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Abstract

In the context of the TIMS1 project, a rapid-prototyping environment for TMN-systems is under
development. The information modeling falicility is based on a fully object oriented framework
(GDMO / ASN.1 support) extended with relationships (GRM support). Managed Object behaviors
are specified thanks to the Behavior Language (BL), which enables both imperative and declarative
specifications, in the context of relationships. Hints are given to show how policy objects and the
so-called management policy scripts could be realized thanks to the provided information modeling
facilities along with the BL. Finally, various semantics for the BL are described. Some of them
constitute true behavioral simulation and analysis tools, which should reveal very useful in the
context of detecting management policy conflicts.

1This work was done in the context of the TIMS project. TIMS stands for TMN-based Information Model Simulator. This
project is a collaboration between Eurécom Institute and Swiss Telecom PTT. It is supported by Swiss Telecom PTT, project
F&E-288.
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Relationship-based Behavior Formalization
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Relationship-based Behavior Formalization Behaviors represent general dependencies be-
tween MOs, e.g. how one MO influences other MOs, or general properties valid among well defined
MO sets. It is natural to think about such dependencies in the context of relationships. Relationships
provide the means to specify cleanly the different neighboring contexts in the scope of which behaviors
should manifest themselves. Relationship classes give, in their turn, the means to define the different
neighboring flavors of interest for each MO instance. Then, within this framework, it is very straight-
forward to formalize how a MO change should affect its neighbors. This corresponds to triggered
behaviors, where a triggering context determines in an imperative fashion when a behavior should be
executed. On the other hand, being able to specify general dependencies among the MOs participating
in a given relationship without any reference to any triggering context is also very interesting. The
resulting so-called untriggered behaviors are thus specified in a purely declarative fashion.

Behavior Simulation Principle Behaviors manifest themselves as the propagation of effects
among managed objects. Such behavior effects can be realized as (i) a MIB alteration (a modification
of an attribute value or a MO creation or deletion), (ii) an emission of a notification, and (iii) an action
being executed.

The execution of all these kind of effects may be subject to the fulfillment of some testing conditions
on attribute values of associated MOs.

1. Triggered behavior : a management operation or a real resource change is applied on object A
whose behavior exercise itself as side effects onto objects B and C, if additional testing conditions
related to object E and F are fulfilled.

2. Untriggered behavior : object D depends on objects B and C : local side effects are propagated
on D, if additional testing conditions on B and C are satisfied.

3. Relationship context : In any cases the behaviors are specified in the context of a relationship.
That means that for the triggered behavior a relationship instance associating fA, B, C, E, Fg has
to exist. In the same way, for the untriggered behavior, a relationship instance associating fB, C,
Dg has to exist.



Formalization
(define-behavior

(scope rel "ServiceResource-SubNetworkConnection-Nctps")

(trigger (role "srv") (interface mgmt)

(op update "lifeCycleState"))

(pre (every (lambda (nctp-elem)

(equal? (mo-send get (moi nctp-elem)

(role "nctp")

(attribute "lifeCycleState"))

"inService"))

(ri-send binding-values (role "nctp"))))

(body (mo-send action "activateSubNetworkConnection"

(interface mgmt) (mode confirmed)

(moi (ri-send binding-value (role "srv")))

(argument (ri-send binding-value (role "snc")))))

(post (equal? (mo-send get

(moi (ri-send binding-value (role "srv")))

(role "srv") (attribute "lifeCycleState"))

"inService")))

The general form of a simulated behavior is composed of :

1. scoping context : the relationship whose instances are concerned by the behavior.
2. triggering context : present only for triggered behaviors, specifies precisely the event (manage-

ment operation or real resource change) that triggers the execution of the behavior (attribute
change, object creation, object deletion, action). Since the scoping context is a relationship, it is
also necessary to specify to which participant role this event is applied.

3. pre-condition : testing condition upon the MIB state, to be satisfied in order to launch the
behavior body.

4. body : the body of a behavior is an imperative / procedural piece of Scheme [Ce91] code. There is
no a priori structure imposed on it. Tests and effects are intended to be used in this body, reflecting
the dependencies between MOs. For instance an object may be updated, created or deleted
according to the presence, absence or the state of another object. Since usual programming
features (i.e. control flow structures, variable notation: : : ) are required at this level, the use
of an existing and well-known programming language is a reasonable choice. This is also the
approach taken in the DOMAINS project [FHHS93], which uses Eiffel construct to formalize
behavior bodies. Though not mandatory, chosing the programming language of the targetted
runtime environment may reveal very interesting in order to provide executable specifications
and by this means facilitating the integration of behaviors in the runtime environment.

5. post-condition : testing condition upon the MIB state, to be satisfied at the completion of the
execution of the behavior body.

Summary : the BL framework is defined by the unique define-behavior construct, inside of which
usual scheming can be exercised. The scheming environment is extended with the APIs giving access to
the entities of the currently supported information models, i.e. GDMO, ASN.1 and the GRM [Grm].
Note that, the kernel of the system could be ported to other information models by just providing the
required APIs, as soon as all remains in the context of objects and relationships. The key design of
the BL was to embed it in a programming environment, to ensure executability. Thus, the notation
is deliberatly based on the Scheme language. The motivations for this choice are multiple. First
the language itself is small and simple (syntax), very powerful, extensible through high and low
level macros and interpreted which is ideal for rapid prototyping. To get more insight about the
environmental issues, the reader can refer to [SME95].
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Management Policies Representation

� Passive parts (domains) : relationships '
general MO grouping facility.
GRM enables dynamic binding, nothing prevents from
meta-relationships (hierarchies).

� Active parts (goals, constraints and modalities) : behaviors.
authorization, permission (triggered behaviors),
obligations, motivations (untriggered behaviors).

� Policy conflicts detection : non determinism support.

Domains and Relationships Domains are powerful means to specify the set of objects or member
objects (subjects and target objects) to which a policy applies. Objects should always be created within
a domain, which can also be represented as an object, in this way permitting domain hierarchies and
subdomains. However, note well that it is not the objects themselves that are "physically" included in
a domain object; it is rather the domain object that maintains references to its member objects. This
obviously incurs domain overlaps of subjects, target objects or both. Consequently policy overlaps
may occur which may result in conflicts. Thus, domains are no more than specific relationship
instances whose description could be also given with pure relationship oriented models such as the
GRM. The GRM provides notational tools for specifying relationships, their actual representation in
the MIB and their management. A management relationship is defined as a collection of managed
objects together with an invariant referring to the properties of the managed objects (participants).
Management relationships are additional information modeling concepts but are represented and
manipulated by existing facilities of the management information model [Mim]. At the abstract
level, the realization independant properties are modeled (roles, behaviors, operations, notifications,
inheritance, and qualifying properties). Then at the relationship mapping level, how the relationship
features are mapped onto actual MOs and existing management operations is described. Therefore,
relying on a generic relationship facility to model management domains seems to be a reasonable
option.

Policy modality, goals, constraints and Behaviors Then, for the more active features of poli-
cies, such as goals and constraints [SVMT93, Moffet94] our proposal is to consider their low level
representations (management scripts) as management behaviors attached to the relevant subjects and
target objects.

Permissions / authorizations can be integrated as triggered behaviors on the target objects, since
they consist of properties to be checked (access rights: : : ) upon the invocation of a management
operation. Triggered behaviors can also be used to specify event handlers, like it is done in the
DOMAINS Management Language [FHHS93].

In contrast obligations / motivations can be naturally represented with untriggered behaviors,
since they correspond to behaviors to be launched by themselves as soon as the need arises.

Conflicts and Non Determinism The problem of policy conflicts detection is reduced to the
problem of behavior analysis of non determinism. This is justified below as well as the proposed
techniques of behavior analysis.
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Rapid Prototyping and Simulation Environment
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eXternal Behavior Integration (XBI) The eXternal (to agent toolkit) Behavior Integration (XBI),
uses an agent toolkit for all the nice features provided, and are thus not to be to re-developed (e.g.
CMIS processing, MO data store, SMFs: : : ). The behaviors themselves are integrated externally, in
an environment of our choice, which interoperates with some kind of dummy agent through the
standardized CMIS interface. Scheme has been chosen for the current XBI implementation because
of its simplicity, consistency and because behaviors can thus be interpreted, which ensures maximal
flexibility, for rapid prototyping.

Behavior Propagation Engine (BPE) is the heart of the system since it defines the operational
semantic of the Behavior Language (BL), which is not an obvious task since the BL is an hybrid
formalism enabling to combine both imperative and declarative constructs. However, the more
elaborated the semantic of the Behavior Language, the more powerful the sytem should be in terms
of behavior analysis capabilities. As a consequence, a powerful semantic is a key feature in order
to effectively test and exercise the consistency and robustness of Management Policies on prototype
implementations before their introduction into the real world.

Salient Features of the BPE The BPE is initially solicited through the XBI interface to either
invoke a management operation or to signal a change related to an underlying resource. Then the BPE
basically works as a forward chaining inference engine, propagating the initial solicitation according
to the behaviors in effect, until saturation, that is until the system reaches a new steady state. At
any given time, a snapshot of the system is defined by the set of managed objects and corresponding
attribute values (the so-called Management Information Tree). Note that such a system fits naturally
into the Attributed Graph Rewritting System framework [Schuerr90, ZS91], where graph rewritting
rules are no more than the specified behaviors. In such systems, non-determinism manifests itself if
from the same inputs the processing can lead to different graph states according to the choices made
at some intermediate step.
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Non Determinism
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Non determinism introduced by the lack of synchronization In distributed systems, any
variation in the timing of concurrent processings may causes them to access shared resources in
different orders. Moreover, asynchronism is inevitable in such systems, since the occurrence of an
event can come from the environment at any step of processing. Even, management operations
themselves can be invoked asynchronously (for instance CMIS allows unconfirmed Set and Action
services). Although, in the context of distributed and concurrent systems non determinism is an
intrinsic property, the lack of synchronization is an error that can result in additional unwanted non
determinism. Thus, it may be desirable to identify any sources of non determinism and to provide
the relevant associated information in a suitable manner.

Non determinism introduced by the ambiguities in the system specification itself Declar-
ative specifications (untriggered behaviors) is obviously a factor of non determinism. They may result
as several behaviors to be propagated at a given stage of a behavior propagation, or as several man-
agement policies to be exercised at a given stage by one or several management authorities. If only one
management authority is concerned the problem is simpler but may still result as conflictual situations
depending on the chosen order of execution of the policies. If several management authorities are
concerned, the problem is again more complicated since conflicts introduced by concurrency are then
also cumulated. Since a behavior is naturally specified in the context of a relationship, it is possible
to have several behaviors to be launched just because a MO is participating into several relationship
instances of several distinct relationship classes. This may correspond, for example, to several access
control policies defined for different contexts (represented as participations into relationships). This
conflictual situations can be qualified as semantical conflicts.

Non determinism and Policy conflicts Management policy analysis and in particular conflict
detection is considered as the support for non-determinism within the system. Management policy
conflicts resulting from the concurrent processing of distributed management authorities may lead to
inconsistencies and even catastrophic situations. In the same way, erroneous or ambiguous attribution
of management roles to the different management authorities within an organization may result as
semantical conflicts such as conflicts of interests: : : , that may reveal very harmful for its overall
efficiency.
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Behavior Analysis

� Dynamic versus Static (complementary techniques).

� Limited to the detection of errors.

� Can not be used to guarantee safety / liveliness properties.

� Closer to the real world.

� Should gain to be coupled with test generation.

Behavioral Analysis Techniques of non deterministic systems are usually classified as dynamic,
if they involve process execution, and as static otherwise. Dynamic analysis aims at showing the
presence of faults based on the implementation, or at least, on an executable specification; while static
analysis aims at verifying the absence of faults based on a more likely non executable abstract model
of the implementation. Since the BL is intended to provide executable specifications, it is natural
to try to use the associated simulation environment as a tool for dynamic behavior analysis. Note
well that, dynamic analysis can be used to show the presence of errors in the tested execution paths,
but can never guarantee their absence in the general case. Although one can think about exhaustive
dynamic, which could provide absolute certainty about the correcteness of a systems behavior, it is
generally not feasible and too expensive. Though static behavior analysis techniques are intended to
prove stronger properties, they are limited by their underlying representation model (e.g. temporal
logic, Petri-Nets, Process Algebras: : : ), which abstracts from most of the important details which can
be expected to remain present within a running system. That is the reason why, dynamic behavior
analysis techniques are complementary tools in the sense that problems raised should reveal closer
to the real world than what could be achieved with their static counterparts. Finally, in order to get
a sufficient level of confidence about the system, one can naturally think about coupling dynamic
analysis with a test generation tool. This test generation would enable to submit more test cases and
may be useful to select the more interesting test suites to be explored for behavior analysis.
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Dynamic Behavior Analysis

� Principle : adopt an interleaving model to explore /
linearize the behavior propagation space.

� Atomic steps : inter MIB interactions, need for behavior
instrumentation.

� Conflict Detection Criteria : saturation states, BP profiles: : : .

� Requires both control and data backtracking.

Dynamic Behavior Analysis Principle Since the behavior simulation environment is able to
track all the non deterministic choices made during the behavior propagation process, the idea is to
adopt an interleaving model to explore the behavior propagation space. This is analog as what is
done in static analysis based on process algebras – [Milner89] CCS, [Hoare85] CSP and [BK85] ACP –
for parallel composition : concurrent events are reduced to traces of sequential events assuming that
concurrent events can be linearized in any arbitrary order.

Events are determined clearly by MIB interactions that delimit the atomic portions of behavior
execution flows that are subject to linearization in any relevant order. Within the BL, such execution
flows can be easily isolated, since they correspond to the behavior processing in between two con-
secutive invocations on a MO (encapsulated into the mo-send BL construct). Since BL specifications
are "parsed" in the sense that mo-send primitives are treated as Scheme language syntax extensions
(macros). The resulting native Scheme behavior code actually executed, can be instrumented as needed.
This way, flows whose relative execution order is not determined can be interleaved in any relevant
order, defining the possible linearizations.

Conflict Detection Criteria A reasonable "objective" criteria that can be used in order to signal
potential sources of conflicts is the multiple and different result criteria. In effect, if in case of non-
determinism, at the potentially numerous behavior propagation saturations explored, the resulting
states of the MIB are as well multiple, then the behavior specifier can be advised and after further
analysis of the different behavior propagation paths, the original causes of non determinism can be
isolated, the corresponding errors (resp. ambiguities) corrected (resp. raised). Resulting MIB states
are considered to be equivalent, if they exhibit the same set of variables (MO instances along with
attributes) with the same values. However, this is not a suficient condition, since during a behavior
propagation path notifications may also be emitted. Thus, equivalence of behavior propagations
should include not only the check for the same set of variables with the same values, but also the
check of the same set of notifications emitted. If both sets match, then the corresponding behavior
propagations may not be the subject of further analysis for the purpose of conflict detection. This
criteria is objective in the sense that if two saturation states differ, further analysis should be exercised.
Though, this does not identify all kind of races that may exist in the exercised propagations, this raises
at least the more critical, giving up the more benign races [HM94]. In particular, one may be interested
to treat the notifications as an ordered set (i.e. a sequence) rather than an unordered set, because this
may reveal very important to deal with e.g. event correlation.
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However, even if the BPs are equivalent in terms of same MIB reached at saturation state, one
can also be interested in more refined criteria such as the relative length of BPs. This may reveal for
instance useless computations and their corresponding interesting optimizations or on the other side
erroneous short cuts.

Control and Data Bactracking Going through all the expanded linearizations requires both con-
trol and data backtracking capability. The more simple forms of control backtracking are based on
recursive procedure calls supported by the execution stack. More elaborated forms of control back-
tracking can also be envisioned such as jumps through any execution stack contexts. Though small and
simple, the used Scheme [Ce91, SF90] programming language provides in the language itself a pow-
erful concept (continuations) and an associated construct (call-with-current-continuation)
enabling to set up and memorize an execution context and the way to go back to this context, by
simply calling it as if it was a usual function. Continuations are extremely useful for implementing a
wide variety of advanced control structures, such as complex forms of backtracking.

Data backtracking is also an important issue. One can think about it in terms of transaction
processing in data base systems. In effect, a database system offering only a transaction concept is
sufficient : Marking a data state is done by starting a new transaction and using a counter for the
number of opened transactions. Backtracking is done by aborting a sufficient number of transactions.
This works, but in some way the transaction mechanism is abused, since transactions are never
committed as long as the behavior propagation is processed.

On the other hand, and in order to avoid the usage of a time consuming database manage-
ment system, it is possible to rely on an undo + backtracking feature (also called data backtrack-
ing) mechanism which should be more efficient. Such a mechanism has been implemented in the
PROGRES [Schuerr90, ZS91] environment, where a data backtracking facility enables to restore any
previous arbitrary graph state. This facility is provided thanks to the GRAS system (GRAph Stor-
age) [KSW92], which provides some kind of non-standard database management on top of which
PROGRES acts as a manipulation and query language. GRAS offers sophisticated undo / redo mech-
anisms based on forward / backward executable graph deltas. Every graph modifying operation
is stored together with its reverse operation in a command list. To retrieve a previous graph state,
this command list is traversed backwards executing the reverse operations. Thus, the cost of data
backtracking is proportional to the modifications made and not to runtime.
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Semantic for Single Order BP
(SO-BPE)

Algorithm 1 bpe:tbp(msg) :
1 ribks fetch-behaviors(msg)
2 bpe:execute(msg)
3 8 <ri, block> 2 ribks :
4 if triggered?(beh(block))then
5 eval(body(block), ri, msg)
6 check-post(post(block), ri, msg)
7 else
8 eval(body(block), ri)
9 check-post(post(block), ri)
10 end if

Single Order Semantic This algorithm, for the BPE, defines a low level semantic for the BL, in
the sense that propagation order choices made in cases of non determinism are hard-coded inside
the BPE algorithm itself. Though this semantic presents not too much interest for behavior analysis,
it is still useful to show the overall structure of the BPE. Note well however, that if we assume that
the “8” construct of instruction 3 goes through the matched behaviors to be propagated in a random
order, then by playing the behavior simulation several times one can get some valuable insights about
potential non determinism in the behavior specification. A Randomized Single Order operational
semantic is thus defined by the algorithm that may be called the RSO-BPE algorithm.

“fetch-behaviors” can be detailed as follows :

Algorithm 2 fetch-behaviors(msg) :
1 f <ri, block>, ri 2 parties(moi(msg)) ^ . party(moi) = <role, ri>
2 9 beh 2 br, block 2 blocks(beh) : . br : behavior repository
3 rel(ri) = rel(ctx(beh)) ^ f . blocks(beh) : pre-body-post behavior blocks
4 f untriggered?(beh) ^ firable?(block, msg) ^ check-pre(pre(block), ri) g _
5 f triggered?(beh) ^ check-pre(pre(block), ri, msg) gg

In any case the full single order semantic is still useful because it is the one that is used in the early
stages of the rapid-prototyping process, where there is not yet any need for a full fledged behavior
analysis semantic, and which would even be painful at this stage of development.

One should notice that for the invocation of triggered behavior bodies, the triggering message sent
is also provided for the actual execution. This enables, for instance, to test the CMIS parameters given
to the original management operation. For a M Set, the new value can be tested in the pre-condition
to specify behaviors associated to state transitions on a variable.
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For untriggered behaviors, since there is no explicit trigger that enables to determine when to
execute them, this is supported internally by the system thanks to the function firable?. The
principle is to see if the operation invoked on a given object in a given role requires execution of the
untriggered behavior, i.e. in order to maintain things consistent. For instance, if a variable is modified,
and if the behavior makes in its body a get on it, the behavior is considered as firable. Obviously, this
is an approximation, in many cases this re-execution is not necessary. However, a mechanism has to
be provided to effectively propagate untriggered behaviors in the system.

Note that, the triggered behavior propagation algorithm mentioned above is implicitely recursively
called in any circumstance where a new message is sent to a MO during the evaluation of a behavior
body (see instruction 5).

Semantic for Order Sensitive BP
(OS-BPE)

Algorithm 3 bpe:tbp(msg, bag, trace) :
1 ribks fetch-behaviors(msg)
2 uinf bpe:execute(msg)
3 if empty?(ribks) ^ empty?(bag) then
4 dump-saturation(trace . msg)
5 else
6 
 permutations(ribks)
7 8! 2
 :
8 bag append(!, bag)
9 eval-block(car(bag),

(cdr(bag),
trace . msg))

10 end if
11 undo(uinf)

Semantic for Order Sensitive BP produces linearization of behavior execution orders. This
can be used to emulate the execution of management policies depending on a single management
authority. Eventual non determinism and possible resulting conflicts are in this context relative to the
different execution orders of the whole behaviors themselves. Thus, the unit for execution atomicity
corresponds to entire behavior evaluations. Within this semantic, there is no provision for a more
fine grain linearization that would enable to emulate for instance multiple management and tackle
conflicts due to concurrent accesses to shared resources (MIB MOs). However, this semantic can be
used to raise conflict originating in specification ambiguities.
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Semantic for Concurrent Sequential Behaviors
(Principle)
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Semantic for Concurrent Sequential Behaviors enables to deal with full non determinism
support for both specification ambiguities and Concurrency. This is possible thanks to the use of
Scheme continuations. call-with-current-continuation is extremely useful for implementing
a wide variety of advanced control structures, such as complex forms of backtracking.

The powerfulness of Scheme continuations enables to implement the linearization at the lowest
level, i.e. at the MIB interaction level. Thus the atomicity for behavior execution flows is determined
by the flow executed in between two consecutive MIB interactions of a given behavior thread.

However, this technique has to be used carefully since the combinatory resulting from the lin-
earization can reveal prohibitive, depending on the amount of non determinism itself and the number
of behavior propagation steps that are to be encountered in each behavior propagated. Both of these
factors can not be known in advance, since purely execution dependent.

Complexity Analysis If we consider the number of linearizations of n threads of m intermediate
steps each other, the worst case is to consider that the n threads are independant. Thus, each one can
be scheduled at any location in n�m steps of each linearization. In actual executions, additional con-
straints are normally introduced between the steps of the different threads. Without such constraints,
the total number of linearizations obtained is :

i=nY

i=1

C
m

i�m =
(n�m)!
(m!)n

(1)

In the general case of n threads of respectively m1;m2 � � �mn steps, this leads to
P

i=n

i=1 mi steps
per linearization. Finally, the total number of linearization obtained is :

i=nY

i=1

C
mP

j=n

j=i
mj

=

�P
i=n

i=1 mi

�
!

Q1=n
i=1 mi!

(2)

Justification : All the linearizations can be obtained by first selecting a thread of, say thread1 of m1

steps, there are CmPi=n

i=1
mi

ways to allocate its schedule. Then, for each previously found schedule for

thread1, it remains n � 1 threads to be allocated in
P

i=n

i=2 mi steps. This process repeated iteratively
leads to (2).

Obviously, in actual executions each thread do not manifest a single number of steps, and as a
consequence the size of each linearization is also variable.
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Here are some illustrating examples :

m1 m2 m3 res
2 2 0 6
3 3 0 10
4 4 0 70
5 5 0 252
2 2 2 90
3 3 3 1680
4 4 4 34650

Semantic for Concurrent Sequential
Behaviors (CSB-BPE)

Algorithm 4 bpe:tbp(msg) :
1 call/cc(�(this-cont) f
2 ribks fetch-behaviors(msg)
3 *uinf* bpe:execute(msg)
4 *msg* msg
5 8 <ri, block> 2 ribks :
6 *new-conts* *new-conts* [
7 make-thread(ri, block, msg)
8 *new-conts* fthis-contsg [ *new-conts*
9 *sched-cont*() g

Algorithm 5 bpe:schedule(conts, trace) :
1 if empty?(conts) then dump-saturation(trace)
2 else 8 c 2 conts
3 call/cc(�(x) f
4 *sched-cont* x
5 c() g
6 let uinf *uinf*
7 schedule(conts n fcg [ *new-conts*,

trace . *msg*)
8 undo(uinf)
9 end if

The scheduler is passed as arguments a list of continuations (conts) to linearize. This represents
the current execution context of the set of behavior threads to be run concurrently. The trace
argument represents the trace of the BP leading to this set of continuations. The principle of the
scheduler is quite simple, it launches iteratively the next execution step of each continuation (see algo.
5 instr. 5), just before this launching, it sets up a continuation for itself (see algo. 5 instr. 4) in a global
variable *sched-cont* so that the scheduled thread is able to return to the scheduler. This way, the
examination of the remaining threads can be processed (see algo. 4 instr. 9). Just before returning, the
scheduled behavior thread sets up in global variables :

� the eventual new continuations that could have been created (*new-conts*).

� the undo informations (in *uinf*) that are to be undo-ed (see algo. 5 instr. 8) before the
examination of the other threads.

� and finally the message executed so that to the new schedule invoked (see algo. 5 instr. 7),
is passed a trace enriched with the last MIB interaction done. This way, at saturation, the
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behavior propagation of the linearization reached can be dumped (see algo. 4 instr. 1) for further
examination, if needed.

Implementation Issues

� Control backtracking.

� Data backtracking.

Related Work

� Advanced Debugging.

� Problem solving.

Control backtracking Simple forms of control backtracking use the execution stack and recursive
calls (see algo. 3). However, more complex forms of backtracking often need features such as
continuations which enables to set up any execution context so that bactracking onto it can be
achieved (see algo. 4).

Data Backtracking This requires an undo facility, enabling all the MIB alterations to be undo-ed
before backtracking. This is possible if enough info is kept about the state before any MIB alteration.
Moreover, there is no problem associated to protections (read-only variables: : : ) since the simulation
environment already provides some kind of physical access to any MOs through a so-called real-
resource interface.

Related Work (Problem Solving) PROGRES (PROgrammed Graph Rewriting Systems) [Schuerr90,
ZS91] is a high level multi-pardigm language for the specification of complex structured data types
and their operations. The basic programming constructs are graph rewriting rules (productions and
tests) and derived relationships on nodes (paths and restrictions). Then basic operations may be
combined to build partly imperative, partly rule based complex graph transformations. Due to the
problem of non determinism already mentioned, the semantic of PROGRES involves both control +
data backtracking. Data backtracking is achieved through an undo facility on attributed graphs. PRO-
GRES works also as a forward chaining system, however, the key difference of such a problem solving
environment with respect to a behavior simulation environment is that the inference engine is given
a goal to achieve, which is explicitely stated. In this context, backtracking occurs when dead-ends or
some constraint is violated during the search process. A dead-end is equivalent to a saturation state
that is not satisfactory with respect to the targetted goal. Constraint violation is used to drive the search
process, that is for pruning un-relevant search branches based on assertions about the user problem’s
domain. For the purpose of behavior simulation, if different saturation states are reached, what is
interesting is to analyse them to check if they correspond to the management policies in application.
On the other hand, if an assertion (pre / post condition) is violated, this raises explicitely an invalid
management policy or at least an incorrect translation of a policy into the low level behavior scripts.
Though not directly portable in the context of behavior simulation, the significant work accomplished
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by the PROGRES team at University of Aachen, states clearly the underlying techniques of interest,
namely control / data backtracking in the context of attributed graphs rewriting systems.

Related Work (Program Debugging) An execution backtracking facility in interactive source
level debuggers allows users to mirror their though processes while debugging [ADS90]. This enables
to work backwards from the location where an error is manifested and determine the conditions under
which the error occured. Such a facility also allows a user to change program characteristics and re-
execute from arbitrary points within the program under examination (a "what-if" capability). In effect,
current so-called "high level" source debuggers do not prevent from wasting precious debugging time
in setting break-points in backward order and re-running the program, or in stepping over the whole
execution flow, until the erroneous code is reached. In [ADS90], data backtracking is also handled
thanks to undo mechanisms working on usual programming data structures (records, arrays: : : ). The
specific problem of input / output operations is well stated. In effect I/O operations are in general
not undo-able (e.g. characters sent to a line printer, read / write on files: : : ). One possible approach
to solve this problem is to buffer I/Os and be able to push back buffered I/Os. Another solution,
applicable to file I/Os is to record file pointer offsets and lseek to restore previous file contents for
backtracking. Note that in the management context, notifications present the same characteristics as
I/Os, of not being undo-able, e.g. once sent to a management party. However, as soon as the system
stays into a pure simulation environment for the pure behavior analysis phase, this problem is avoided.
Coupling the system with e.g. a management part is obviously possible, but would be restricted to
work with a single order behavior propagation such as the one presented in 2. However, if really
needed, one can still think about a buffering strategy (based on relevant setup on event forwarding
discriminators and discrimator constructs defined in [Ermf]), in order to make emittted notifications
undo-able.

Conclusion

� Current implementation : Single-Order BPE.

� Further Issues :

– Applicability and usefulness.

– Coupling with test generation.

– Use of static behavior analysis tools ?

Current Implementation Status The current implementation, made in the context of the TIMS
project is limited to the single order behavior propagation engine described in 2. This implementation
has been tested with a simple case study based on a real-life TMN environment (see [SME95] for more
details). The simple case study is concerned with the application of the TIMS tool-set in the Optical
Access Network Management (Fiber-in-the-loop concept), currently in the standardization process in
ETSI TM2 [De tm2209]. This choice proved to be a wise one; (i) the team learnt more about the TMN-
specific problems of Information Modeling and (ii) immediate feedback of our results into ETSI was
possible. Thus, underlying concepts and environmental issues have been validated to a reasonable
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extent.

Conclusion and Further Issues Only some hints are given towards the feasibilty of the integration
of management policy concepts into the behavior formalization and simulation environment, in terms
of both information modeling issues and more dynamic issues such as policy modalities, goals and
constraints. Though, it is assumed, that the relationship oriented behavior formalization facilities
described are powerful enough for this purpose; it would be useful to envision a case study to actually
test the usability of the TIMS tool-set in the context of exercising and testing management policies in
the early stages of their specification.

Possible extensions of the BPE were presented in this paper, they define much more powerful op-
erational semantics for the advocated behavior language (BL), enabling to deal with non determinism
which is argued as being directly applicable for management policy conflict detection.

Though the design of such semantics was clearly stated, as well as their nice features in terms
of dynamic behavior analysis, their applicability and usefulness for the test of Management Policies
remains to be proven, and in particular for the detection of conflicts between Management Action
Policies.

Environmental issues are also very important, in particular the presentation / visualization of the
different behavior propagations reached because of non determinism may reveal quite difficult in
itself. But, such a facility is very useful for the purpose of analysis and explanation.

Coupling with test generation As stated before, a major drawback of dynamic behavior analysis
techniques such as the ones presented, is that they are limited to the analysis of the submitted test cases.
They can raise erroneous situations for these test cases but, can not prove more general properties
about the whole specification such as the absence of deadlocks or the guarantee of some liveliness
property. In this context, a test generation facility could be used to submit more test cases and in
particular the more stressing ones, based on for instance, overlap analysis between policies seems to
be a promising item for further studies.

Static Techniques Static behavior analysis techniques can be used to prove stronger properties
from the specification itself, one can be tempted to map the BL to an abstract representation model
used for static behavior analysis. As an intuition, process algebra notations (CCS, CSP, ACP) may be
the more easy to use for this mapping, they provide a language based notation with specific operators
in order to specify parallelism in the specification.
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