

rate while being robust to the D-CSIT configuration is given
by

α? , argmax
α

K∑
k=1

log (1 + SINRo
k) ,

s.t. µj =

√
pjΓoj,j(IM )

PΓoj,j(EjEH
j )
,∀j. (49)

2) Robust regularized ZF with equal regularization: The
problem (49) is a non-convex optimization. In order to re-
duce the complexity, we introduce the following optimization
assuming that the regularization coefficients are the same at
different TXs.

α?same , argmax
αsame

K∑
k=1

log (1 + SINRo
k) ,

s.t. µj =

√
pjΓoj,j(IM )

PΓoj,j(EjEH
j )
,∀j. (50)

The optimization variable is now a scalar parameter and the
global optimal regularization can be easily found using a line
search algorithm [30].

3) Naive Regularized ZF: We introduced in the following
the naive regularization optimization which doesn’t take into
account the D-CSIT configuration. This is therefore the refer-
ence baseline for our improved robust precoding scheme.

When TXs are not aware of the D-CSIT structure, each
TX will choose its regularization parameter on the basis of its
own CSI quality. This yields a naive (suboptimal) precoding
scheme. Specifically, assuming equal power allocation at each
TX, each TX j optimizes its regularization coefficient α(j)

based on Ĥ(j) considering as if Ĥ(j) is the centralized CSIT
shared among all TXs, i.e.,

α
(j)
naive , argmax

α(j)

Rsum

(
Ĥ(j), . . . , Ĥ(j)

)
. (51)

In the particular case where the CSIT quality is homoge-
neous across users, i.e., σ(j)

k = σ(j),∀k ∈ {1, . . . ,K}, and
the channel is isotropic, i.e., Θk = IM , the optimal naive
regularization coefficient is obtained in closed form [8]

α
(j)
naive =

1 + (σ(j))2P

1− (σ(j))2

1

βP
. (52)

B. Robust Power Optimization
If the regularization coefficient at each TX is predefined,

according to Theorem 2, we can optimize the power scaling
tuple µ = [µ1, . . . , µn] that maximizes the system sum rate:

µ? = argmax
µ

K∑
k=1

log (1 + SINRo
k) ,

s.t.

n∑
j=1

µ2
j

Γoj,j(EjE
H
j )

Γoj,j(IM )
= 1 (53)

Problem (53) can then be reformulated as:

µ? = argmin
µ

K∏
k=1

1
P + µTBkµ

1
P + µT(Ak + Bk)µ

,

s.t. ‖ Cµ ‖2= 1,µ ∈ Rn, (P1)

where Ak,Bk,C,∀k are constant matrices defined as

[Ak]j,j′ ,

√√√√ c
(j)
0,kc

(j′)
0,k

Γoj,j(IM )Γoj′,j′(IM )

Φoj,kΦoj′,k(
1 +m

(j)
k

)(
1 +m

(j′)
k

)
(54)

[Bk]j,j′ ,
1√

Γoj,j(IM )Γoj′,j′(IM )

Γoj,j′(Ej′E
H
j′ΘkEjE

H
j )

−2Γoj,j′(ΘkEjE
H
j )
c
(j′)
0,k Φoj′,k

1 +m
(j′)
k

+Φoj′,kΦoj,kΓoj,j′(Θk)
c
(j)
0,kc

(j′)
0,k + ρ

(j,j′)
k c

(j)
2,kc

(j′)
2,k

(1 +m
(j)
k )(1 +m

(j′)
k )


(55)

C , diag

(√
Γo1,1(E1EH

1 )

Γo1,1(IM )
, . . . ,

√
Γon,n(EnEH

n )

Γon,n(IM )

)
.

(56)

Let ui(µ) be denoted as

ui(µ) ,
1
P + µTBiµ

1
P + µT (Ai + Bi)µ

. (57)

In order to solve problem (P1), we first introduce the following
lemma:

Lemma 1 (Lemma 1, [31]). The optimal point of optimization
problem

minµ

∏K
i=1 ui(µ)

s.t. ‖ Cµ ‖2= 1,µ ∈ Rn

can be obtained by solving the following parametric problem

minµ,{λi}Ki=1

(∑K
i=1

1
Kλiui(µ)

)K
s.t.

∏K
i=1 λi = 1, λi ≥ 0
‖ Cµ ‖2= 1,µ ∈ Rn

Moreover, for fixed µ, the optimal {λi}Ki=1 of this problem is
given by

λ∗i =

[∏K
`=1 u`(µ)

] 1
K

ui(µ)
,∀i. (58)
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Remark 2. The above lemma is exactly Lemma 1 presented
in [31] with a change of notation.

According to Lemma 1, noticing that optimization for a
positive expression raising to the power of K achieves the
same optimal point as the optimization for the expression
without the scalar power raise, problem (P1) can be solved
by the following parametric problem

min
µ,{λi}Ki=1

K∑
k=1

λk
1
P +µTBkµ

1
P +µT(Ak+Bk)µ

s.t.

∏K
i=1 λi = 1
‖ Cµ ‖2= 1,µ ∈ Rn×1.

(P2)

We hereby introduce an iterative procedure to calculate the
local optimal solution for problem (P2).

Algorithm 1 Iterative algorithm for problem (P2)

1: Initialize µ[0]

2: t = 0
3: while not converge do

4:
λ

[t+1]
i =

[∏K
`=1

1
P +(µ[t])TB`µ

[t]

1
P +(µ[t])T(A`+B`)µ[t]

] 1
K

·
1
P +(µ[t])T(Ai+Bi)µ

[t]

1
P +(µ[t])TBiµ[t] , ∀i = 1, . . . ,K

5:
µ[t+1] = argmin

x

∑K
k=1 λ

[t+1]
k ·

1
P +xTBkx

1
P +xT(Ak+Bk)x

s.t. ‖ Cx ‖2≤ 1
6: t = t+ 1
7: end while

The iterative optimization step in Algorithm 1 is equivalent
to a maximization for the sum of ratios of two convex
functions over a convex set. It can be solved for example by
a branch and bound algorithm described in [32].

Theorem 3. Algorithm 1 converges to a local optimum of the
optimization problem (P2).

Proof. The proof of Theorem 3 is given in Appendix D.

Thanks to Theorem 3, the convergence for the iterative
optimization in Algorithm 1 is guaranteed. Therefore, we can
obtain a local optimal power allocation such that the system
sum rate is maximized under the D-CSI configuration.

C. Robust Joint Optimization of Regularization and Power

In subsection IV-A and IV-B, we tackle the problem of
finding the regularization coefficient (power scaling factor)
which maximizes the system sum rate while the power scaling
factor (regularization coefficient) is fixed, respectively. Indeed
in the D-CSIT configuration, the regularization tuple α and
the power scaling tuple µ can be jointly optimized according
to a predefined power constraint. However, since the joint
optimization for (α,µ) is a complicated non-convex problem,
we then consider an alternating optimization approach which
iterates between the optimization of α and µ described in
subsection IV-A and IV-B. A local optimal point can be
reached while applying the alternating optimization.

In this subsection, we mainly consider two categories of
joint optimization problems described in the sequel.

1) Robust Joint Optimization:

(α?,µ?) = argmax
α,µ

K∑
k=1

log (1 + SINRo
k) ,

s.t.

n∑
j=1

µ2
j

Γoj,j(EjE
H
j )

Γoj,j(IM )
= 1. (59)

This corresponds to the optimal solution where both parame-
ters are jointly optimized.

2) Robust Joint Optimization with equal regularization:

(α?same,µ
?) = argmax

αsame,µ

K∑
k=1

log (1 + SINRo
k) ,

s.t.

n∑
j=1

µ2
j

Γoj,j(EjE
H
j )

Γoj,j(IM )
= 1. (60)

This corresponds to a jointly optimization for regularization
and power scaling, assuming that the regularization coefficient
at all TXs are the same.

V. SIMULATION RESULTS

In the following, we provide simulations results to evaluate
the accuracy of the deterministic expressions provided and to
gain insights into the system design. We also simulate the sum
rate performance of the optimal regularization coefficients and
power allocation which are robust to the D-CSIT setting.

For the sake of conciseness, the following simulations
consider an isotropic channel setting listed in Table I. Similar
results can be obtained with cellular setting.

M K n β Θk P ρ
(j,j′)
k

30 30 3 1 IM 20dB
fully distributed CSIT 0

D-CSIT 0.81
centralized CSIT 1

(σ
(1)
k )2 (σ

(2)
k )2 (σ

(3)
k )2

asymmetric
symmetric

0.01
0.1

0.16
0.1

0.49
0.1

TABLE I: Simulation parameters for the isotropic channel
setting.

In isotropic channel setting, by increasing the value of ρ(j,j′)
k

from 0 to 1, the CSIT structure for the system gradually
changes from fully distributed CSIT to centralized CSIT. For
the CSIT discrepancy at different TXs, we consider two cases
in the isotropic channel setting: the asymmetric setting where
the CSIT accuracy at different TXs are different and the
symmetric setting where the CSIT accuracy at different TXs
are the same.

In the following simulations of robust regularization and
power optimization, we compare the sum rate performance of
following algorithms:
• (αnaive,µeq): A naive algorithm to obtain the regu-

larization coefficients without considering the D-CSIT
configuration, equal power is allocated at each TX (See
(51)).

• (α?same,µeq): A robust optimization of regularization
imposing that all TXs have the same regularization co-
efficient, equal power allocation is assumed at each TX
(See (50)).
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• (α?,µeq): A robust optimization of regularization with
equal power allocation at each TX (See (49)).

• (α?same,µ
?): A robust joint optimization of regularization

and power at each TX under D-CSIT scenario, with
the additional constraint that all TXs have the same
regularization coefficient is imposed (See (60)).

• (α?,µ?): A robust joint optimization of regularization
and power at each TX under D-CSIT scenario (See (59)).

1) Monte-Carlo Simulations of Theorem 2: We verify using
Monte-Carlo (MC) simulations the accuracy of the asymptotic
expression derived in Theorem 2.

Fig. 2 depicts the absolute error of the deterministic equiv-
alent R0

sum compared to the ergodic sum rate Rsum as a
function of the number of users K. The TX nodes number
is fixed to n = 3. As the K increases, the antennas number
at each TX MTX will increase accordingly but the ratio
β = nMTX

K maintains β = 1. The ergodic sum rate is averaged
over 1000 independent channel realizations. For ease of illus-
tration, we choose the symmetric CSIT configuration and an
equal available power per TX. Furthermore, the regularization
coefficient at each TX j is chosen as α(j) = 1

βP .

Total number of users K

5 10 15 20 25 30 35 40

(R
s
u
m

-R
o s
u
m

)/
R

s
u
m

10-2

10-1

100

Fully distributed CSI

D-CSI

Centralized CSI

Fig. 2: Relative deviation between the deterministic equivalent
and the Monte-Carlo simulations as a function of the number
of users K.

It can be seen that the deterministic equivalent converges to
the expected sum rate obtained using Monte-Carlo simulations
as the system becomes large. It also reveals that the rate of
convergence is faster when the CSIT configuration becomes
more centralized (i.e., when the CSIT noise becomes more
correlated).

2) Cost of CSIT Distributiveness: As is mentioned in Sec-
tion II-B, the CSI estimate noise correlation parameter ρ(j,j′)

k

reflects the distributiveness of this CoMP network. Let us
consider the symmetric accuracy setting, i.e., the CSI estimate
noise correlation be ρ

(j,j′)
k = ρ,∀k,∀j 6= j′. We plot the

ergodic sum rate when the CSI estimate noise correlation ρ
varies from 0 to 1, namely, when the CSI structure varies from
fully distributed CSI to D-CSI and finally becomes centralized
CSI.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
42
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48
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CSI estimate noise correlation ρ
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a
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]

(α∗
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(α∗

same,µ
∗)

(αnaive ,µeq )

Fig. 3: Ergodic sum rate as a function of estimate noise
correlation ρ which indicates the distributiveness for the CSIT,
RZF precoding is implemented.

Fig. 3 reveals that the proposed algorithms outperform the
naive one in the D-CSI scenarios. We can also verify that
the D-CSI structure introduces a non-vanishing performance
degradation compared to the centralized CSI case. We can also
observe that the sum rate for (α?,µ?) and (α?same,µ

?) are
very close to each other.

3) Joint Optimization of Regularization and Power for
Isotropic Channel: Let us consider the D-CSIT configuration
with asymmetric CSIT accuracy. We then plot the ergodic sum
rate as a function of the total transmit power P varies from 0
dB to 30dB.

total transmit power [dB]
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15
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25
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35

40

Fig. 4: Ergodic sum rate as a function of total transmit power,
comparison between different transmission algorithms, RZF
precoding is implemented.

In Fig. 4, the performance of different transmission algo-
rithms are compared. We can clearly observe the improved
robustness and the large performance increase for the proposed
algorithm. The simulation reveals that the ergodic sum rate
performance is not stable if we fail to take into account the
D-CSI structure during transmission parameter design. In this
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isotropic channel setting, equal power allocation is not a bad
strategy since joint optimization (α?,µ?) only brings a 3%
sum rate increase compared to (α?,µeq). Intriguingly, even if
the CSIT accuracy is asymmetric at different TXs, simulation
reveals that there is only a negligible performance degradation
when imposing identical regularization coefficient at different
TXs for isotropic channel setting.

VI. CONCLUSION

In this work, we have studied regularized ZF joint precoding
in a distributed CSI configuration. We extend the conventional
centralized CSI to distributed CSI scenario by allowing the CSI
errors at the different TXs to be arbitrarily correlated. Using
RMT tools, an analytical expression is derived to approximate
the average rate per user in the large system limit. This
deterministic equivalent expression is then used to optimize
the regularization coefficients as well as the power allocation
at the different TXs in order to reduce the negative impact of
the D-CSI configuration.

APPENDIX A
CLASSICAL RANDOM MATRIX THEORY LEMMAS

Lemma 2 (Adapted from [8], [20]). Let α(j) > 0, j =

1, . . . , n and m(j)[t]
k , t ≥ 0 be the sequence defined as

m
(j)[0]
k = 1

α(j)

m
(j)[t]
k = 1

M tr

(
Θk

(
1
M

∑K
`=1

Θ`

1+m
(j)[t−1]
`

+ α(j)IM

)−1
)
,

(61)
∀k = 1, . . . ,K, t ≥ 1, then m

(j)[t]
k

t→∞−−−→ m
(j)
k , with m

(j)
k

solved by constructing an iterative algorithm of (61).

Lemma 3 (Resolvent Identities [19], [20]). Given any ma-
trix H ∈ CK×M , let hH

k denote its kth row and H[k] ∈
C(K−1)×M denote the matrix obtained after removing the
kth row from H. The resolvent matrices of H and H[k]

are denoted by Q =
(
HHH + αIM

)−1
and Q[k] =(

HH
[k]H[k] + αIM

)−1

, with α > 0, respectively. It then holds
that

Q = Q[k] −
1

M

Q[k]hkh
H
k Q[k]

1 + 1
Mh

H
k Q[k]hk

and

hH
k Q =

hH
k Q[k]

1 + 1
Mh

H
k Q[k]hk

.

Lemma 4 ( [19], [20]). Let (AN )N≥1,AN ∈ CN×N be a
sequence of matrices such that lim sup ‖AN‖ < ∞, and
(xN )N≥1,xN ∈ CN×1 be a sequence of random vectors of
i.i.d. entries of zero mean, unit variance, and finite eighth order
moment independent of AN . Then,

1

N
xH
NANxN −

1

N
tr (AN )

a.s.−−−−→
N→∞

0.

Lemma 5 ( [19], [20]). Let (AN )N≥1,AN ∈ CN×N be a
sequence of matrices such that lim sup ‖AN‖ < ∞, and
xN ,yN be random, mutually independent with i.i.d. entries

of zero mean, unit variance, finite eighth order moment, and
independent of AN . Then,

1

N
xH
NANyN

a.s.−−−−→
N→∞

0.

Lemma 6 ([8], [20]). Let Q and Q[k] be as given in Lemma 3.
Then, for any matrix A, we have

tr
(
A
(
Q−Q[k]

))
≤ ‖A‖2.

Lemma 7 ([8], [20]). Let U,V,Θ be of uniformly bounded
spectral norm with respect to N and let V be invertible.
Further, define x = Θ

1
2 z and y = Θ

1
2 q where z, q ∈ CN

have i.i.d. complex entries of zero mean, variance 1/N and
finite 8th order moment and be mutually independent as well
as independent of U,V. Define c0, c1, c2 ∈ R+ such that
c0c1 − c22 ≥ 0, and let u = 1

N tr
(
ΘV−1

)
and u′ =

1
N tr

(
ΘUV−1

)
. Then we have:

xHU
(
V + c0xxH + c1yyH + c2xyH + c2yxH

)−1
x

− u′ (1 + c1u)

(c0c1 − c22)u2 + (c0 + c1)u+ 1
→ 0

as well as

xHU
(
V + c0xxH + c1yyH + c2xyH + c2yxH

)−1
y

− −c2uu′

(c0c1 − c22)u2 + (c0 + c1)u+ 1
→ 0

APPENDIX B
NEW LEMMAS

Lemma 8. Consider the channel matrices Ĥ(j), Ĥ(j′) are
distributed according to the D-CSI model in Section II-B. Let

Q(j) =

(
(Ĥ(j))HĤ(j)

M
+ α(j)IM

)−1

Q(j′) =

(
(Ĥ(j′))HĤ(j′)

M
+ α(j′)IM

)−1

with α(j), α(j′) > 0. Let X ∈ CM×M be of uniformly bounded
spectral norm with respect to M . Then,

1

M2
tr
(
XQ(j)(Ĥ(j))HĤ(j′)Q(j′)

)
− Γoj,j′(X)

a.s.−−→ 0

where the function Γoj,j′(X) : CM×M 7→ C is defined as

Γo
j,j′ (X)

=
1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)
1
M

tr
(
ΘkQ

(j′)
o XQ

(j)
o

)
(1 +m

(j)
k )(1 +m

(j′)
k )

+
1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,kρ

(j,j′)
k

)2
Γo
j,j′(Θk) 1

M
tr
(
ΘkQ

(j′)
o XQ

(j)
o

)
(1 +m

(j)
k )(1 +m

(j′)
k )

,

with

c
(j)
0,k = 1−(σ

(j)
k )2, c

(j)
1,k = (σ

(j)
k )2, c

(j)
2,k = σ

(j)
k

√
1−(σ

(j)
k )2.

m
(j)
k ,Q

(j)
o ,m

(j′)
k ,Q

(j′)
o are defined in Theorem 1 using

Ĥ(j), α(j), Ĥ(j′), α(j′) respectively. Γoj,j′(Θk) is the kth entry
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of vector γ ∈ CK×1. Vector γ is the solution for equation
system

Aγ = b.

A ∈ CK×K with

[A]`,t = 1`=t −

(√
c
(j)
0,tc

(j′)
0,t +

√
c
(j)
1,tc

(j′)
1,t ρ

(j,j′)
t

)2

M(1 +m
(j)
t )(1 +m

(j′)
t )

·
tr
(
ΘtQ

(j′)
o Θ`Q

(j)
o

)
M

.

b ∈ CK×1 with

[b]` =
1

M

K∑
k=1

√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

(1 +m
(j)
k )(1 +m

(j′)
k )

·
tr
(
ΘkQ

(j′)
o Θ`Q

(j)
o

)
M

.

Proof. We start by introducing

Q
(j)
[k] =

 (Ĥ
(j)
[k] )

HĤ
(j)
[k]

M
+ α(j)IM

−1

with

Ĥ
(j)
[k] =

[
ĥ

(j)
1 . . . ĥ

(j)
k−1 ĥ

(j)
k+1 . . . ĥ

(j)
K

]H
.

Q
(j′)
[k] and Ĥ

(j′)
[k] are defined respectively in similar manner as

Q
(j)
[k] and Ĥ

(j)
[k] . Let us start by writing the simple equality

Q(j) −Q(j)
o

=Q(j)
o

(
(Q(j)

o )−1 − (Q(j))−1
)

Q(j)

=Q(j)
o

(
1

M

K∑
k=1

Θk

1 +m
(j)
k

− (Ĥ(j))HH(j)

M

)
Q(j). (62)

We can then replace Q(j) using (62) to obtain

1

M2
tr
(
XQ(j)(Ĥ(j))HĤ(j′)Q(j′)

)
=

1

M2
tr
(
XQ(j)

o (Ĥ(j))HĤ(j′)Q(j′)
)

+

K∑
k=1

tr
(
XQ

(j)
o ΘkQ

(j)(Ĥ(j))HĤ(j′)Q(j′)
)

M3
(

1 +m
(j)
k

)
− 1

M3
tr
(
XQ(j)

o (Ĥ(j))HĤ(j)Q(j)(Ĥ(j))HĤ(j′)Q(j′)
)

=Z1 + Z2 + Z3.

We will now calculate separately each of the term Zi. Starting
with Z1 gives

Z1 =
1

M2
tr
(
XQ

(j)
o (Ĥ(j))HĤ(j′)Q(j′)

)
=

1

M

K∑
k=1

1

M
(ĥ

(j′)
k )HQ(j′)XQ

(j)
o ĥ

(j)
k

(a)
=

1

M

K∑
k=1

1

M

(ĥ
(j′)
k )HQ

(j′)
[k]

XQ
(j)
o ĥ

(j)
k

1 + 1
M

(ĥ
(j′)
k )HQ

(j′)
[k]
ĥ
(j′)
k

(b)
�

1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,kρ

(j,j′)
k

)
1
M

tr
(
ΘkQ

(j′)
[k]

XQ
(j)
o

)
1 + 1

M
tr
(
ΘkQ

(j′)
[k]

)
(c)
�

1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,kρ

(j,j′)
k

)
1
M

tr
(
ΘkQ

(j′)XQ
(j)
o

)
1 + 1

M
tr
(
ΘkQ(j′)

)
(d)
�

1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)
1
M

tr
(
ΘkQ

(j′)
0 XQ

(j)
0

)
1 +m

(j′)
k

,

where equality (a) follows from Lemma 3, equality (b) from
Lemma 4, equality (c) from Lemma 6, and equality (d) from
the fundamental Theorem 1. The following calculations are
very similar and the same lemmas are used.

We put aside Z2 for now and turn to Z3 which gives

Z3 = −
1

M3
tr
(
XQ

(j)
o (Ĥ(j))HĤ(j)Q(j)(Ĥ(j))HĤ(j′)Q(j′)

)
= −

1

M3

K∑
k=1

tr
(

(ĥ
(j)
k )HQ(j)(Ĥ(j))HĤ(j′)Q(j′)XQ

(j)
o ĥ

(j)
k

)

= −
1

M3

K∑
k=1

tr
(

(ĥ
(j)
k )HQ

(j)
[k]

(Ĥ(j))HĤ(j′)Q(j′)XQ
(j)
o ĥ

(j)
k

)
1 + 1

M
(ĥ

(j)
k )HQ

(j)
[k]
ĥ
(j)
k

(e)
= −

1

M3

K∑
k=1

tr
(

(ĥ
(j)
k )HQ

(j)
[k]

(Ĥ(j))HĤ(j′)Q
(j′)
[k]

XQ
(j)
o ĥ

(j)
k

)
1 + 1

M
(ĥ

(j)
k )HQ

(j)
[k]
ĥ
(j)
k

+
1

M4

K∑
k=1

tr
(
(ĥ

(j)
k )HQ

(j)
[k]

(Ĥ(j))HĤ(j′)Q
(j′)
[k]
ĥ
(j′)
k (ĥ

(j′)
k )HQ

(j′)
[k]

XQ
(j)
o ĥ

(j)
k

)
(

1 + 1
M

(ĥ
(j)
k )HQ

(j)
[k]
ĥ
(j)
k

)(
1 + 1

M
(ĥ

(j′)
k )HQ

(j′)
[k]
ĥ
(j′)
k

)
= Z4 + Z5,

with equality (e) obtained using Lemma 3 for Q(j′). We also
split the calculation in two and start by calculating Z4 as
follows.

Z4 = −
1

M3

K∑
k=1

tr
(

(ĥ
(j)
k )HQ

(j)
[k]

(Ĥ
(j)
[k]

)HĤ
(j′)
[k]

Q
(j′)
[k]

XQ
(j)
o ĥ

(j)
k

)
1 + 1

M
(ĥ

(j)
k )HQ

(j)
[k]
ĥ
(j)
k

−
1

M3

K∑
k=1

tr
(

(ĥ
(j)
k )HQ

(j)
[k]
ĥ
(j)
k (ĥ

(j′)
k )HQ

(j′)
[k]

XQ
(j)
o ĥ

(j)
k

)
1 + 1

M
(ĥ

(j)
k )HQ

(j)
[k]
ĥ
(j)
k

� −
1

M3

K∑
k=1

tr
(
ΘkQ

(j)
[k]

(Ĥ
(j)
[k]

)HĤ
(j′)
[k]

Q
(j′)
[k]

XQ
(j)
o

)
1 + 1

M
tr
(
ΘkQ

(j)
[k]

)
−

1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)

·
1
M

tr
(
ΘkQ

(j)
[k]

)
1
M

tr
(
ΘkQ

(j′)
[k]

XQ
(j)
o

)
1 + 1

M
tr
(
ΘkQ′

[k]

)
(63)
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(f)
� −

1

M

K∑
k=1

1
M2 tr

(
ΘkQ(j)(Ĥ(j))HĤ(j′)Q(j′)XQ

(j)
o

)
1 +m

(j)
k

−
1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)

·
m

(j)
k
M

tr
(
ΘkQ

(j′)
0 XQ

(j)
o

)
1 +m

(j)
k

� −Z2 −
1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)

·
m

(j)
k
M

tr
(
ΘkQ

(j′)
0 XQ

(j)
o

)
1 +m

(j)
k

,

where (f) applies multiple times Lemma 6.
Finally, Z5 is calculated as

Z5 �
1

M4

K∑
k=1

tr
(
(ĥ

(j)
k )HQ

(j)
[k]

(Ĥ(j))HĤ(j′)Q
(j′)
[k]
ĥ
(j′)
k (ĥ

(j′)
k )HQ

(j′)
[k]

XQ
(j)
o ĥ

(j)
k

)
(

1 +m
(j)
k

)(
1 +m

(j′)
k

)
=

1

M4

K∑
k=1

tr
(
(ĥ

(j)
k )HQ

(j)
[k]

(Ĥ
(j)
[k]

)HĤ
(j′)
[k]

Q
(j′)
[k]
ĥ
(j′)
k (ĥ

(j′)
k )HQ

(j′)
[k]

XQ
(j)
o ĥ

(j)
k

)
(

1 +m
(j)
k

)(
1 +m

(j′)
k

)
+

1

M4

K∑
k=1

tr
(
(ĥ

(j)
k )HQ

(j)
[k]
ĥ
(j)
k (ĥ

(j′)
k )HQ

(j′)
[k]
ĥ
(j′)
k (ĥ

(j′)
k )HQ

(j′)
[k]

XQ
(j)
o ĥ

(j)
k

)
(

1 +m
(j)
k

)(
1 +m

(j′)
k

)
�

1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)2

·
1

M2 tr
(
ΘkQ

(j)
[k]

(Ĥ
(j)
[k]

)HĤ
(j′)
[k]

Q
(j′)
[k]

)
1
M

tr
(
ΘkQ

(j′)
[k]

XQ
(j)
o

)
(

1 +m
(j)
k

)(
1 +m

(j′)
k

)
+

1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)

·
1
M

tr
(
ΘkQ

(j)
[k]

)
1
M

tr
(
ΘkQ

(j′)
[k]

)
1
M

tr
(
ΘkQ

(j′)
[k]

XQ
(j)
o

)
(

1 +m
(j)
k

)(
1 +m

(j′)
k

)
�

1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)2

·
1

M2 tr
(
ΘkQ(j)(Ĥ(j))HĤ(j′)Q(j′)

)
1
M

tr
(
ΘkQ

(j′)
o XQ

(j)
o

)
(

1 +m
(j)
k

)(
1 +m

(j′)
k

)
+

1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,kρ

(j,j′)
k

)
m

(j)
k m

(j′)
k

tr
(
ΘkQ

(j)
o XQ

(j)
o

)
M(

1 +m
(j)
k

)(
1 +m

(j′)
k

) .

Adding all the Zi gives

1

M2
tr
(
XQ(j)(Ĥ(j))HĤ(j′)Q(j′)

)

�
1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,kρ

(j,j′)
k

)
1
M

tr
(
ΘkQ

(j′)
o XQ

(j)
o

)
(1 +m

(j)
k )(1 +m

(j′)
k )

+
1

M

K∑
k=1

1

M2
tr
(
ΘkQ(j)(Ĥ(j))HĤ(j′)Q(j′)

)

·

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,k ρ

(j,j′)
k

)2
1
M

tr
(
ΘkQ

(j′)
o XQ

(j)
o

)
(1 +m

(j)
k )(1 +m

(j′)
k )

,

which indicates

Γo
j,j′ (X)

=
1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,kρ

(j,j′)
k

)
1
M

tr
(
ΘkQ

(j′)
o XQ

(j)
o

)
(1 +m

(j)
k )(1 +m

(j′)
k )

+
1

M

K∑
k=1

(√
c
(j)
0,kc

(j′)
0,k +

√
c
(j)
1,kc

(j′)
1,kρ

(j,j′)
k

)2

Γo
j,j′(Θk) 1

M
tr
(
ΘkQ

(j′)
o XQ

(j)
o

)
(1 +m

(j)
k )(1 +m

(j′)
k )

.

(64)

It remains then to calculate Γoj,j′(Θk) to conclude the
calculation. Indeed, it is the solution of equation system when
asserting X = Θk,∀k = 1, . . . ,K into (64).

Lemma 9. Let L,R, Ā,Θ ∈ CM×M be of uniformly bounded
spectral norm with respect to M and let Ā be invertible.
Further define x = Θ

1
2 z, x′ = Θ

1
2 z′ and y = Θ

1
2 q. z, z′

satisfies z = ρz′+
√

1− ρ2w. z,q and z′,q,w are mutually
independent as well as independent of L,R, Ā. z, z′,q,w
have i.i.d. complex entries of zero mean, variance 1/M and
finite 8th order moment. Let us define

A = Ā + c0xxH + c1yyH + c2xyH + c2yxH

A′ = Ā + c0x
′x′H + c1yyH + c2x

′yH + c2yx′H,

let c0, c1, c2 ∈ R+ with c0 + c1 = 1 and c0c1 − c22 = 0, and

u =
tr(ΘĀ−1)

M
, uL =

tr(ΘLĀ−1)

M
,

uR =
tr(ΘĀ−1R)

M
, uLR =

tr(ΘLĀ−1R)

M
.

Then we have:

xHLA−1Rx � uLR −
c0uLuR

1 + u

xHLA−1Ry � −c2uLuR

1 + u

xHLA′−1Ry � −ρc2uLuR

1 + u
.

Proof. Focusing first on the first equality gives

xHLA−1Rx− xHLĀ−1Rx

= xHLA−1
(
Ā−A

)
Ā−1Rx

= −xHLA−1
(
c0xxH + c1yyH + c2yxH + c2xyH

)
Ā−1Rx

(a)
� −

(
c0x

HLA−1x + c2x
HLA−1y

)
tr
(
ΘĀ−1R

)
(b)
� −c0

tr
(
ΘLĀ−1

)
M

tr
(
ΘĀ−1R

)
M

1 + c1
tr(ΘĀ−1)

M

1 +
tr(ΘĀ−1)

M

+ c22
tr
(
ΘLĀ−1

)
M

tr
(
ΘĀ−1R

)
M

tr(ΘĀ−1)
M

1 +
tr(ΘĀ−1)

M

,
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where equality (a) is obtained from using Lemma 5 and
Lemma 4 and equality (b) follows from Lemma 7. Similarly,
we turn to the second equality to write

xHLA−1Ry − xHLĀ−1Ry

=xHLA−1
(
Ā−A

)
Ā−1Ry

=− xHLA−1
(
c0xxH + c1yyH + c2yxH + c2xyH

)
Ā−1Ry

(c)
� −

(
c1x

HLA−1y + c2x
HLA−1x

) tr
(
ΘĀ−1R

)
M

(d)
� c1c2

tr
(
ΘLĀ−1

)
M

tr
(
ΘĀ−1R

)
M

tr(ΘĀ−1)
M

1 +
tr(ΘĀ−1)

M

− c2
tr
(
ΘLĀ−1

)
M

tr
(
ΘĀ−1R

)
M

1 + c1
tr(ΘĀ−1)

M

1 +
tr(ΘĀ−1)

M

,

where equality (c) is obtained from using Lemma 5 and
Lemma 4 and equality (d) follows from Lemma 7. For the
third equality,

xHLA′−1Ry

=ρx′LA′−1Ry +
√

1− ρ2Θ
1
2 wLA′−1Ry

(e)
�ρx′LA′−1Ry

�− ρc2uLuR

1 + u
,

where equality (e) is obtained from using Lemma 5.

APPENDIX C
PROOF OF DETERMINISTIC EQUIVALENT THEOREM 2

The proof is built upon results from both [8] and [19] and
novel lemmas Lemma 8 and Lemma 9. We also make exten-
sive use of classical RMT lemmas recalled in Appendix A.
In particular, Lemma 8 extends [19, Lemma 15] and is an
interesting result in itself.

A. Deterministic equivalent for Ψ(j)

We start by finding a deterministic equivalent for Ψ(j).
Apply Lemma 8 with Ĥ(j′) = Ĥ(j), A = IM , which gives

Ψ(j) � Γoj,j(IM )

=
1

M

K∑
`=1

1
M tr

(
Θ`Q

(j)
o Q

(j)
o

)
(1 +m

(j)
` )2

+
1

M

K∑
`=1

Γoj,j(Θ`)
1
M tr

(
Θ`Q

(j)
o Q

(j)
o

)
(1 +m

(j)
` )2

. (65)

From (65), it can be noted that, as expected, this deterministic
equivalent does not depend on σ(j)

` . The total power constraint
for large scale system reads

‖ TDCSI
rZF ‖2F

=

n∑
j=1

µ2
j tr
(
EH
j T

(j)
rZF(T

(j)
rZF)HEj

)
(a)
�

n∑
j=1

µ2
j

P

Γoj,j(IM )
Γoj,j(EjE

H
j )

= P,

where (a) follows from Lemma 8. Therefore, there is a
constraint for the power scaling factors µj :

n∑
j=1

µ2
j

Γoj,j(EjE
H
j )

Γoj,j(IM )
= 1.

B. Deterministic equivalent for hH
k t

DCSI
rZF,k

Turning to the desired signal at RX k, we can write

hH
k t

DCSI
rZF,k =

n∑
j=1

1

M

µj
√
P√

Ψ(j)
hH
k EjE

H
j (C(j))−1ĥ

(j)
k

(a)
�
√
P

n∑
j=1

µj

√
1

Γoj,j(IM )

1
Mh

H
k EjE

H
j (C

(j)
[k] )
−1ĥ

(j)
k

1 + 1
M (ĥ

(j)
k )H(C

(j)
[k] )
−1ĥ

(j)
k

(b)
�
√
P

n∑
j=1

µj

√√√√1− (σ
(j)
k )2

Γoj,j(IM )

1
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where we have defined

C
(j)
[k] =

Ĥ
(j)
[k] (Ĥ

(j)
[k] )

H

M
+ α(j)IM , ∀j

with

(Ĥ
(j)
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ĥ
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(j)
K

]
, ∀j.

Equality (a) follows then from Lemma 3 and the use of the
deterministic equivalent derived for Ψ(j), (b) from Lemma 5,
(c) from Lemma 4, (d) from Lemma 6 and (e) from the
fundamental Theorem 1.

It follows then directly that
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2

.

C. Deterministic Equivalent for Ik
Our first step is to write explicitly the interference term

using the definition of TDCSI and replace Ψ(j) by its deter-
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ministic equivalent.
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To obtain a deterministic equivalent for the second summation
in (66) we use the following relation
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where c(j)0,k, c
(j)
1,k, c

(j)
2,k is defined in (28). It is important to note

that

c
(j)
0,kc

(j)
1,k = (c

(j)
2,k)2, c

(j)
0,k + c

(j)
1,k = 1,

as these relations will be used several times through the proof.
Inserting (67) into (66), the interference term can be denoted

as

Ĩk �
P

M2

n∑
j=1

n∑
j′=1

µjµj′√
Γo
j,j(IM )Γo

j′,j′ (IM )
hH
k EjE

H
j (C

(j)
[k]

)−1

· (Ĥ(j)
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(j′)
[k]

(C(j′))−1Ej′E
H
j′hk

−
P

M3

n∑
j=1

n∑
j′=1

µjµj′√
Γo
j,j(IM )Γo

j′,j′ (IM )
hH
k EjE

H
j (C(j))−1

·
[
δ
(j)
k c

(j)
2,kh

H
k

]
(C

(j)
[k]

)−1(Ĥ
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We proceed by calculating terms A to E in (68) successively,
using Lemma 9. For the sake of simplicity, we only proceed

the calculation of term A and the rest terms can be calculated
in similar manner.
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(j)
[k]

)HĤ
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According to Lemma 6 and Lemma 8, we can have:
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Inserting (70) in (69) and using the fundamental Theorem 1
yields
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where equality (a) follows from c
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1,k = (c
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2,k )2. Proceed

similarly for the remaining 4 terms and add term A, B, C, D
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and E together, we can get
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This concludes the proof.

APPENDIX D
PROOF OF POWER ALLOCATION THEOREM 3

Since µ[t+1] minimize the optimization problem in step 5
in Algorithm 1, we can have

K∑
k=1

λ
[t]
k ·

1
P + (µ[t+1])TBkµ

[t+1]

1
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1
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,

Insert the expression for λ[t]
k in (58), use the notation for uk

defined in (57), the above expression simplifies as

K∑
k=1

uk(µ[t+1])

uk(µ[t])
≤ K.

According to AM-GM inequality

K K

√√√√∏K
k=1 uk(µ[t+1])∏K
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,

we can obtain
K∏
k=1

uk(µ[t+1]) ≤
K∏
k=1

uk(µ[t]).

This shows that the value
∏K
k=1 uk(µ) decreases during the

iteration for updating µ. Since the physical meaning for∏K
k=1 uk(µ) is the sequence product of the MSE at each

RX and therefore
∏K
k=1 uk(µ) > 0. According to monotone

convergence theorem, the iterative algorithm will produce a
decreasing and lower bound series of MSE sequence product
while updating µ, therefore the iterative procedure is surely
to converge to a local optimum. This completes the proof.
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