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Abstract—The low-rank behavior of channel covariance ma-
trices in massive multiple-input multiple-output (MIMO) settings
can be exploited for pilot decontamination and statistical precod-
ing. In this regard, many well-known algorithms are designed
building on the assumption of signal subspace separation among
user equipments (UEs), which is hardly satisfied in practice. To
cope with this issue, our prior work introduced the concept of
covariance shaping to enforce statistical orthogonality by exploit-
ing the multiple antennas at the UE-side in the simple case of two
UEs. This paper focuses on: i) extending the covariance shaping
approach to a more general multi-user setting, and ii) evaluating
its performance in several realistic scenarios, providing useful
insights into its behavior and practical implementation.

Index Terms—Covariance shaping, massive MIMO, multi-user
MIMO, pilot contamination, statistical beamforming.

I. INTRODUCTION

Massive multiple-input multiple-ouput (MIMO), i.e., a type
of multi-user MIMO in which the number of antennas at the
base station (BS) is much larger than the number of served user
equipments (UEs) [1], is envisioned to be a crucial component
of the upcoming 5G standard [2]. Several important works
have investigated the role of statistical information in massive
MIMO as a means to reduce the complexity of precod-
ing/decoding design as well as the overhead associated with
pilot-aided training and feedback of channel state information
[3]–[8]. In this regard, a critical aspect of massive MIMO
communications is related to the low-rank behavior exhibited
by the channel covariance matrices, which is determined by
the angle spread spanned by the multipath’s angles of arrival
(AoAs) at the BS in the case of uniformely-spaced linear
arrays [3], [5]. Remarkably, this property allows the BS to
distinguish distant UEs with non-overlapping AoAs based on
statistical information only. However, perfect separation of
the UEs’ signal subspaces is very unlikely in practice, as
this is dictated by the physical scattering environment and is
generally beyond the designer’s control.

To cope with this issue, our prior work [9] proposes to
exploit the inherent spatial selectivity properties at modern
UEs, which are equipped with a small-to-moderate number of
antennas, towards a suitable shaping of the channel covariance
matrix performed at the UE-side. This approach, referred to as
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covariance shaping, is obtained by means of a statistical beam-
forming that effectively allows the UEs to excite a suitable
subset of all the possible propagation directions towards the BS
with the aim of reducing their spatial correlation. In particular,
covariance shaping was shown in [9] to successfully enforce
partial or full orthogonality between the signal subspaces
of two UEs placed close to each other in the context of
pilot-contaminated channel estimation [10], outperforming the
scenario where the antennas at the UEs are directly used for
spatial multiplexing.

In this paper, we analyze in depth the performance of such
covariance shaping method in a massive MIMO system. To
do so, we firstly extend the work in [9], which focused on
the case of two UEs, to a more general multi-user setting.
Then, we explore the behavior of such approach in different
realistic scenarios, pointing out its effectiveness in separating
the channel statistics of different UEs. Finally, we focus
on practical implementation aspects of covariance shaping
and show substantial performance benefits over a reference
scenario where there is no concern for pilot contamination.

II. SYSTEM MODEL

A. Channel Model

This paper considers a single-cell multi-user MIMO sys-
tem where a BS equipped with M antennas serves K UEs
equipped with N antennas each. We use hk,m ∈ CN×1 and
gk,n ∈ C1×M to denote the channel vector between the
mth BS antenna and UE k and the channel vector between
the BS and the nth antenna of UE k, respectively. The
channel matrix between the BS and UE k is thus given by
Hk , [hk,1 . . .hk,M ] = [gTk,1 . . .g

T
k,N ]T ∈ CN×M . We

assume that vec(Hk) ∼ CN (0,Σk) [11, Ch.3], where the
channel covariance matrix Σk ∈ CNM×NM can be written as

Σk ,


Σk,11 Σk,12 . . . Σk,1M

ΣH
k,12 Σk,22

...
...

. . .
ΣH
k,1M . . . Σk,MM

 (1)

with Σk,mn , E[hk,mhH
k,n] ∈ CN×N being the cross-

covariance matrix between the mth and nth columns of Hk.
Lastly, the channel covariance matrix seen by UE k is defined
as Rk , E[HkH

H
k ] ∈ CN×N ; note that, for the downlink

transmission, this represents the receive covariance matrix.



B. Uplink Pilot-Aided Channel Estimation

Assuming a time division duplex (TDD) setting, the channel
matrices {Hk}Kk=1 are estimated at the BS via uplink pilots.
Let P < K denote the number of orthogonal pilots and let
Sp , {k : UE k has pilot p} be the set of UEs that share
the same pilot matrix Pp ∈ CN×τ , with p = 1, . . . , P , where
{PpP

H
p = IN}Pp=1 and {PpP

H
q = 0}q 6=p. We use Y ∈ CM×τ

to denote the receive signal at the BS during the uplink pilot-
aided channel estimation phase, which is given by

Y ,
√
%

P∑
p=1

∑
k∈Sp

HH
k Pp + Z (2)

where % is the normalized pilot transmission power and
Z ∈ CM×τ is the normalized noise at the BS with elements
distributed as CN (0, 1). The minimum mean square error
(MMSE) estimate of gk,n, with k ∈ Sp, reads as (see, e.g.,
[6])

ĝH
k,n ,

1
√
%
Φk,nn

( ∑
j∈Sp

Φj,nn +
1

%
IM

)−1
YPH

p (3)

where Φk,nn , E[gT
k,ng∗k,n] represents the covariance matrix

of gk,n. Finally, the estimate of the channel matrix Hk is given
by Ĥk , [ĝT

k,1 . . . ĝ
T
k,N ]T.

C. Downlink Data Transmission

Focusing on the downlink data transmission, let sk ∈ CLk×1

denote the data symbol vector corresponding to UE k, with
E[sks

H
k ] = ILk

, and s , [sT1 . . . s
T
K ]T ∈ CL×1, with total

number of transmitted symbols given by L ,
∑K
k=1 Lk.

Hence, the signal transmitted by the BS may be written as x ,
Ws =

∑K
k=1 Wksk ∈ CM×1, where W , [W1 . . .WK ] ∈

CM×L is the multi-user precoding matrix (power constrained
as ‖W‖2F = 1), where Wk , [wk,1 . . .wk,Lk

] ∈ CM×Lk is
the precoding matrix corresponding to sk. The receive signal
at UE k during the downlink data transmission phase is given
by

yk ,
√
ρHkWksk +

√
ρ
∑
j 6=k

HkWjsj + zk (4)

where ρ is the normalized transmit power at the BS and
zk ∼ CN (0, IN ) is the normalized noise at UE k. Fi-
nally, UE k decodes sk as ŝk , VH

k yk, where Vk ,
[vk,1 . . .vk,Lk

] ∈ CN×Lk is the corresponding combining
matrix (power constrained as ‖Vk‖2F = 1). The sum rate of
such multi-user MIMO system is1

R ,
K∑
k=1

Lk∑
`=1

log2

(
1+

|vH
k,`Hkwk,`|2∑

j 6=k |vH
k,`Hkwj,`|2 + ρ−1‖vk,`‖2

)
.

(5)

1In Section IV, we use block-diagonalization precoding and MMSE com-
bining for Wk and Vk , respectively.

III. COVARIANCE SHAPING AT THE UE-SIDE

Given two UEs k and j, a massive MIMO BS is able to
spatially distinguish their channel vectors provided that they
exhibit statistical orthogonality. This means that the product
of their covariance matrices is the zero matrix, i.e., ΣkΣj =
0 [6]. The previos condition occurs when the covariance
matrices are rank deficient and share the same eigenbasis.
However, such property is rarely satisfied in practice and,
in this respect, covariance shaping was proposed in [9] as a
means to enforce statistical orthogonality by acting at the UE-
side. By preemptively applying statistical beamforming, the
UEs aim at reducing interference by separating their channel
statistics. Let vk ∈ CN×1 be the statistical beamforming
vector applied by UE k referred to as the covariance shaping
vector, whith ‖vk‖2 = 1. Hence, the corresponding MIMO
channel between the BS and each UE k is transformed
into an effective multiple-input single-output (MISO) channel,
given by ḡk , vH

k Hk ∈ C1×M , with ḡk ∼ CN (0, Φ̄k),
E[‖ḡk‖2] = vH

k Rkvk, and effective channel covariance matrix
defined as (see [9] for details)

Φ̄k ,
(
(IM ⊗ vH

k )Σk(IM ⊗ vk)
)T

(6)

where the operator ⊗ indicates the Kronecker product. The
price of such approach is a reduction in the spatial degrees
of freedom at the UEs, since the BS can now send only one
stream per UE (i.e., Lk = 1, k = 1, . . . ,K). Note that the
spatial multiplexing capability remains at the BS, which can
still multiplex one stream per UE.

To estimate the effective channels resulting from covariance
shaping, the BS assigns the same pilot vector pp ∈ C1×τ to
all UEs k ∈ Sp, with {‖pp‖2 = 1}Pp=1 and {pppH

q = 0}q 6=p.
We use Ȳ ∈ CM×τ to denote the receive signal at the BS
during the uplink pilot-aided channel estimation phase, which
is given by (cf. (2))

Ȳ ,
√
%

P∑
p=1

∑
k∈Sp

ḡH
k pp + Z (7)

whereas the MMSE estimate of ḡk, with k ∈ Sp, reads as

ˆ̄gH
k ,

1
√
%
Φ̄k

( ∑
j∈Sp

Φ̄j +
1

%
IM

)−1
ȲpH

p . (8)

On the other hand, the receive signal at UE k during the
downlink data transmission phase is given by (cf. (4))

ȳk ,
√
ρ ḡkwksk +

√
ρ
∑
j 6=k

ḡkwjsj + z̄k (9)

with z̄k = vH
k zk ∼ CN (0, 1), and the resulting sum rate is2

R̄ ,
K∑
k=1

log2

(
1 +

|ḡkwk|2∑
j 6=k |ḡkwj |2 + ρ−1

)
. (10)

2In Section IV, we assume zero-forcing precoding for wk .



Since each UE preemptively applies statistical beamforming,
there is no need to compute a combining matrix as in Sec-
tion II-C, thus reducing the related system overhead.

Given the model in [9], two closely spaced UEs k and j
attempt to enforce statistical orthogonality between them by
applying the covariance shaping vectors vk and vj , respec-
tively. Such vectors can be obtained as the solution to the
following optimization problem:

min
vk,vj

Ω(vk,vj)

PkPj

s.t. ‖vk‖2 = ‖vj‖2 = 1

(11)

where

Ω(vk,vj) , tr(Φ̄kΦ̄j) (12)

=

M∑
m,n=1

vH
k Σk,mnvkv

H
j Σj,nmvj (13)

represents a measure of statistical orthogonality between the
two UEs and Pk , vH

k Rkvk (resp. Pj , vH
j Rjvj) represents

the average power transmitted to UE k (resp. to UE j).
Problem (11) produces two statistical beamformers that tend
to reduce the spatial interaction while preserving the useful
power for each UE.

A key point behind covariance shaping lies in exploiting
non-Kronecker channel structures. The Kronecker channel
model (see, e.g., [12]) describes scenarios in which the channel
statistics perceived by transmitter and receiver are indepen-
dent: this means that it is not possible for any of the two
to modify the channel statistics perceived by the other. Such
property is typical, for instance, of physical environments
where the UE is surrounded by a ring of local scatterers
(the so-called one-ring model [3]). In this case, the spatial
properties of the channel to the BS cannot be modified by
beamforming towards a certain direction due to the proxim-
ity of the local scatterers. Hence, under Kronecker channel
models, the orthogonality of the channel statistics remains a
property of the particular physical environment and cannot be
controlled at the UE-side. As a matter of fact, it was shown in
[9] that, in this case, the objective of (11) does not depend on
the choice of the covariance shaping vectors. For this reason,
in the rest of the paper, we assume a non-Kronecker channel
structure.

Consider now a generalization of the work in [9] in which
the BS is serving K UEs, with K ≥ 2. Then, for each set Sp,
the metric in (11) generalizes to

min
{vk}k∈Sp

∑
k∈Sp

∑
j∈Sp\{k}

Ω(vk,vj)

PkPj

s.t. ‖vk‖2 = 1, ∀k ∈ Sp.
(14)

Note that the above optimization problem represents the sum
of all the possible combinations of (11) for the UEs in each
set Sp, where the separation between different sets is ensured
by the use of orthogonal pilot sequences. Assuming that the
BS has perfect knowledge of the covariance matrices of all

UEs,3 it can solve the P independent optimization problems in
(14) (i.e., one for each set Sp) and communicate the resulting
covariance shaping vectors to the UEs via proper signaling.
Note that such statistical beamformers are re-computed by the
BS with the same rate with which the covariance matrices are
re-estimated. As proposed in [9], a suboptimal solution for
(14) can be efficiently computed via alternate optimization:
for each UE k ∈ Sp, fixing the covariance shaping vector
relative to the other UEs j ∈ Sp \ {k}, problem (14) reduces
to

min
vk

vH
k Qkvk

vH
k Rkvk

s.t. ‖vk‖2 = 1, ∀k ∈ Sp
(15)

where we have defined

Qk ,
∑

j∈Sp\{k}

M∑
m,n=1

Σk,mnη
∗
j,mn (16)

and ηj,mn(vj) , vH
j Σj,mnvj/(v

H
j Rjvj). Problem (15) is

in the form of generalized Rayleigh quotient and its solution
corresponds to the minimum eigenvector of R−1k Qk. A similar
optimization problem is obtained for the other UEs, and the
procedure is repeated until convergence is reached, i.e., until
the covariance shaping vectors do not change substantially
over consecutive iterations.

IV. PERFORMANCE EVALUATION

In this section, we present numerical results to evaluate the
performance gains of the covariance shaping method at the
UE-side. We thus compare the following two scenarios:

1) Reference scenario. The BS estimates the MIMO
channels {Hk}Kk=1 using P < K orthogonal pilot
sequences during the uplink training phase and obtains
the corresponding estimates {Ĥk}Kk=1 as described in
Section II-B. In the downlink data transmission phase,
the BS adopts block-diagonalization precoding on the
estimated channels [13]. Assuming that each UE k has
perfect knowledge of both the estimated channel Ĥk

available at the BS and its corresponding precoding
matrix Wk, it applies the MMSE combining matrix4

Vk =

(
ĤkWkW

H
k ĤH

k + 1
ρIN

)−1
ĤkWk

‖
(
ĤkWkWH

k ĤH
k + 1

ρIN
)−1

ĤkWk‖F
. (17)

2) Covariance shaping scenario. The BS computes the
covariance shaping vectors and communicates to each
UE k its corresponding vk on a separate feedback
channel. Then, the BS estimates the effective MISO
channels {ḡk}Kk=1 resulting from covariance shaping
using P < K orthogonal pilot sequences during the
uplink training phase and obtains the corresponding

3Note that this is a reasonable assumption due to the long-term validity of
the channel statistics.

4Note that this implies extra communication resources to feed back this
information to the UE. Moreover, we neglect the possible further degradation
in the estimated channels fed back by the BS to the UEs.
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Figure 1. Position of the BS, UEs, and scatterers in the LoS scenario.

Figure 2. Antenna diagram of the covariance shaping vectors at the UE-side
obtained solving (14), with N = 2 and for different values of the Rice factor
KLoS.

estimates ˆ̄gk as described in Section III. In the downlink
data transmission phase, the BS adopts zero-forcing
precoding on the estimated channels, i.e.,

W =
ˆ̄HH( ˆ̄H ˆ̄HH)−1

‖ ˆ̄HH( ˆ̄H ˆ̄HH)−1‖F
(18)

where we have defined ˆ̄H , [ˆ̄gT
1 . . . ˆ̄g

T
K ]T.

We consider a propagation environment consisting of a line-
of-sight (LoS) path and a set of scattered paths between the
BS and the UEs. The expression of Hk follows the discrete
physical channel model (see, e.g., [14]) with both LoS and
scattered components. Let a(θ) ∈ CN×1 and b(φ) ∈ CM×1
denote the uniform linear array responses of UE k and of the
BS defined as

a(θ) ,
1√
N

[1 e−2πδ sin(θ) . . . e−2π(N−1)δ sin(θ)]T, (19)

b(φ) ,
1√
M

[1 e−2πδ sin(φ) . . . e−2π(M−1)δ sin(φ)]T (20)

respectively, where δ is the ratio between the antenna spacing
and the signal wavelength. Using KLoS to denote the ratio
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Figure 3. Optimized metric in (11) versus the Rice factor KLoS, with M =
64, N = 2, and K = 2.
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Figure 4. Average sum rate of the reference and the covariance shaping
scenario versus the Rice factor KLoS, with M = 64, N = 2, K = 2, and
receive SNR at the UEs of 20 dB.

between the power of the LoS path and any scattered path,
the channel matrix between the BS and UE k is given by

Hk =

√
KLoS

KLoS + 1

αk,LoS

d
β/2
k,LoS

a(θk,LoS)bH(φk,LoS)

+

√
1

KLoS + 1

U∑
u=1

αk,u

d
β/2
k,u

a(θk,u)bH(φk,u) (21)

where U is the total number of scattered paths, αk,u (resp.
αk,LoS) is the random phase delay for the scattered path u
(resp. for the LoS path), dk,u (resp. dk,LoS) is the distance
of the scattered path u (resp. of the LoS path), β = 2 is
the pathloss exponent, while θk,u and φk,u (resp. θk,LoS and
φk,LoS) are the angles of impingement of the scattered path
u (resp. of the LoS path) on the antenna array of UE k and
the BS, respectively. Lastly, we consider N = 2 antennas at
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Figure 5. Position of the BS, UEs, and scatterers in the NLoS scenario.

Figure 6. Antenna diagram of the covariance shaping vectors at the UE-side
obtained solving (14) and (15) (alternate optimization) in the NLoS scenario,
with N = 2.

the UEs and, unless otherwise stated, M = 64 antennas at the
BS.

A. Two-UE Setting

In this section we firstly focus on the case of K = 2
UEs in order to better present the key characteristics of the
proposed covariance shaping method. In particular, we analyze
the impact of the physical scattering environment as well
as the number of BS antennas M . Indeed, the solution to
(14) and (15) depends only on channel statistics and, hence,
on the physical scattering environment. Thus, the solution to
these problems is to beamform along directions that trade
off between preserving the useful power and enforcing sta-
tistical orthogonality. Consider first the scenario shown in
Figure 1, referred to as LoS scenario, where a set of scatterers
are randomly placed within two separate clusters, creating
three macro channel directions, i.e., the two sets of scattered
paths and the LoS path. In this setting, the latter carries
generally more power than any other scattered path and thus
represents a relatively strong channel direction. As a result,
the covariance shaping might be less effective in enforcing

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

Receive SNR at the UEs [dB]

A
ve
ra
ge

su
m

ra
te

[b
p
s/
H
z]

Covariance shaping: R̄, M = 16
Reference: R, M = 16
Covariance shaping: R̄, M = 32
Reference: R, M = 32
Covariance shaping: R̄, M = 64
Reference: R, M = 64

Figure 7. Average sum rate of the reference and the covariance shaping
scenario versus receive SNR at the UEs with N = 2, K = 2, and for
different values of M .

statistical orthogonality, since the beamformers will deviate
only slightly from the LoS to avoid an excessive loss of
power. Such comparison is depicted in Figure 2 where, as
the Rice factor KLoS increases, the antenna diagram of the
covariance shaping vectors for two closely spaced UEs tend
to align towards the LoS direction. In addition, Figure 3
shows the solution to problem (11) versus the Rice factor,
where the monotonically decreasing trend results from the
increasing power received by the UEs through the LoS path.
In Figure 4, the average sum rate of the covariance shaping
approach versus the reference scenario is shown assuming
receive signal-to-noise ratio (SNR) of 20 dB. As the Rice
factor increases, the two curves get closer since the covariance
shaping is less effective in restoring orthogonality. On the
contrary, consider the scenario in Figure 5, referred to as NLoS
scenario, where the LoS path is absent, obstructed by a set
of randomly placed scatterers: in this setting the covariance
shaping vectors select nearly orthogonal channel directions,
as shown in Figure 6. Lastly, Figure 7 shows how covariance
shaping is more effective as the number of antennas at the BS
increases. This is due to the enhanced spatial resolution at the
BS-side.

B. General Multi-User Setting

In this section, we evaluate the performance of the proposed
covariance shaping method in a multi-user MIMO scenario,
with K ≥ 2. To do so, by assuming that the BS has an estimate
of the position of each UE (see, for instance, [15]), we divide
the K UEs into the P sets {Sp}Pp=1 via the following two
alternative clustering strategies (CSs), as shown in Figure 8:

1) Clustering strategy 1 (CS 1). The clusters are formed
via the K-means clustering algorithm in order to parti-
tion the UEs in P spatially disjoint sets.
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Figure 8. Proposed clustering strategies, with K = 6 and P = 2.
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Figure 9. Average sum rate of the reference and the covariance shaping
scenario versus receive SNR at the UEs, with M = 64, N = 2, P = 2,
K = 6, KLoS = 2, and for the two different CSs for pilot assignment.

2) Clustering strategy 2 (CS 2). The UEs are divided into
P clusters by maximizing the sum distance between all
pairs of UEs in the same cluster.

Hence, covariance shaping is applied independently per-cluster
and inter-cluster separation is ensured by the use of orthog-
onal pilots. The scenario taken into consideration includes of
K = 6 closely spaced UEs divided into P = 2 clusters in the
presence of a LoS, as in Figure 1, with Rice factor KLoS = 2.
Figure 9 shows the average sum rate for the reference and
covariance shaping scenarios versus the receive SNR at the
UEs, assuming that the latter is the same as the SNR at the BS
during the uplink training phase. The enhanced performance
of covariance shaping stems from substantially less pilot-
contaminated channel estimates, which result in more efficient
downlink precoding. Indeed, the latter takes advantage of both
superior quality of channel estimates and statistical spatial
separation enforced by the UEs with their covariance shaping
vectors. The block diagonalization in the reference scenario
tends instead to cancel both interfering and useful channels due
to severely interference-limited channel estimates. In addition,
CS 2 outperforms CS 1 over the whole SNR range, given that
the UEs in each cluster have higher relative distance, which
results in more effective covariance shaping.

V. CONCLUSIONS

This paper further investigates covariance shaping for mas-
sive MIMO systems, which was proposed in our prior work
[9], and numerically evaluates its performance in a general
multi-user MIMO setting. In this respect, multi-antenna UEs
are divided into clusters sharing the same pilot sequence and
attempt to enforce intra-cluster statistical orthogonality by
means of a suitably designed statistical beamformer. Assuming
perfect knowledge of the channel statistics, the BS can assign
both the pilot sequences and the covariance shaping vectors
to the UEs. The price for such approach is a reduction in the
spatial degrees of freedom at the UEs. We apply covariance
shaping in several realistic scenarios, providing insights into its
behavior and practical implementation. Numerical results show
that this method outperforms a reference scenario where the
multiple antennas at the UEs are used for spatial multiplexing
only, without concern for pilot contamination.
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