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Abstract—Associating texts and images is an easy and intuitive
task for a human being, but it raises some issues if we want that
task to be accomplished by a computer. Among these issues, there
is the problem of finding a common representation for images
and sentences. Based on recent research about capsule networks,
we define a novel model to tackle that issue. This model is trained
and compared to other recent models on the Flickr8k database on
Image Retrieval and Image Annotation (or Sentence Retrieval)
tasks. We propose a new recurrent architecture inspired from
capsule networks to replace the traditional LSTM/GRU and show
how it leads to improved performances. Moreover, we show that
the interest of our model goes beyond its performances and
includes its intrinsic characteristics, which can explain why it
performs particularly well on the Image Annotation task. In
addition, we propose a routing procedure between capsules which
is fully learned during the training of our model.

Index Terms—multimodal embeddings, deep learning, multi-
media retrieval

I. INTRODUCTION

Humans can intuitively match sensorial perceptions such as
vision with language. For instance, one can easily describe a
landscape, or imagine how one looks like after reading its de-
scription in a novel. For a computer, that seemingly mundane
task raises some questions: how to represent sentences and
images and how to link these representations of two different
modalities? Some successful works have been done in that
field, such as automatic image captioning [1] or visual question
answering [2].

Recently, big annotated databases of multimedia contents
such as ImageNet [3] or Flickr8k [22] were built. These
collections permitted the emergence of deep neural networks,
because they can perform very well if they are trained with
a sufficient amount of training examples. In computer vision,
convolutional neural networks (CNN) [4], [5] are now widely
used. In natural language processing, recurrent neural net-
works (RNN) such as long short-term memory units (LSTM)
[6] or gated recurrent units (GRU) [7] are a common choice.
These neural networks can learn representations of texts and
images, and some works have shown that these representations
can be used as a basis for comparisons [13], [16], [18]–[21].
One way of doing such comparisons is by defining a constrain
on the neural networks that are used to represent the two

Fig. 1. Overview of our model: A first part computes image embeddings,
a second one computes sentence embeddings through a Recurrent CapsNet.
The two parts are constrained by a loss function to produce embeddings in
the same multimodal space.

different modalities, so that they learn the same representation
for them: in that case they would output a vector representation
of images or texts so that an image and a corresponding text
are close according to some similarity measure. This is what
our model is doing.

At the end of 2017, a novel architecture of neural networks
called capsule [8] has shown promising results on some
computer vision tasks. A capsule is a group of neurons whose
role is to make some complex computations, and to output a
simple vector as a result of these computations. These outputs
are then routed towards higher-level capsules. During training
they are supposed to specialize in the recognition of specific
patterns; lower capsules learn to recognize simple shapes and
higher capsules use the results of the computation of the
lower capsules to recognize complex shapes. The advantage
of capsules with respect to more common CNNs is that they
do not contain pooling operations losing spatial information
in high-level layers. We think that the idea of capsule-like
units can be generalized to other fields than computer vision.
The model we introduce in this paper uses capsule units to



analyze sentences we expect each capsule to perform well on a
certain type of sentences. In our model, outputs of capsules are
not routed towards higher level capsules but towards capsules
of the same layer in a recurrent fashion: Fig. 1 depicts our
proposed recurrent capsule network (Recurrent CapsNet or
RCN) architecture. We will elaborate on this new deep model
in subsequent parts of the paper.

Here, we present a novel model for visual sentence em-
beddings. It is divided into two parts: the first part computes
sentence embeddings thanks to an RCN each capsule contains
two GRUs as we will explain later on. The second part
computes image embeddings based on feature vectors obtained
with a ResNet-152 [5] (ResNet-152 often provides state-of-
the-art results in computer vision tasks). We compare our
model with some state of the art models used for image
captioning and retrieval on the Flickr8k dataset [22] and show
that our RCN performs better than most approaches and better
than a simple GRU. The contribution of this paper is the
definition of the RCN, and the presentation of its results on an
Image Annotation task and on an Image Retrieval task when
it is used to produce sentence embeddings.

The rest of the paper is organized as follows: in Section
II we present some recent and related works. In Section III
we give a formal definition of our model. In Section IV we
present the results of experiments we made on our model. We
conclude our paper in Section V.

II. RELATED WORK

Several works have been done on building visual-semantic
embeddings. In [23], Frome et al. made such embeddings
through a model based on a skip-gram text modeling archi-
tecture [10] for the semantic part, and on AlexNet [4] for the
visual part. Karpathy et al. proposed fragment embeddings in
[12]: as the different parts of a descriptive sentence correspond
to different parts of an image, they designed a model that
would draw matches between image fragments and text frag-
ments. The model proposed by Kiros et al. in [13] is similar to
our model: they derive a sentence embedding with an LSTM
and a features vector for a corresponding image through a
CNN. Their objective function imposes a constrain on the
two modalities so that they belong to the same space. The
main difference between our two models is that we replace
the LSTM by a novel Recurrent CapsNet architecture that is
detailed in Section III.B. Variations of Kiros model have been
suggested. Vendrov et al. have tried to induce an order between
images and sentences by replacing the cosine similarity in the
loss function by an order penalty [16]. More recently, Faghri
et al. have shown that emphasizing hard negatives in the loss
function would lead to high improvements [20].

Some other works are based on Fisher Vectors [23]. In
[14], Klein et al. derive Fisher Vectors for sentences from
a Gaussian Mixture Model (GMM) and a Hybrid Laplacian-
Gaussian Mixture Model (HLGMM). In [15], Lev et al.
propose an RNN that are used as generative probabilistic
models. In these last two works, matches between images and
texts are made through the Canonical Correlation Analysis

algorithm [24]. In [17], Eisenschtat and Wolf also derive Fisher
Vectors for sentences from a GMM and an HLGMM, but they
do not use CCA to match images and sentences. They designed
a 2-Way neural network that projects the two modalities onto
a common space.

More complex architectures have also been designed in
some papers. Niu et al. [18] have proposed a hierarchical
multimodal LSTM: a sentence is parsed as a tree and cor-
respondences between phrases and image regions are drawn.
Nam et al. [19] proposed a Dual Attention Network that is
designed to attend jointly to image regions and corresponding
words in text. Gu et al. [21] proposed a model that would
match texts and images by learning high-level global features,
but also low-level local features thanks to two generative
models: one of them generates sentences from images and
the other one generates images from sentences.

The model we propose in this paper is inspired by a
kind of neural network architecture called capsule [8], [9].
A capsule is a group of neurons that is supposed to do some
complex and very specific computations, and then output a
low dimensional vector as a result of these computations. In
computer vision, this architecture is worthy of interest because
it could overcome the problem of pooling operations in CNNs
that lose all spatial information in higher layers. As far as we
know, capsules have only been proposed in computer vision.
Our model is the first one using capsules in natural language
processing. Our architecture is also the first recurrent one:
CapsNet have only been proposed in a feed-forward fashion.
Moreover it has been shown in [27] that different language
models did not perform equally on all sentences: some of
them performed well on some sentences and some other on
other sentences. This motivates the use of different specialized
capsules to process sentences.

III. A RECURRENT CAPSNET FOR VISUAL SENTENCE
EMBEDDING

A. Gated Recurrent Units (GRU)

Gated Recurrent Units were introduced by Cho et al. in [7].
They are similar to LSTMs: they have similar performances
and are well adapted to NLP because they can handle long-
term dependencies in sentences. We preferred GRUs to LSTMs
because they have less parameters for similar performances.
More formally, a GRU is composed of an update gate zs
and a reset gate rs, and can be described with the following
expressions:

zs = σ(Wxzxs +Whzhs−1 + bz), (1)

rs = σ(Wxrxs +Whrhs−1 + br), (2)

h̃s = tanh(Wxhxs +Whh(rs ◦ hs−1) + bh), (3)

hs = (1− zs) ◦ hs−1 + zsh̃s, (4)

with xs the s-th input and hs the s-th output or hidden state
of the GRU. Here and throughout the paper, ◦ denotes the
Hadamard product and σ denotes the sigmoid function.



Fig. 2. A generic capsule for computer vision

B. Our Model

Our model can be divided into two parts: a first part
aims at deriving sentence embeddings based on an RCN
and the second part is designed to project an image features
vector onto the same space as the aforementioned sentence
embeddings. Let us first describe the first part of our model.

The idea behind capsules as they were designed by [8] for
image processing is represented in Fig. 2. It consists in making
complex computations and outputting a pose vector and an
activation. This output is then routed towards subsequent
capsules according to some predefined routing algorithm. The
goal of that architecture is to have each capsule learning to
recognize a visual feature based on what previous capsules
have recognized before. For instance, some capsules could
recognize eyes, a nose, a mouth and their respective positions.
Then they would send their outputs to another capsule aiming
at recognizing a whole face. It is architectured to avoid losing
spatial information as common CNNs do, due to pooling op-
erations. We think that capsules can also successfully perform
other tasks such as NLP-related tasks, as our proposed model
does.

In our case, each capsule contains two GRUs. The role of
the first GRU is to output what we call a mask (the equivalent
of the activation for computer vision) and the second one
outputs a sentence embedding (the equivalent of the pose).
The output of the first GRU of the i-th capsule is denoted by
GRUmaski(input) and the output of the second GRU of the i-th
capsule is denoted by GRUembi(input). In the first GRU, the
tanh function is replaced by a sigmoid function so that masks
are composed of positive numbers. The mask that is output
plays the role of an attention mechanism; we will give more
details in the following. The biggest difference with capsules
as they were described in [8] is that they are applied in a
recurrent fashion: masks that are produced at time step t are
applied to the input sentence, which is then fed into the same
capsules at time step t + 1. Sentence embeddings are built

according to the following steps:
• we represent each word of a given sentence by a one-hot

vector;
• we multiply each one-hot vector by a word embedding

matrix;
• at each time step we apply masks onto the initial input

sentence, and produce new masks based on the new input;
• we eventually output a sentence embedding.
Let us describe more formally how we compute that sen-

tence embedding. Let s be a sentence. We encode each word
of s with a one-hot vector: we have s = (w1, ..., wL) with
L the length of s, and w1, ..., wL belonging to RD with D
the size of our vocabulary. Let Ww ∈ RD×V be the word
embedding matrix. Then x =Wws will denote (x1, ..., xL) =
(Www1, ...,WwwL) in the following. If m is a V -dimensional
vector, then m ◦ x will denote (m ◦ x1, ...,m ◦ xL). In what
follows m denotes a mask and v denotes an embedding. Nc is
the number of capsules. Embeddings are computed according
to the following:

v
(t)
i = GRUembi(m

(t−1)
i ◦ x). (5)

Masks are computed in two steps. First, capsules compute a
mask according to the input sentence and the masks that were
computed at the previous step:

m̃
(t)
i = GRUmaski(m

(t−1)
i ◦ x). (6)

Then, the mi are computed as linear combinations of these
masks, as follows:

m
(t)
i =

Nc∑
j=1

α
(t)
ij m̃

(t)
i (7)

and the final embeddings are computed in a similar way:

v(t) =

Nc∑
i=1

Nc∑
j=1

β
(t)
ij v

(t)
i . (8)

The coefficients of the linear combinations are computed
according to the following formulas (〈v1|v2〉 denotes the scalar
product between two vectors v1 and v2):

α
(t)
ij =

〈
v
(t)
i |v

(t)
j

〉
∑Nc

k=1

〈
v
(t)
i |v

(t)
k

〉 , (9)

β
(t)
ij =

〈
v
(t)
i |v

(t)
j

〉
∑Nc

k=1

∑Nc

l=1

〈
v
(t)
k |v

(t)
l

〉 . (10)

Please note that for t = 0, the masks are vectors whose
coordinates are all equal to one: we actually just input sen-
tences in the GRUs without applying any masks to them.
These formulas can be interpreted in an intuitive way: if there
are many capsules whose embeddings are similar to its own
embedding, then it contributes a lot in the computation of



Fig. 3. Our model. Capsules are represented with dashed boxes. In the sentence embedding part, a sentence is represented by a sequence of one-hot vectors
(w1, , wn). It is transformed into a list of word embeddings (x1, , xn) through a multiplication by a word embedding matrix Ww . The sentence then goes
through the Recurrent CapsNet a pre-defined number of times, and eventually the RCN outputs a sentence embedding v. In the image embedding part, an
affine transformation is applied to a features vector to obtain an image embedding. Both embeddings belong to the same multimodal space.

masks and embeddings. If its embedding is very different from
other embeddings, the nits participation remains marginal. It
can be viewed as a variation of the routing-by-agreement that
is proposed in [8]: when other capsules output a sentence
embedding that is very similar to the output of a given capsule,
then this particular capsule plays an important role in the
computation of the final embedding. If other capsules do
not agree then it becomes more marginal. Regarding masks
that are assigned to capsules, one can notice that a capsule
contributes to the derivation of the mask of another capsule
only if both capsules output a similar embedding. In that
sense, embeddings that are output by capsules can be related
to the pose vectors and masks can be viewed as activations as
they were described in [8]: capsules send their activations to
capsules agreeing to their pose. However, masks are not simple
activations: multiplying term-by-term input words vectors by
masks composed of positive numbers is more an attention
mechanism that attends to a particular domain of the word
embedding space.

The second part of our model is much simpler. First, we
compute features vectors of images by keeping the output of
the penultimate layer of a ResNet-152 that has been pre-trained
on ImageNet 1000 classes and finetuned on MSCOCO [20].
More precisely we make nine crops of an image in the same
way as it has been done in [16], and we compute the average
of the corresponding features vectors of these crops. Then, we
just apply an affine transform to these vectors. The parameters
of that affine transform are derived during training. Fig. 3 gives
a summary of how our model has been defined.

C. Loss Function

The loss function that we apply is the one that has been
presented in [20]. If Nb is the number of samples in the mini-
batch then we draw Nb image-sentence pairs (uk, vk)16k6Nb

in the training dataset. Then, for each pair of the mini-batch
we take the contrastive image and the contrastive sentence
for which our model is less efficient, and apply a penalty for
these contrastive image and sentence. More formally the loss
function is defined as follows (ε is a hyperparameter):

L1 =

Nb∑
k=1

max
l 6=k

max(−ε,− cos(uk, vk) + cos(ul, vk))

Nb
(11)

L2 =

Nb∑
k=1

max
l 6=k

max(−ε,− cos(uk, vk) + cos(uk, vl))

Nb
(12)

L = L1 + L2 (13)

L1 is the ranking loss corresponding to the Image Retrieval
task and L2 is the ranking loss corresponding to the Image
Annotation (or Sentence Retrieval) task. Optimizing the model
boils down to finding parameters that minimize L.

D. Regularization

Since we want to avoid having the same masks in each
capsule, and we do not want a capsule to output only zero-
masks, we added the following regularization term to the loss
function

V =

(∑Nc

i=1 ‖mi −m‖22
Nc‖m‖22

min
i
‖mi‖2

)−1
(14)



where m denotes the average mask. The new loss function
is then

L′ = L+ λV, (15)

with λ a hyperparameter. As we will see in the next section,
that regularization term can lead to better results.

IV. RESULTS AND DISCUSSION

A. Parameters and implementation

We evaluated how our models performed on both the image
annotation and the image retrieval tasks on the Flickr8k dataset
[22]. This dataset comes with a predefined split between
training, validation and testing samples; we use that split in
our experiments. This dataset is composed of 8000 images
with 5 sentences each: there are 6000 images in the training
set, 1000 images in the validation set and 1000 images in the
testing set.

Regarding the sentence embedding part of our model, we
set its parameters as follows: we set the maximum sentence
length to 16 (if longer the sentence is cut after the 16-th
word), D = 5000 (we kept only the 5000 most common
words and replaced all the other words by an UNK token)
and V = 300. Ww was initialized according to precomputed
word2vec embeddings [10]. Regarding the RCN, we found
that a model with four capsules performed well. For a given
sentence we kept v(5) as its corresponding embedding. For the
image embedding part of our model, the dimension of image
features vectors was 2048. The final embeddings dimension
was 1024. Each GRU in our models has 1024-dimensional
hidden states.

In the loss function, we set ε = 0.2 and we tried different
values for λ. We found that λ = 0.05 was giving good
results. We trained our models using the Adam method [25]
with mini-batches of 16 image-sentence pairs. The learning
rate was 0.0002. We made all our implementations using the
TensorFlow [26] library for Python.

B. Experiments

We compared our results on Flickr8k with some recent state-
of-the-art models. In addition, we trained two different models
on the Flickr8k dataset.

GRU. This model is simply the one we described in Section
III.B, but with a simple GRU instead of the RCN. It is also a
special case of our model where the number of capsules is 1
and the number of recursions is 0.

RCN-λ. This is the model we described in Section III.B.
As mentioned in Section IV.A, we found that four capsules
and four recursions lead to better results. λ is the same as in
Section III.D.

As one can notice looking at Table I, results with our RCN
are at state-of-the-art level. On top of that, capsules improve
results of a single GRU, especially in the Image Annotation
task. The regularization term seems to improve results for the
Image Annotation task without having notable effects on the
Image Retrieval task.

TABLE I
RESULTS OF OUR EXPERIMENTS ON FLICKR8K. R@K DENOTES RECALL
AT RANK K (HIGHER IS BETTER). BEST RESULTS AMONG OTHER MODELS

AND AMONG OUR MODELS ARE IN BOLD. BEST RESULTS AMONG ALL
MODELS ARE UNDERLINED

Flickr8k

Model Image Annotation Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10

Random 0.1 0.6 1.1 0.1 0.5 1.0
[14] 31.0 59.2 73.7 21.2 50.0 64.8
[15] 31.6 61.2 74.3 23.2 53.3 67.8
[18] 27 - 68.6 24.4 - 68.1
[17] 43.4 63.2 - 29.3 49.7 -
GRU 37.8 67.9 79.3 29.7 59.5 71.5

RCN-0 38.8 67.0 78.9 30.3 60.4 72.5
RCN-0.05 41.5 70.6 81.2 29.9 59.9 72.4

Fig. 4. Performance of GRUs on Flickr8k according to the size of their hidden
states. The x-axis represents the size of hidden states, the y-axis represents
the performance of the GRUs. This performance is the sum of R@1, R@5
and R@10 for both Image Annotation and Image Retrieval tasks. The line
corresponds to the performance of our best model (RCN-0.05 with hidden
states of dimension 1024).

C. Effect of the size of a simple GRU

In this section, we investigated if simply increasing the
number of hidden states in a GRU could lead to the same
improvements as our RCN. For that purpose, we computed
the sum of the recalls at 1, 5 and 10 for the Image Annotation
task and the Image Retrieval task for our best model (RCN-
0.05) and for GRUs with 64 to 2200 hidden states.

As one can notice in Fig. 4, there is no improvement if the
size of the GRU hidden states is increased above 800.

D. Effect of the regularization term

One can notice that the regularization term improves results
with respect to simple GRU or non-regularized RCN. Why
is that happening? Our hypothesis is that the regularization
term imposes that capsules attend to different domains of the
word embedding space. Therefore, sentence embeddings of
different capsules tend to be more different than for a GRU or
an RCN without normalization. As the Image Annotation task
consists in retrieving one of five sentences for an image, the



Fig. 5. Our hypothesis. The cross corresponds to an image, circles correspond
to sentence embeddings output by an RCN and triangles correspond to
sentence embeddings output by a GRU. In that case, both the RCN and the
GRU output sentence embeddings for a given image around the same point,
but even if the RCN generates worse embeddings on average, its best sentence
embedding is better than the best sentence embedding output by the GRU.

distribution that capsules induce may lead to have one out of
these five sentences being closer to its corresponding image.
We summarized our hypothesis in Fig. 5.

V. CONCLUSION

In this paper, we proposed the RCN (Recurrent Capsule
Network), a novel deep architecture for visual sentence embed-
ding. It is based on the CapsNet architecture that was recently
proposed in [8], but it differs from it in three important ways:
we applied it to natural language processing, it is built in a
recurrent fashion whereas the original CapsNet was built in
a fully-connected fashion and the routing is performed using
one of the GRUs.

We obtained some promising results, especially for the
Image Annotation task where our RCN performs better than
GRUs. We explained these performances improvements by the
distribution that the capsules induced in the computation of
sentence embeddings. In addition, we showed that the results
of our capsules could not only be explained by the fact that
they had more parameters than their corresponding GRUs: Fig.
4 showed that increasing the size of GRUs hidden states did
not result in as good results as our models.

Some interesting directions of research would be to find
how to take advantage of the distribution induced by our
voting procedure for other tasks than sentence retrieval, or
investigating how sentences are routed to different capsules:
does it rely on semantics, syntax, or something else?
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