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Abstract—The low-rank behavior of massive multiple-input
multiple-output (MIMO) channel covariance matrices and its
exploitation for pilot decontamination and statistical beamform-
ing are well documented. Existing algorithms, however, rely
on signal subspace separation among user equipments (UEs)
and, as such, they tend to fail when the distance between UEs
becomes small. This paper proposes a solution to this problem
via covariance shaping at the UE-side in the case where the
UEs are equipped with (a small number of) multiple antennas.
The key resides in: i) exploiting general non-Kronecker MIMO
channel structures that allow the transmitter to suitably alter the
channel statistics perceived by the base station, and ii) sacrificing
some spatial degrees of freedom at each UE so as to improve the
statistical orthogonality between closely spaced UEs. Numerical
results illustrate the sum-rate performance gains of the proposed
covariance shaping method with respect to existing ones.

Index Terms—Covariance shaping, massive MIMO, pilot con-
tamination, statistical beamforming.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is ex-
pected to be a key enabler towards successful 5G deployments
[1], [2]. While the promises of massive MIMO are numerous
and well investigated, some challenges remain and are mainly
related with the high dimensionality of the channel state
vectors associated with each user equipment (UE). Such
difficulties stem from both the complexity of implementing
precoders/decoders that involve large matrix operations and
the overhead linked with the pilot-aided training and feedback
of channel state information.

In response to these issues, several important works have
pointed out the significant role played by statistical infor-
mation in the massive MIMO regime [3]–[8]. In particular,
massive MIMO channel covariance matrices tend to crystallize
into low-rank matrices whose rank is dictacted by the angle
spread spanned by the multipath’s angles of arrival (AoAs)
when inpinging on the massive array [4], [6]. This low-rank
behavior of the channel covariance matrices can be leveraged,
for instance, to reduce feedback overhead as in [6], [8],
[9]. Alternatively, it can be exploited to mitigate interference
when sufficiently distant UEs exhibit non-overlapping signal
subspaces: in fact, two distant UEs with AoAs that do not
overlap at the base station (BS) can be discriminated based
on statistical information only, both in the channel estimation
stage (when using non-orthogonal pilot sequences [4]) and in
the precoding stage [8]. On the downside, the performance of
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schemes such as [4], [6] relies on the structure of the UE’s
channel covariance matrix, i.e., its rank and the degree of
separation from the other UEs’ signal subspaces: these char-
acteristics are given by the physical scattering environment
and are generally beyond the designer’s control.

Building on the fact that most current and future UEs are,
and will be, equipped with a small-to-moderate number of
antenna elements, this paper proposes to exploit their inherent
spatial selectivity properties towards a suitable shaping of
the channel covariance matrix performed at the UE-side.
Our covariance shaping method is obtained by means of a
statistical beamforming that effectively allows the UE to excite
a suitable subset of all the available propagation paths between
itself and the BS. In particular, we show that this method
is effective in restoring partial or full orthogonality between
the signal subspaces of UEs that are placed too close to
each other. In turn, this scheme can be exploited for tasks
such as pilot decontamination in time division duplex (TDD)
systems and statistical beamforming at the BS. Specifically,
in this paper, we propose a covariance shaping method for
massive MIMO systems that is applicable when the UEs are
equipped with at least two antenna elements. The antennas
at the UEs are combined to enforce statistical orthogonality
between UEs in the context of pilot-contaminated channel
estimation [10]. We show substantial gains in terms of sum
rate over a reference scenario in which the antennas at the UEs
are directly used for spatial multiplexing without any concern
for pilot contamination.
Notation. We use (·)H, (·)T, and (·)∗ to denote the Hermitian,
transpose, and conjugate operators, whereas ‖·‖F is the Frobe-
nius norm. The operator ⊗ indicates the Kronecker product,
II is the I-dimensional identity matrix, and (aij)

I
i,j=1 denotes

the I-dimensional square matrix with indexed elements aij .

II. SYSTEM MODEL

Consider a multiuser massive MIMO system where a BS
equipped with M antennas communicates with K UEs with N
antennas each. Let Hk , [hk,1 . . .hk,M ] = [gTk,1 . . .g

T
k,N ]T ∈

CN×M denote the channel matrix between the BS and UE k,
where hk,m ∈ CN×1 and gk,n ∈ C1×M are the channel
vectors between the mth BS antenna and UE k and between
the nth antenna of UE k and the BS, respectively. Focusing on
the downlink transmission, we use sk ∈ CLk×1 to denote the
data symbol vector transmitted to UE k, with E[sks

H
k ] = ILk

,
and s , [sT

1 . . . s
T
K ]T ∈ CL×1, with L ,

∑K
k=1 Lk being the

total number of transmitted symbols. The multiuser precoding



matrix W , [W1 . . .WK ] ∈ CM×L, with ‖W‖2F = 1, is
used at the BS to precode s, where Wk , [wk,1 . . .wk,Lk

] ∈
CM×Lk is the precoding matrix corresponding to sk. The
receive signal at UE k is then expressed as

yk ,
√
ρHkWs + zk (1)

=
√
ρHkWksk +

√
ρ
∑
j 6=k

HkWjsj + zk (2)

where ρ is the normalized transmit power at the BS and zk ∼
CN (0, IN ) is the normalized noise at UE k. Finally, UE k
decodes sk as ŝk , VH

k yk, where Vk , [vk,1 . . .vk,Lk
] ∈

CN×Lk , with ‖Vk‖2F = 1, is the corresponding combining
matrix. The sum rate of such system is given by

R ,
K∑
k=1

Lk∑
`=1

log2

(
1+

|vH
k,`Hkwk,`|2∑

j 6=k |vH
k,`Hkwj,`|2 + ρ−1‖vk,`‖2

)
.

(3)

We assume a general channel model where the entries
of Hk satisfy vec(Hk) ∼ CN (0,Σk) [11, Ch.3]: here, the
channel covariance matrix Σk ∈ CNM×NM may be written
as

Σk ,


Σk,11 Σk,12 . . . Σk,1M

ΣH
k,12 Σk,22

...
...

. . .
ΣH
k,1M . . . Σk,MM

 (4)

where Σk,mn , E[hk,mhH
k,n] ∈ CN×N represents the cross-

covariance matrix between the mth and nth columns of Hk.
Lastly, we define the covariance matrix seen by UE k as
Rk , E[HkH

H
k ] ∈ CN×N and the covariance matrix relative

to UE k seen at the BS as Tk , E[HH
k Hk] ∈ CM×M ,

respectively.1

III. COVARIANCE SHAPING AT THE UE-SIDE

In a massive MIMO setting, the BS can spatially separate
the signals corresponding to different UEs if their covariance
matrices lie on orthogonal supports, i.e., if ΣkΣj = 0 for
a given pair of UEs k and j. This is a property determined
by the physical scattering environment that is rarely satisfied
in practice [3]. In this context, we propose a covariance
shaping method at the UE-side that relies uniquely on sta-
tistical information of the channels, aiming at enforcing the
aforementioned orthogonality of channel statistics. The UEs
preemptively apply a transmit/receive2 beamforming vector
(different for each UE) that aims at spatially separating their
transmissions, thus drastically reducing interference. Hence,
the MIMO channel is transformed into an effective multiple-
input single-output (MISO) channel by combining the signal
transmitted or received at the UE’s antennas.

1In case of downlink transmission, Rk and Tk represent the receive and
transmit covariance matrices, respectively.

2Although this paper focuses on the downlink transmission, the concept of
covariance shaping is equally meaningful in the uplink direction.

Let vk ∈ CN×1 denote the transmit/receive beamforming
vector preemptively applied by UE k, with ‖vk‖2 = 1: in the
rest of the paper, we refer to vk as covariance shaping vector.
The effective MISO channel between the BS and UE k is
given by ḡk , vH

k Hk ∈ C1×M and is distributed as ḡk ∼
CN (0, Φ̄k), where Φ̄k ∈ CM×M is the effective covariance
matrix defined as

Φ̄k , E[ḡT
k ḡ∗k] (5)

=
(
(IM ⊗ vH

k )Σk(IM ⊗ vk)
)T

(6)

with Σk introduced in (4), and E[‖ḡk‖2] = vH
k Rkvk. Keeping

our focus on the downlink transmission, the BS now transmits
only one symbol sk ∈ C to each UE k (i.e., Lk = 1,
k = 1, . . . ,K): thus, we have s = [s1 . . . sK ]T ∈ CK×1 and
the multiuser precoding matrix becomes W = [w1 . . .wK ] ∈
CM×K , where wk ∈ CM×1 is the precoding vector corre-
sponding to sk. The receive signal at UE k reads as

ȳk ,
√
ρ ḡkWs + z̄k (7)

=
√
ρ ḡkwksk +

√
ρ
∑
j 6=k

ḡkwjsj + z̄k (8)

with z̄k , vH
k zk ∼ CN (0, 1), and the sum rate of such system

is finally given by

R̄ ,
K∑
k=1

log2

(
1 +

|ḡkwk|2∑
j 6=k |ḡkwj |2 + ρ−1

)
. (9)

Hence, with the proposed covariance shaping method, we
sacrifice some spatial degrees of freedom at the UE-side (i.e.,
the possibility of transmitting multiple streams to each UE) in
exchange for improved effective channel separation between
the UEs.

Consider two UEs k and j with similar channel statistics,
i.e., such that Σk ' Σj :3 our objective is to design the
covariance shaping vectors vk and vj in order to reduce the
spatial correlation of the two UEs. In this respect, we use

Ωkj(vk,vj) , tr(Φ̄kΦ̄j) (10)

= tr
(
(IM ⊗ vH

k )Σk(IM ⊗ vk)

× (IM ⊗ vH
j )Σj(IM ⊗ vj)

)
(11)

=
∑M
m,n=1 vH

k Σk,mnvkv
H
j ΣH

j,mnvj (12)

as a metric to measure such a correlation. Observe that
Ωkj(vk,vj) = 0 implies Φ̄kΦ̄j = 0, i.e., that Φ̄k and Φ̄j lie
on orthogonal supports [3]: considering the eigenvalue decom-
position Φ̄k = UΦ̄k

ΛΦ̄k
UH

Φ̄k
, this occurs when UΦ̄k

= UΦ̄j

and tr(ΛΦ̄k
ΛΦ̄j

) = 0 (i.e., Φ̄k and Φ̄j need to be rank
deficient). Clearly, in the general case, Φ̄kΦ̄j = 0 imposes
M2 conditions whereas only 2N variables can be adjusted:
this means that the resulting system of equations can be solved
when N ≥ M2

2 , which is generally not verified in practice.
Some of these conditions might be removed by assuming a

3In general, two UEs have similar channel statistics when the distance
between them is much smaller than their distance to the scatterers and to the
BS.



specific channel model (e.g., [12], [13]) that can reveal the
low-rank structure of the covariance matrices, which will be
considered in future works. Nevertheless, it is of interest to
minimize, in the general case, the spatial correlation between
UEs k and j as

min
vk,vj

Ωkj(vk,vj)

s.t. ‖vk
∥∥2

= ‖vj
∥∥2

= 1,
vH
k Rkvk ≥ pk,

vH
j Rjvj ≥ pj

(13)

where the minimum power constraint vH
k Rkvk ≥ pk ensures

that the effective channel separation is not achieved by beam-
forming towards directions carrying exceedingly low power.
In this regard, the values of pk and pj can be chosen so as
to guarantee a sufficient receive signal-to-noise ratio (SNR) at
the UEs during the downlink transmission or at the BS during
the uplink channel estimation. Alternatively, one can minimize
the spatial correlation between UEs k and j over the average
power of their effective channels as

min
vk,vj

Ωkj(vk,vj)

(vH
k Rkvk)(vH

j Rjvj)

s.t. ‖vk
∥∥2

= ‖vj
∥∥2

= 1.

(14)

Unfortunately, a closed-form solution to (13) and (14) is
not available in the general case and one needs to resort to
exhaustive search algorithms. A suboptimal, low-complexity
solution to problem (14) can be achieved, for instance, via
alternate optimization. For a fixed vj , defining ηj,mn(vj) ,
vH
j Σj,mnvj/(v

H
j Rjvj), we have the following optimization

problem in vk:

min
vk

vH
k

(∑M
m,n=1 η

∗
j,mn(vj)Σk,mn

)
vk

vH
k Rkvk

s.t. ‖vk
∥∥2

= 1.

(15)

where the objective has the form of a generalized Rayleigh
quotient and thus its solution is given by the minimum
eigenvector of R−1

k

(∑M
m,n=1 η

∗
j,mn(vj)Σk,mn

)
. A similar

optimization problem in vj is obtained for a fixed vk. The
values of vk and vj are obtained by alternating the mini-
mization with respect to one of the two, until the difference
between the objective in consecutive iterations is sufficiently
small. Note that each UE can obtain its covariance shaping
vector without any information exchange with the other UE,
provided that the channel statistics of the latter are known.

The result of (14) and (15) heavily depends on the physical
scattering environment. Consider the scenario in Figure 1
where there is no direct line-of-sight (LoS) path between the
UEs and the BS: the covariance shaping vectors tend to align
with the channel directions that are the most orthogonal to
each other while carrying sufficient power, which results in
a nearly interference-free scenario, as shown in Figure 2. In
the case where a LoS path exists, this would generally carry
more power than any other path and, therefore, the directions
selected by the covariance shaping vector would not sensibly

deviate from it: this would be necessary to avoid an excessive
loss in useful power, although it might not be effective in
restoring the orthogonality between the signal subspaces of
the UEs.

A. Kronecker Channel Model

Let us consider the particular case where the channels Hk

are modeled using the Kronecker channel model [14], i.e.,
Hk = R

1
2

kH
(w)
k T

1
2

k , with Rk and Tk defined in Section II, and
vec(H

(w)
k ) ∼ CN (0, INM ). Under this model, the channel

covariance matrix in (4) is expressed as Σk = TT
k ⊗Rk with

block elements given by Σk,mn = t∗k,mnRk, where tk,mn
denotes the (m,n)th element of Tk. Hence, we have that

Ωkj(vk,vj) = tr
(
(vH
k ΣH

k,mnvk)Mm,n=1(vH
j ΣH

j,mnvj)
M
m,n=1

)
(16)

= tr
(
(tk,mnvH

k Rkvk)Mm,n=1

× (tj,mnvH
j Rjvj)

M
m,n=1

)
(17)

= tr(TkTj)v
H
k Rkvkv

H
j Rjvj . (18)

It is straightforward to see that, in this case, the solution
to problem (13) is attained when the covariance shaping
vectors vk and vj are chosen as the minimum eigenvectors
of Rk and Rj , respectively, that satisfy the minimum power
constraints (note that these can be computed independently
by UEs k and j without any information exchange between
them). However, this strategy corresponds to beamforming
towards directions carrying low power. On the other hand, the
objective in (14) reduces to tr(TkTj)/(tr(Tk)tr(Tj)) and
it is thus independent on vk and vj . This is in accordance
with the properties of the Kronecker channel model, whereby
the transmit and receive covariance matrices are independent.
Hence, no meaningful effective channel separation can be per-
formed under the Kronecker channel model. The orthogonality
between covariance matrices remains a property of particular
scenarios, i.e., when the physical scattering environment is
such that tr(TkTj) = 0 (which is rarely satisfied in practice
[12], [14]).

B. The Case of More Than Two UEs

So far, we have considered the case where only K = 2
closely spaced UEs are present. The extension to more than
two UEs will be analyzed in depth in the longer version
of this paper; however, an implementable procedure for this
case is briefly illustrated next. Assume that the UEs exchange
statistical information (i.e., their channel covariance matrices)
between themselves and the BS on a low-rate control channel.
Each UE can thus pair with its nearest neighbor, which likely
represents its major source of interference, forming a two-
UE cluster characterized by similar channel statistics (as in
[6]). Assuming that the BS is informed of the outcome of this
clustering procedure, it assigns orthogonal pilot sequences to
each cluster. The covariance shaping method is thus executed
separately within each cluster, whereby each UE solves (14)
or (15), with inputs given by its own covariance matrix and
that of its nearest neighbor. In this paper we focus on the
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Figure 1. Position of the BS, UEs, and scatterers in the considered scenario.

case of one cluster with two UEs in order to better present
the novelty of this approach. The case of more than one cluster
is considered in [15], where the performance of the proposed
covariance shaping method is evaluated in several realistic
scenarios.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results to analyze the
benefits of the proposed covariance shaping at the UE-side.
We examine the following alternative scenarios, where the BS
needs to transmit data to K = 2 UEs:

1) Reference scenario. The BS estimates the MIMO chan-
nels H1 and H2 using the same uplink pilot sequence and
obtains the corresponding estimates Ĥ1 and Ĥ2. Then,
based on Ĥ1 and Ĥ2, the BS adopts block diagonaliza-
tion precoding and the UEs apply minimum mean square
error (MMSE) combining.

2) Covariance shaping scenario. UEs 1 and 2 apply the co-
variance shaping vectors v1 and v2, respectively, whereas
the BS estimates the effective MISO channels ḡ1 and ḡ2

using the same uplink pilot sequence and obtaining the
corresponding estimates ˆ̄g1 and ˆ̄g2. Then, the BS adopts
zero-forcing precoding based on ˆ̄g1 and ˆ̄g2, while the
UEs decode their data symbol in a simple, statistical,
manner by applying the covariance shaping vectors to
combine their receive signal.

Figure 1 shows the physical scattering environment taken
into consideration for our simulations. A set of 32 randomly
placed scatterers lies between the BS and the UEs, obstructing
the LoS path (as often happens in practice). The expression
of Hk follows the discrete physical channel model (see, e.g.,
[13]): let a(θ) ∈ CN×1 and b(φ) ∈ CM×1 denote the uniform

0
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Figure 2. Antenna diagram of the covariance shaping vectors at the UE-side
obtained solving (14) and (15) (alternate optimization).

linear array responses of UE k and of the BS defined as

a(θ) ,
1√
N

[1 e−2πδ sin(θ) . . . e−2π(N−1)δ sin(θ)]T, (19)

b(φ) ,
1√
M

[1 e−2πδ sin(φ) . . . e−2π(M−1)δ sin(φ)]T (20)

respectively, where δ is the ratio between the antenna spacing
and the signal wavelength. The channel matrix between the
BS and UE k is thus given by

Hk =

P∑
p=1

αk,p

d
β/2
k,p

a(θk,p)b
H(φk,p) (21)

where P is the total number of paths, αk,p is the random
phase delay for path p, dk,p is the distance of path p, β = 2
is the pathloss exponent, and θk,p (resp. φk,p) is the angle of
impingement of path p on the antenna array of UE k (resp.
of the BS).

The antenna diagram of the covariance shaping vectors
obtained solving (14) via exhaustive search and (15), i.e.,
alternate optimization, are depicted in Figure 2. The two
UEs clearly choose separate channel directions, which renders
their covariance matrices nearly orthogonal. The covariance
shaping method is indeed particularly effective when the
channel statistics of the UEs are similiar and hence strongly
interfering, as in the considered scenario. This effect is ex-
pected to reduce as the distance between the UEs increases.
The near-orthogonality of the channel statistics can be ex-
ploited during both channel estimation (to eliminate pilot
contamination) and the downlink data transmission (to aid
interference cancellation techniques).

A. Uplink Pilot-Aided Channel Estimation

Considering a TDD setting, let us assume that the downlink
transmission is preceded by a channel estimation stage via
uplink pilots, where the two UEs are assigned the same
pilot sequences. On the one hand, for the reference scenario,
consider the pilot matrix P ∈ CN×τp , with PPH = IN . We
use Yp ∈ CM×τp to denote the receive uplink signal at the
BS, which is given by

Yp ,
√
ρp(HH

1 + HH
2 )P + Zp (22)
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Figure 3. Normalized MSE of the channel estimation versus receive SNR at
the BS with the same uplink pilot sequences for the reference and covariance
shaping scenarios.

where ρp is the normalized pilot power and Zp ∈ CM×τp
is the normalized noise at the BS with elements distributed
independently as CN (0, 1). Defining Φk,nn , E[gT

k,ng∗k,n] ∈
CM×M as the covariance of gk,n (i.e., the nth row of Hk)
and Z̃ , ZpPH = [z̃1 . . . z̃N ] ∈ CM×N , the MMSE estimate
of gk,n reads as

ĝH
k,n , Φk,nn

(
Φk,nn + Φj,nn +

1

ρp
IM

)−1

×
(

gH
k,n + gH

j,n +
1
√
ρp

z̃n

)
(23)

with j 6= k. The full MIMO channel is thus estimated as
Ĥk , [ĝTk,1 . . . ĝ

T
k,N ]T . On the other hand, for the covariance

shaping scenario, consider the pilot vector p ∈ C1×τp , with
‖p‖2 = 1. We use Yp ∈ CM×τp to denote the receive uplink
signal at the BS, which is given by

Ȳp ,
√
ρp(ḡH

1 + ḡH
2 )p + Zp. (24)

Here, the MMSE estimate ˆ̄gk reads as

ˆ̄gH
k , Φ̄k

(
Φ̄k + Φ̄j +

1

ρp
IM

)−1(
ḡH
k + ḡH

j +
1
√
ρp

ZppH

)
(25)

with j 6= k.
Figure 3 shows the normalized mean square error (MSE) of

the channel estimation against the receive SNR at the BS. For
the reference and covariance shaping scenarios, this is defined
as

NMSEk ,
1

N

N∑
n=1

E
[
‖ĝk,n − gk,n‖2

‖gk,n‖2

]
(26)

NMSEk , E
[
‖ˆ̄gk − ḡk‖2

‖ḡk‖2

]
(27)
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Figure 4. Average sum rate versus receive SNR at the UEs with the same
uplink pilot sequence for the reference and covariance shaping scenarios.

respectively. The reference scenario is severely interference-
limited and the normalized MSE between the actual and the
estimated channels saturates quickly as the SNR increases. On
the contrary, the covariance shaping is particularly effective
and the channel estimation is only noise-limited up to a
higher SNR range. Note that the normalized MSE relative
to UE 1 is slightly higher than that of UE 2: indeed the paths
excited by v2 carry more power than the ones excited by v1,
resulting in a slightly lower signal-to-interference-plus-noise
ratio (SINR). This happens because the covariance shaping
vectors are chosen to maximize the system-level performance
and not that of the single UEs.

B. Downlink Data Transmission

For the reference scenario, given the model for the downlink
receive signal in (1), the multiuser precoding matrix W
is computed based on the channel estimates Ĥ1 and Ĥ2

using block diagonalization [16]. Each UE k decodes its data
streams by employing MMSE combining, i.e.,4

Vk =

(
ĤkWkW

H
k ĤH

k + 1
ρIN

)−1
ĤkWk∥∥(ĤkWkWH

k ĤH
k + 1

ρIN
)−1

ĤkWk

∥∥
F

. (28)

Note that this implies that the UEs have the same knowledge
of the estimated instantaneous channels as the BS and, more-
over, they have perfect knowledge of the particular precoder
employed by the latter. Observe that these assumptions re-
quire extra feedback resources between the BS and the UEs:
this represents an additional point in favor of the proposed
covariance shaping approach, which relies only on statistical
information at the UE-side.

4Note that in (28) and (29) we use matrix normalization to enforce the
power constraints ‖Vk‖2F = 1 and ‖W‖2F = 1, respectively. However,
vector normalization can be alternatively applied (see, e.g., [17]).



For the covariance shaping scenario, defining ˆ̄H ,
[ˆ̄gT

1
ˆ̄gT

2 ]T, the BS adopts zero-forcing precoding, with mul-
tiuser precoding matrix given by

W =
ˆ̄HH( ˆ̄H ˆ̄HH)−1∥∥ ˆ̄HH( ˆ̄H ˆ̄HH)−1

∥∥
F

. (29)

Each UE decodes its data stream by simply applying the
covariance shaping vector vk, obtained solving (14) or (15).
Note that, in this case, the UEs need not know the channel
estimate and the precoder used by the BS instantaneously.

Figure 4 shows the average sum rate for the reference
and covariance shaping scenarios against the receive SNR
at the UEs; here, it is assumed that the receive SNR at
the UEs during downlink transmission is the same as the
receive SNR at the BS during uplink channel estimation. The
superior performance of the covariance shaping scenario stems
from the fact that the channel estimates are considerably less
corrupted by pilot contamination and, in addition, the effective
channels of the UEs are more orthogonal to each other. On
the other hand, applying block-diagonalization precoding in
the reference scenario tends to cancel both interfering and
useful channels due to insufficient signal subspace separation
between the UEs. As a result, the corresponding average sum
rate saturates quickly, since the system is heavily interference-
limited and increasing the transmit power does not bring any
substantial gain.

V. CONCLUSIONS

In this paper, we propose a covariance shaping method
for massive MIMO TDD systems that allows the UEs to
suitably alter the channel covariance structure seen at the
BS to maximize some network utility. This is achieved by
preemptively applying a statistical beamforming vector at
the UE-side, which is obtained as the result of a simple
optimization problem and requires to exchange only statistical
information between the UEs. In particular, we show how the
average sum rate can be substantially improved with respect
to systems limited by interference. This is possible even if the
spatial degrees of freedom are sacrificed to enforce statistical
orthogonality. The gains arise mainly from accurate uplink
channel estimation, which suffers considerably less from pi-
lot contamination, and effective downlink data transmission,
which exploits the near-orthogonality of the channel statistics
between UEs. Additionally, the proposed scheme allows the
UEs to decode their data stream without the knowledge of the
instantaneous channel estimate and of the precoder employed
by the BS. Future works will consider the case of more than
two UEs and specific channel models.
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