FHE-compatible Batch Normalization for
Privacy Preserving Deep Learning

Alberto Ibarrondo and Melek Onen

EURECOM
Sophia-Antipolis, France
http//www.eurecon.fr

Abstract. Deep Learning has recently become very popular thanks to
major advances in cloud computing technology. However, pushing Deep
Learning computations to the cloud poses a risk to the privacy of the
data involved. Recent solutions propose to encrypt data with Fully Ho-
momorphic Encryption (FHE) enabling the execution of operations over
encrypted data. Given the serious performance constraints of this tech-
nology, recent privacy preserving deep learning solutions aim at first
customizing the underlying neural network operations and further ap-
ply encryption. While the main neural network layer investigated so far
is the activation layer, in this paper we study the Batch Normalization
(BN) layer: a modern layer that, by addressing internal covariance shift,
has been proved very effective in increasing the accuracy of Deep Neural
Networks. In order to be compatible with the use of FHE, we propose to
reformulate batch normalization which results in a moderate decrease on
the number of operations. Furthermore, we devise a re-parametrization
method that allows the absorption of batch normalization by previous
layers. We show that whenever these two methods are integrated during
the inference phase and executed over FHE-encrypted data, there is a
significant performance gain with no loss on accuracy. We also note that
this gain is valid both in the encrypted and unencrypted domains.

Keywords: Fully Homomorphic Encryption - Privacy - Deep Learning
- Encryption - Cryptography - Neural Networks - Batch Normalization

1 Introduction

Deep Learning has recently become increasingly popular mainly due to the un-
precedented computing capabilities promised by the cloud computing paradigm
and the exponential increase on the size and amount of available datasets. Prob-
lems such as speech recognition, image classification, object detection/recognition
or prediction have experienced major breakthroughs thanks to the use of highly
complex Deep Neural Networks (DNN). DNN have two different phases: training,
where a DNN model is optimized sequentially using large amounts of known and
categorized data, and inference (often referred to as classification), where the
optimized, trained DNN model is employed to process new data. While train-
ing poses an open challenge for academic and industrial actors alike, it is when

2 Ibarrondo et al.

performing inference that the real worth of DNN unfolds, generating substantial
added value to organizations using them. It is common nowadays to reuse highly
optimized DNN models by slightly adjusting them to fit particular needs (also
known as transfer learning and fine tuning [16]), and then deploying them.

With the advent of cloud computing, the expensive computations required
by DNN are being pushed to the cloud. Nevertheless, such an outsourcing poses
a risk to the privacy and security of the data involved. When targeting problems
where sensitive data is used, such as predicting illness using a database of patients
or forecasting the likelihood of an individual to commit fraud by inspecting his
bank movements, both the input data and the outcome require data protection.

Traditional data encryption solutions unfortunately fall short in ensuring the
confidentiality of the data and taking advantage of cloud computing capabili-
ties, ie. to apply the DNN model over encrypted data. While Fully Homomorphic
Encryption (FHE) [5] allows any operation over encrypted inputs, obtaining the
corresponding result in the encrypted domain, it unfortunately suffers from seri-
ous performance limitations. Some efficient versions of FHE, for instance Leveled
Homomorphic Encryption (LHE) [3], have been later proposed encompassing ad-
ditions and a limited number of multiplications, that is, low-degree polynomials.

The use of LHE for DNN inference purposes, immediately preserves the pri-
vacy of input and output data. However, given that LHE only supports polyno-
mials, implementing DNN with LHE imposes the linearization of all the DNN op-
erations or their approximations into low-degree polynomial equivalents. While
some of the DNN operations such as fully connected and/or convolution lay-
ers are already linear, other functions, namely activation functions, pooling and
batch normalization require some transformation in order to support LHE.

Most of recent privacy preserving neural networks mainly focus on the lin-
earization and, in fact, on the approximation of the sigmoid activation function
[6, 13, 4]. This paper studies the batch normalization layer which mainly consists
of subtraction of the mean and division by the standard deviation for interme-
diate values in the network. As also observed by [4],this additional layer signif-
icantly improves the accuracy of the model. In this paper, we study this new
layer and show how to adapt it in order to compute inference in LHE-encrypted
inputs. In short, we observe that computations in the layers preceding batch
normalization (namely fully connected or convolution) can be easily tweaked
while remaining linear, and therefore propose to reformulate their parameters
in a way that these layers mathematically absorb the BN layer. Thus, during
the inference phase, instead of relying on two separate layers, the DNN only
implements a single layer that inherently applies batch normalization.

This paper is organized as follows: Section 2 covers background knowledge on
Fully Homomorphic Encryption, Deep Neural Networks, and Batch Normaliza-
tion (BN). Section 3 reviews related work on privacy preserving neural networks
and further describes the conflict between BN and LHE. Section 4 describes
the details of the proposed re-parametrization method that allow convolution or
fully connected layer to absorb the batch normalization and hence support the
use of LHE. Section 5 analyzes the impact of the proposed method on accuracy

FHE-compatible Batch Normalization for Privacy Preserving Deep Learning 3

and performance. Finally, Section 6 provides conclusive remarks, exploring the
implications of this technique and foreseeing future research based on it.

2 Background

Notation In the rest of this paper we use the following notation:

v: Scalar,

v: Vector,

V: Matrix or higher dimension tensor,

(d): Data d (scalar/vector/matrix) encrypted using FHE.

2.1 Fully Homomorphic Encryption (FHE)

Homomorphic encryption is the main cryptographic building block for outsourc-
ing/delegating data and computation to an untrusted third party such as the
cloud server. By definition, an encryption scheme FE}, is defined as being "homo-
morphic” with respect to a function f, if given some inputs (z1, za, ..,), one
can obtain f(x1,xa,...,z,) by performing some operations over the individually
encrypted inputs (cq, co, .., ¢,) and decrypting the resulting value. While initial
homomorphic encryption schemes named as partially homomorphic encryption
schemes were supporting only additions [15] or multiplications [17], in 2009, Gen-
try introduced the first fully homomorphic encryption scheme (FHE) [5] which
allows the execution of any arbitrary function over encrypted inputs. Unfortu-
nately, this initial scheme and some of its subsequent improvements suffer from
poor computation efficiency and prohibitive growth of ciphertext size. There-
fore, researchers investigate leveled homomorphic encryption (LHE) solutions
[3] that can handle polynomials over encrypted inputs. The encryption opera-
tion includes some noise in the encrypted output, which grows when performing
some computations. Performance-wise, LHE slows down computations in a fac-
tor of 1000 or more. More concretely, while addition is rather fast and does not
increase the noise meaningfully, multiplication is slow and it increases the noise
considerably [7]. There is a limit on how many multiplications can be performed
over the encrypted data due to high noise. Above this limit decryption of the
ciphertext becomes impossible. A bootstrapping procedure can be used to con-
trol the noise growth and hence support higher degree polynomials. In that case,
the encryption scheme becomes fully homomorphic. The bootstrapping proce-
dure unfortunately remains very costly in terms of computation. LHE schemes
which do not involve any bootstrapping operation but handle polynomials only,
remain much more efficient. To sum up, the two main requirements for LHE in
privacy preserving Deep Neural Networks are transforming all operations
into polynomials and avoiding as many multiplications as possible while
keeping high accuracy. The two popular libraries that implement leveled homo-
morphic encryption are "SEAL”! and "HELib”2, which support additions and

! https://www.microsoft.com/en-us/research/project/
simple-encrypted-arithmetic-library
2 https://github.com/shaih/HElib

4 Ibarrondo et al.

multiplications over encrypted operands ({a ® b) = (a) ® (b)) and unencrypted
operands ({a ® b) = (a) ®b).

2.2 Deep Neural Networks (DNN)

DNN are a particular type of machine learning techniques, where sequential
transformations called layers are applied to the input. Neural Networks fall into
the category of supervised learning, where the data used to train the model is
labeled: if the neural network is being trained to recognize handwritten digits
(e.g.: MNIST dataset 2), then it requires the dataset with images containing the
handwriting samples and the corresponding real value (from 0 to 9). Modern
DNN are composed of several kinds of layers:

— Fully Connected (FC) is the classical layer present in legacy Neural Net-
works [2]. Also known as Dense layer, it consists of a vector to vector trans-
formation, where the input x is multiplied by a matrix W of weights and
subtracted a vector of biases b. Conventionally, each value in input and
output vectors is denominated as neuron. The FC layer is expressed as:

yrc = FC(x) =x*W —b (1)

— Convolutional Layer (Conv) applies spatial convolution to a matrix X
(figure 1), multiplying the values of a filter W to contiguous sub-regions in
X and then adding a bias B to the result. By convention, all values in B
are the same. The spacing between sub-regions is named strides (s), and the
border appended to X in order to maintain the same size between X and Y
is defined as padding (p). The Conv layer is formulated as:

Yconv = Conv, ,(X) =X W + B (2)

Fig. 1: Spatial Convolution in Conv layer

Although the process of applying the filter to sub-regions is iterative and
slow, by appropriately vectorizing both the input X and the filter W, as

% http://yann.lecun.com/exdb/mnist/

FHE-compatible Batch Normalization for Privacy Preserving Deep Learning 5

well as replicating the latter one, spatial convolution can be expressed as a
matrix multiplication (similar to FC layer). Alternatively, applying FFT to
the whole layer turns convolution into a multiplication.

— Activation Function is a mathematical function applied to individual val-
ues of a tensor, therefore it is easily parallelizable. It is generally non-linear,
constituting the main non-linearity of Deep Neural Networks: this allows
DNN to solve non-linear problems. Activation functions are located after
FC and Convolutional layers. The most common variants are sigmoid o,
hyperbolic tangent tanh and Rectifier Linear Unit ReLU (see figure 2).

20— 0O

—— tanh
—— RelU
1.5

1.0

0.5

fix)

0.0

-0.5

-1.0

-20 -15 -1.0 -05 00 05 10 15 20
X

Fig. 2: Common activation functions around their non-linearity at z =0

— Pooling layer (Pool) computes a reduction function over sub-regions of
the input image X, thus reducing its size while maintaining the number of
dimensions. Most typical reduction functions are max and average.

— Batch Normalization (BN). Due to its relative importance for this paper,
we will dive deep in its understanding in the next subsection.

2.3 Batch Normalization (BN)

Batch Normalization [11] is a layer that is trained over batches of input data. The
BN layer reduces internal covariance shift by 'normalizing’ each data point with
respect to the batch B: subtracting mean of the batch and dividing by standard
deviation of the batch. It is generally applied before activation functions, since
it packs the values in a small interval around x = 0, obtaining a distribution
that makes smarter use of their non-linearities. This prevents the model training
from getting stuck in saturated modes, also helping to handle gradient explosion.
During the training phase, a BN is computed using the following operations over
each batch B of size m and each training step k:

6 Ibarrondo et al.

Input —»B = {z¢, 21, ..., T}

1 i=1
HB Zx
m
1 =1
9 1 o 2
ofy > (zi— pB) (3)
m
Lyl 3
Yi < V% + B = BN, p(z;)
Output —{yo, y1, ..., Ym }

fi(—

In a Batch Normalization layer there are two trainable parameters v and [,
optimized using backpropagation. 3 is a shifting parameter, while y is a scaling
parameter. Mean pp and variance 0% of each batch are calculated and stored.
To avoid zero division, BN also includes a very small constant e ~ 1077,

Once the network has been trained, ”the values of the mean and variance are
fixed during inference” (see [11] page 4). This is accomplished computing the
unbiased estimators for pup and O'2B across all N batches B of size m:

N N
1 m 1
E(x) = pr = NZMBk Var(x) = o7 = mﬁzagk (4)
k=1 k=1
This allows inference to be performed with static parameters: no mean or

variance is calculated on this phase. The BN layer during inference uses pp and
02 to perform the scalar transformation:

— L — Hhr
YN = BN, g0 02 (@) = 7 ¥ P 4 3 (5)
Vorte
In practice, BN has become part of de-facto standard architectures such as
ResNet [9], and its contribution to accuracy improvement is more than estab-
lished in the Deep Learning community.

3 Problem Statement

3.1 Encrypting Deep Neural Networks

As mentioned in section 1, our goal is to protect data when performing inference
using DNN. Indeed, the cloud who performs the inference operation, is con-
sidered as an honest-but-curious adversary. Hence data needs to be encrypted
Applying FHE to encrypt data during inference phase leads to executing all
operations inside each layer over encrypted data. Regarding their compatibility
with LHE, DNN layers can be regrouped into two categories:

FHE-compatible Batch Normalization for Privacy Preserving Deep Learning 7

— Linear layers: their internal operations are intrinsically linear/polynomial.
FC and Conv layers fall within this category. Encrypting these layers using
LHE is completely straightforward:

(yrc) = (FC(x)) = (x+ W = b) = (x) * (W) — (b)

(Y Gom) = (Conv(X)) = (X & W —B) = (X) & (W) — (B))

— Non-linear layers: Activation functions, pooling and Batch Normalization
are non-linear: They include non-polynomial functions/operations. In order
to be compatible with LHE, activation functions have been subject to many
previous research papers (see section 3.2) which use techniques to approx-
imate them such as Taylor or Chebyshev polynomials. Furthermore, in [6],
pooling layers were proven to have decent approximations when substituting
mazx and mean functions by scaled mean. On the other hand, batch normal-
ization (non-linear due to division and square root) has not yet been studied
to become compatible with LHE. Authors in [4] mention this layer without
giving further information on how to adapt it to the encrypted domain.

3.2 Related work

Existing solutions that ensure data privacy for neural networks usually are based
on either homomoprhic encryption [6,4] or secure two-party computation [14,
13]. Early solutions such as the one in[1] leave the server with the execution of
the linear operations over encrypted data only and require the data owner to lo-
cally perform the non-linear operations over intermediary decrypted data. More
recent solutions apply approximation of the non-linear functions (the activa-
tion functions, like sigmoid or hyperbolic tangent) with low-degree polynomials
over which homomorphic encryption can be performed more efficiently. Initially,
Gilad-Bachrach et al. [6] proposed CryptoNets, a convolutional NN for data en-
crypted with LHE and suggest to approximate the activation function with x2
and the max pooling function with mean pooling. This inherently causes some
loss in terms of inference accuracy. Later on, solutions such as [4] mainly focused
on the improvement of this accuracy. On the other hand, [14] and [13] define a
two-server model whereby the data owners distribute the shares of their data
among two non-colluding servers that further perform classification on the joint
(but private) data using secure two-party computation.

Among LHE solutions approximating activation functions, Chabanne et al.
[4] attempt to improve the accuracy of the inference model by introducing a
batch normalization layer before activation functions, similarly to our work.
Unfortunately, the paper does not give any detail on the integration of this
function when combined with LHE. Our proposed solution not only makes use
of BN to improve the accuracy of the model but also integrates the underlying
BN operations within FC or Conv in order to have linear operations only and
easily support FHE. Hence, BN is not considered as a separate layer, and we
show that the number of operations is noticeably reduced. Furthermore, this new
solution does not have any impact on the accuracy of the model and increases
the performance of the inference phase (see section 5, for more details).

8 Ibarrondo et al.

3.3 BN vs. LHE: how to address conflicting requirements?

The targeted problem is how to preserve privacy of data (input and output)
when performing inference in Deep Neural Networks. In a context where Deep
Learning is being pushed to the cloud, we consider a scenario where a data
owner initially gets his hands on a trained DNN model, either by training it
himself (be it from scratch, be it from applying transfer learning[16]) or by
obtaining an already trained model. Benefiting from cost savings, ubiquity and
high availability, this DNN model is then outsourced to the cloud to run the
inference phase. In order to ensure data privacy against the cloud while enabling
DNN inference calculation, data encryption becomes mandatory.

In our solution, as in previous solutions, this is achieved by applying LHE
thanks to its homomorphic nature. Notwithstanding that most layers (FC, Conv,
pooling and activation functions) have already been implemented in the LHE en-
crypted domain, batch normalization remains outside the scope of LHE-encrypted
DNNs. The operations included in batch normalization include a division and
a square root, which cannot be directly implemented with LHE. In order to
linearize it, given that Taylor or other polynomial approximations are clearly
inefficient in the sense that they require several multiplications while yielding
poor approximations, we suggest a different approach: considering BN during
inference as a linear transformation, we first reformulate their parameters, and
then combine it with preceding linear layers (Fully Connected or Convolutional),
expressing the concatenated layers as a single layer.

We hereafter propose a re-parametrization trick for BN which allows batch
normalization layers to be included in privacy preserving DNN while remaining
linear and thus compatible with the use of LHE.

4 Solution

4.1 A first approach: reformulating Batch Normalization

Firstly, provided that o2 is the only parameter in BN layers that is operating
with functions other than sums and multiplications, we propose a small refor-
mulation inside BN layers for all the operations to be compliant with the two
requirements identified in section 2, for the compatibility with LHE. We start
with encrypting the formula in equation 5 which corresponds to the BN layer
and we obtain the following equation:

(ypn) = <BN%5,MT,G% (‘T)> = <7 * x_ziw * ﬁ>

or+e€
X (7)
= (7) * ({z) — (ur)) * <m> +(B)

We cannot easily compute the square root and the division in the LHE en-
crypted domain. However, we realize that we may not need to compute them and

FHE-compatible Batch Normalization for Privacy Preserving Deep Learning 9

instead, we take 0% from the freshly trained DNN and compute the inverse of
its square root over plaintext values. This newly transformed parameter denoted
by ¢ is stored to be used in encrypted inference. We can take advantage of :

1
¢ = —==—= = (BN) = (BNy puro(2)) = () x ((2) = (ur)) % (¢) +(B) (8)
\Oop + €
We can push this reformulation even further, and minimize the number of
operations performed inside an encrypted BN layer by grouping parameters:

ro g Yt o e = BNy, @) = () < @) + (1) (9)

\/U%Jrﬁ

This way, the batch normalization layer can be computed in the LHE-encrypted
domain by performing only one addition and one multiplication.

4.2 The re-parametrization trick: absorbing BN layer

Despite the reformulation of BN detailed in the previous section, BN still in-
volves some computations. We will now show how to make these computations
completely disappear while keeping the effect of BN. We start with a trained
DNN with BN layers. Our only requirement for the DNN is to have a linear
layer (FC or Conv) right before the BN layers, which is indeed the standard case
for existing DNN architectures [8] [10]. The idea is to absorb the BN operations
using the parameters from FC and Conv (W and b). With this setup, we can
merge FC/Conv equations (1 and 2) with Batch Normalization (equation 5). For
the FC layer we would obtain:

yBNyFC = BN(FC(x)) = BN(W xx — b)

s (Wxx—b)— ur (10)
7(NCET: >+5

By rearranging all the parameters we obtain:

Wxx)— (b+
YBN&FC = 7 * ()2() +0
\Oor+e€
A%Y% b
— kX bAur +8
\/o%—&-e \/J%—l—e
_yxWaxx vy (b+pur)

ok te VoA + €
(W) (2xbter) g

(11)

+8

10 Ibarrondo et al.

We now define the reparametrized weights and biases for the FC layer as
follows:

il bnew - (b + NJT) * 7

cr%—ke \/U%—Feiﬂ (12)

With these new weights and biases we have absorbed the BN layer into the
preceding FC layer, while still performing mathematically equivalent operations:

Wnew =W x

yBN&FC = BN(FC(x)) = FCrew = Whew * X — bpew (13)

Since spatial convolution is also linear, the same reparametrization trick can be
applied to Conv layers followed by a BN layer:

YBN&Conv = BN (Conv(X)) = Convpewy = Whew © X — Bhew (14)

The re-parametrization trick allows us to completely absorb BN layers, whereas
reformulation of BN layers only reduced the number of operations. Applying
LHE to equations 13 and 14 is just as straightforward as it was in equation 6.

4.3 Integration with neural networks

In this section, we finally study how the re-parametrization trick is integrated
within the actual neural network. As an overview, the training phase of the DNN
remains unmodified, allowing all previous DNN to be trained as they were before,
as well as obtaining already trained networks. Before using the trained DNN to
perform inference over encrypted data, we apply both the reparametrization
and the reformulation transformations. First of all, the blocks of [FC — BN]
and [Conv — BN] present in the DNN are reparametrized into F'C),e, and
Convne, respectively using equation 12. Secondly, for the remaining BN layers
that are not preceded by a FC/Conv layer, we reformulate them employing
equation 9: BNy 3 ;. 6(x) = BN, -(z).

Whilst the NN is transformed, the overall mathematical computations re-
main equivalent, thus having theoretically zero impact on the accuracy of the
DNN while conserving the properties of BN layers. At this point we could per-
form inference over LHE-encrypted data at the untrusted (honest-but-curious)
cloud, preserving privacy of data. The process is depicted in figure 3. Note that,
when deploying the model to the cloud, thanks to the available operations in
the LHE domain, we can choose to either encrypt the model (degrading per-
formance), or leave it as plaintext (unsafe but substantially faster for com-
putations). It should be noted that existing privacy preserving neural network
solutions consider that the cloud knows the model (the model is not encrypted)
but cannot discover the inputs and outputs of the inference phase (the data is
encrypted).

FHE-compatible Batch Normalization for Privacy Preserving Deep Learning 11

Train DNN Obtain trained DNN
L |
A 4 Y

Whew = W *

Reparametrization o2+e

[FC > BN]FCpey b = (b+ 14
[Conv = BN]Convye,, new = (b + pir) x >
¥ o2 +e€

Reformulation 14 r=p ur*y
BNy ur,03 2 BNu.z \I”% @ /a% te
A 4

DNN model deployment

environment
A

Plaintext operations in trusted

Data Output
encryption W,bv,1,.. decryption

X>(X) Encrypt Yesg Safe, slow e dd
8= ~ =7~~~ " Model? Noj Unsafe,fast ~ ~ ~ ~ """ T T 777~
o 2 v
253
é B 8 = _ Encrypted Inference
4 g T| () =DNN(X)

Fig. 3: Encrypted DNN inference with BN reformulation & reparametrization
5 Evaluation

5.1 Impact on Accuracy

In this section we test the zero impact of re-parametrization and reformulation on
the overall accuracy of the DNN during inference. In order to test the veracity
of this statement, we have implemented two unencrypted DNNs in Tensorflow ,
one with more than 15M parameters (figure 4, top) and one with less than 200k
parameters (figure 4, bottom). Both DNN possess one BN layer that could fuse
with a Conv layer and one BN that could fuse with a FC layer. In both cases we
use ReLLU as activation function. Details can be found in Appendix I.

Using the MNIST dataset [12], we briefly trained each network (Adam opti-
mizer, 5 epochs with learning rate 0.01 and 5 epochs with learning rate 0.001),
then performing inference to obtain 99.02% and 98.80% of test accuracy respec-
tively. Afterwards, we applied the re-parametrization trick on [Conv+ BN] and
[FC + BN] blocks, and re-evaluated the test accuracy. We observed that we
indeed obtained exactly the same results for both networks. Finally, we applied
the proposed reformulation technique to both BN layers and performed the test
again, obtaining the exact same accuracy scores. This validates our approach.

5.2 Performance analysis

This section analyzes the performance of the new solution, revealing noticeable
computational savings with respect to a NN with standard BN.

* Code available in https://github.com/ibarrond/reparametrization-BN.git

12 Ibarrondo et al.

Conv + BN - Convyey

FC+BN > FCyey

. i
Big DNN 3
«Q
>15M =
params z
~
Image 20 Maps 15684 1000 10
28x28 28x28 values values classes
— &
i ©° 2
2 <
Small DNN 1 & -
Q c - D
<200k = 3 &
We, b 2 = -
params [Wei,beal o EI
— o=l

Image 5 Maps 5 Maps 980 100 10
28x28 28x28 14x14 values values classes

Fig.4: DNNs with Batch Normalization after Conv and FC layers used for testing.

Case with no privacy Empirically, we propose to measure the time taken to
perform inference over 10.000 images for the two networks described in section
5.1. We then compare it with the time that the re-parametrized and reformulated
versions take. Table 1 shows the total inference time (in ms) for 10,000 images

averaged over 30 executions and in two different settings (with a CPU and a
GPU).

Table 1: Performance of DNN with reparametrization and reformulation without any
privacy protection

| Platform |CPU Intel i7 6700HQ|GPU Tesla V100 |
‘Network ‘15M par.‘2OOK par. ‘15M par.‘QOOK par.‘
Original 48.1 ms [34.6 ms 11 ms 10.2 ms

Reformulated |43.2 ms [31.8 ms 10.1 ms (9.4 ms
Reparametrized |38.0 ms |27.2 ms 8.6 ms [7.93 ms

As shown in this table, we can conclude that the proposed solution signifi-
cantly improves the performance of the inference within the plaintext domain.
Indeed, in average, reformulation of BN layers yields a 9% performance boost,
while re-parametrization with FC/Conv layers shows a 21% performance boost.

Case where data is encrypted with LHE In order to evaluate the cost of
integrating privacy, we have followed an incremental approach. We have first
considered that the model remains in plaintext and the data is encrypted only.
Further on, we have encrypted the model as well and applied it over the en-
crypted data. We have used a small DNN and have implemented it with naive

FHE-compatible Batch Normalization for Privacy Preserving Deep Learning 13

algorithms each of the DNN layers using the LHE open source library HEIlib[7],
an implementation of the BGV encryption scheme developed purely over CPU.
Similarly to existing solutions, we have used Taylor polynomials of degree 2 to
approximate ReLLU activation functions around x = 0. We have performed infer-
ence over one single image employing the trained 200k model. The results, shown
in table 2, testify the large overhead present when dealing with LHE operations.
Nonetheless, the performance gain observed in plaintext is still perceivable, al-
though it has decreased in magnitude: using re-parametrization, we observe a
14% of increased performance with the unencrypted/plaintext model and a 12%
with the encrypted DNN model. This is due to the fact that we’re already avoid-
ing calculation of square root and division by applying the ¢ reformulation. Ad-
ditionally, we also notice the x7 drop in performance when encrypting the DNN
model.

Table 2: Performance of DNN (LHE-encrypted or not) for inference over a single en-
crypted image

‘DNN model ‘ZOOK unencrypted mode1‘2OOK LHE-encrypted model‘
Original (¢) 6.48 min 47.4 min
Reformulated (7,v)[6.16 min 45.2 min
Re-parametrized |5.54 min 41.7 min

6 Conclusion

This paper has studied the problem of privacy preserving Deep Neural Networks
when the inference phase is outsourced to the cloud and is executed over data
encrypted with LHE. While existing work mostly focus on the compatibility of
activation functions with FHE/LHE, we investigated the batch normalization
layer and propose a new solution that is suitable to the use of LHE. We hence
propose to reformulate the BN layer, linearize the operations and further inte-
grate within the convolution or fully connected layers. The proposed techniques
show a performance gain of 21% over plaintext data, and 12% - 14% over en-
crypted data using an encrypted - unencrypted model respectively; all of this
without any drop in the model accuracy.

Thanks to the proposed solution, complex modern DNN models that make
heavy use of Batch Normalization are now compatible with FHE. This allows
the execution of inference models over encrypted data by an untrusted powerful
server such as a cloud service provider. Furthermore, even in the unencrypted
domain, the proposed re-parametrization shows significant performance results
and can be useful if data cannot be outsourced and therefore remain in plaintext.
Thus, the novelty and the performance gains of the proposed solution holds both
on the encrypted and on the plaintext domain.

14

Ibarrondo et al.

As future work, we plan to implement reformulation and reparametrization

tricks using well known Deep Learning frameworks such as Tensorflow or Py-
Torch, automatizing its computation in order to apply it more efficiently.

7

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable feed-
back and comments. This work was partly supported by the PAPAYA project
funded by the European Union’s Horizon 2020 Research and Innovation Pro-
gramme, under Grant Agreement no. 786767.

References

10.

11.

12.

13.

14.

. Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-

based computation. In: 8h ACM Workshop on Multimedia and Security (2006)
Bishop, C.M.: Neural networks for pattern recognition. Oxford university press
(1995)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1-13:36 (Jul
2014). https://doi.org/10.1145/2633600, http://doi.acm.org/10.1145/2633600
Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
Preserving Classification on Deep Neural Network. In: ePrint Archive (2017)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing. STOC ’09
(2009)

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In: International Conference on Machine Learning (2016)

Halevi, S., Shoup, V.: Algorithms in helib. In: International cryptology conference.
pp. 554-571. Springer (2014)

HasanPour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M.: Lets keep it simple,
using simple architectures to outperform deeper and more complex architectures.
CoRR abs/1608.06037 (2016), http://arxiv.org/abs/1608.06037

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015), http://arxiv.org/abs/1512.03385

Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with
stochastic depth. In: European Conference on Computer Vision. pp. 646-661.
Springer (2016)

Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
pp. 448-456 (2015)

LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits.
Tech. rep. (1998), ttp://yann.lecun.com/exdb/mnist/.

Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: ACM CCS 2017. pp. 619-631. ACM (2017)
Mohassel, P., Zhang, Y.: SecureML: A System for Scalable Privacy-Preserving
Machine Learning. In: IEEE Symposium on Security and Privacy (SP) (2017)

FHE-compatible Batch Normalization for Privacy Preserving Deep Learning 15

15.

16.

17.

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: IN ADVANCES IN CRYPTOLOGY — EUROCRYPT 1999. pp. 223-
238. Springer-Verlag (1999)

Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on knowledge
and data engineering 22(10), 1345-1359 (2010)

Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digi-
tal signatures and public-key cryptosystems. Commun. ACM 21(2), 120-
126 (Feb 1978). https://doi.org/10.1145/359340.359342, http://doi.acm.org/10.
1145/359340.359342

Appendix I: DNN architectures used for section 5

— Input: 28x28 greyscale images.
— Output: [0-9] Single digit with the class the image belongs to.
— Layers in order:

Table 3: DNN architectures used for performance study

DNN architecture 15 M 200k

Convl 20 filters 5x5, stride 1 5 filters 5x5, stride 1
BN 20 (8,7, p, 0%) 5 (8,7, 1,07)

ReLU No parameters No parameters
Mean Pool - stride 2x2

FC1 15684*1000 neurons 980*100 neurons
BN1 1000 (8,7, 1, 0?) 100 (8,7, p, 02)
ReLU No parameters No parameters

FC2 1000*10 neurons 100*10 neurons

