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Abstract—In this paper, we address the fundamental problem
of sparse signal recovery for temporally correlated multiple
measurement vectors (MMV) in a Bayesian framework. The
temporal correlation of the sparse vector is modeled using a first
order autoregressive process. In the case of time varying sparse
signals, conventional tracking methods like Kalman filtering
fail to exploit the sparsity of the underlying signal. Moreover,
the computational complexity associated with sparse Bayesian
learning (SBL) renders it infeasible even for moderately large
datasets. To address this issue, we utilize variational approxima-
tion technique (which allows to obtain analytical approximations
to the posterior distributions of interest even when exact inference
of these distributions is intractable) to propose a novel fast
algorithm called space alternating variational estimation with
Kalman filtering (SAVE-KF). Similarly as for SAGE (space-
alternating generalized expectation maximization) compared to
EM, the component-wise approach of VB appears to allow to
avoid a lot of bad local optima, explaining the better performance,
apart from lower complexity. Simulation results also show that
the proposed algorithm has a faster convergence rate and
achieves lower mean square error (MSE) than other state of the
art fast SBL methods for temporally correlated measurement
vectors.

Keywords— Sparse Bayesian Learning, Variational Bayes,
Kalman Filtering

I. INTRODUCTION

Sparse signal reconstruction and compressed sensing (CS)
has received significant attraction in the recent years. The
compressed sensing problem can be formulated as,

yt = Atxt + wt, (1)

where yt is the observations or data at time t, At is called
the measurement or the sensing matrix which is known and is
of dimension N ×M with N < M , xt is the M -dimensional
sparse signal and wt is the additive noise. xt contains only
K non-zero entries, with K << M and is modeled by an
AR(1) (auto-regressive) process. wt is assumed to be a white
gaussian noise, wt ∼ N (0, γ−1I). Most of the MMV SBL
algorithms are obtained by straightforward extension of the
algorithms in the single measurement vector case (SMV). In
SMV, to address this problem, a variety of algorithms such as
the orthogonal matching pursuit [1], the basis pursuit method
[2] and the iterative re-weighted l1 and l2 algorithms [3]
exist in the literature. In a Bayesian setting, the aim is to
calculate the posterior distribution of the parameters given
some observations (data) and some a priori knowledge. Sparse
Bayesian learning algorithm was first introduced by [4] and
then proposed for the first time for sparse signal recovery by

[5]. Performance can be further improved by exploiting the
temporal correlation across the sparse vectors [6], [7]. How-
ever, most of these algorithms do offline or batch processing.
Nevertheless the complexity of these solutions doesn’t scale
with the problem size. In order to render low complexity or
low latency solutions, online processing algorithms (which
processes small set of measurement vectors at any time) will
be necessary.

In conventional CS, the time invariant sparse signal is
estimated using less measurements than the size of the signal.
On the other hand, in sparse adaptive estimation, a time
varying signal xt is estimated time-recursively by exploiting
the sparsity property of the signal. Conventional adaptive
filtering methods such as LMS or recursive least squares (RLS)
doesn’t exploit the underlying sparseness in the signal xt to
improve the estimation performance. Kalman filter focus on
estimation of the dynamical state from noisy observations
where the dynamic and measurement process are considered to
be from linear Gaussian state space model. However, classical
Kalman filtering assume complete knowledge of the apriori
information about the model parameters and noise statistics.

In sparse Bayesian learning, the sparse signal xt is modeled
using a prior distribution p(xt/α), where α = [α1 ... αM ]

T

is the vector parameter and αi is the inverse of the variance
of xt,i, also interpreted as the precision variable. Since most
of the elements of xt are zero, most of the αi should be very
high favoring solutions with few non-zero components.

In Type II maximum likelihood method or evidence proce-
dure [8], an estimate of the parameters α, γ and sparse signal
xt is done iteratively using evidence maximization. In [9],
the authors propose a Fast Marginalized Maximum Likelihood
(FMML) by alternating maximization of the hyperparameters
αi.

SBL involves a matrix inversion step at each iteration,
which makes it a computationally complex algorithm even for
moderately large datasets. An alternative approach to SBL is
using variational approximation for Bayesian inference [10]–
[13]. Variational Bayesian (VB) inference tries to find an
approximation of the posterior distribution which maximizes
the variational lower bound on log p(yt). We propose a space
alternating variational estimation based technique for single
measurement vectors in [14].

A. Contributions of this paper

In this paper:



• We propose a novel Space Alternating Variational Estima-
tion (SAVE) based SBL technique for LMMSE filtering
called SAVE-KF. The proposed solution is for a multiple
measurement case with an AR(1) process for the temporal
correlation of the sparse signal. The update and prediction
stages of the proposed algorithm reveals links to the
Kalman filtering.

• Numerical results suggest that our proposed solution has
a faster convergence rate (and hence lower complexity)
than (even) the existing fast SBL and performs better than
the existing fast SBL algorithms in terms of reconstruc-
tion error in the presence of noise.

In the following, boldface lower-case and upper-case charac-
ters denote vectors and matrices respectively. the operators
tr(·), (·)T represents trace,and transpose respectively. The
operator (·)H represents the conjugate transpose or conjugate
for a matrix or a scalar respectively. A complex Gaussian
random vector with mean µ and covariance matrix Θ is
distributed as x ∼ CN (µ,Θ). diag(·) represents the diagonal
matrix created by elements of a row or column vector. The
operator < x > or E(·) represents the expectation of x. ||·| |
represents the Frobenius norm. ∠(·) represents the angle or
phase of a complex number. <{(·)} represents the real part
of (·). All the variables are complex here unless specified
otherwise.

II. STATE SPACE MODEL

Sparse signal xt is modeled using an AR(1) process with
correlation coefficient matrix F, with F diagonal. The state
space model can be written as follows,

xt = Fxt−1 + vt, State Update,
yt = Atxt + wt, Observation, (2)

where xt = [xt,1, ..., xt,M ]
T . Matrices F and Γ are defined

as,

F =


f1 0 . . . 0
0 f2 0
...

...
. . .

...
0 0 . . . fM

 ,Γ =


1√
α1

. . . 0

0 0
...

. . .
...

0 . . . 1√
αM

 ,
(3)

Here ai represents the correlation coefficient and αi represents
the inverse variance of xt,i ∼ CN (0, 1

αi
). Further, vt ∼

CN (0,Γ(I−FFH)) and wt ∼ CN (0, 1
γ I). vt are the complex

Gaussian mutually uncorrelated innovation sequences. wt is
independent of the innovation process vt. Further we define,
Λ = Γ(I− FFH) = diag (λ1, ..., λM ).

Although the above signal model seems simple, there are
numerous applications:
• Bayesian adaptive filtering [15], [16].
• Wireless channel estimation: multi-path parameter esti-

mation as in [17], [18]. In this case, xt = FIR filter
response, and Γ represents e.g. the power delay profile.

III. VB-SBL

In Bayesian compressive sensing, a two-layer hierarchical
prior is assumed for the x as in [4]. The hierarchical prior is

such that it encourages the sparsity property of xt or of the
innovation sequences vt.

p(xt/Γ) =

M∏
i=1

p(xt,i/αi) =

M∏
i=1

N (0, α−1
i ),

p(xt/xt−1,F,Γ) =

M∏
i=1

p(xt,i/xt−1,i, αi, ai) =

M∏
i=1

N (aixt−1,i,
1

αi
).

(4)

Further a Gamma prior is considered over Γ,

p(Γ) =

M∏
i=1

p(αi/a, b) =

M∏
i=1

Γ−1(a)baαa−1
i e−bαi . (5)

The inverse of noise variance γ is also assumed to have a
Gamma prior,

p(γ) = Γ−1(c)dcγc−1
i e−dγ . (6)

Now the likelihood distribution can be written as,
p(yt/xt, γ) = (2π)−NγNe

−γ||yt−Atxt||2
2 . (7)

A. Variational Bayes

The computation of the posterior distribution of the pa-
rameters is usually intractable. In order to address this issue,
in variational Bayesian framework, the posterior distribution
p(xt,Γ, γ/y1:t) is approximated by a variational distribution
q(xt,Γ, γ) that has the factorized form:

q(xt,Γ, γ) = qγ(γ)

M∏
i=1

qxt,i(xt,i)

M∏
i=1

qαi(αi), (8)

where y1:t represents the observations till the time t
(y1, ...,yt), similarly we define x1:t. Variational Bayes com-
pute the factors q by minimizing the Kullback-Leibler distance
between the true posterior distribution p(xt,Γ, γ/y1:t) and the
q(x,Γ, γ). From [10],

KLDV B = KL (p(xt,Γ, γ/y1:t)||q(xt,Γ, γ)) (9)

The KL divergence minimization is equivalent to maximizing
the evidence lower bound (ELBO) [11]. To elaborate on this,
we can write the marginal probability of the observed data as,

ln p(yt/y1:t−1) = L(q) +KLDV B , where,

L(q) =
∫
q(xt,θ) ln p(yt,xt,θ/y1:t−1)

q(θ) dxtdθ,

KLDV B = −
∫
q(xt,θ) ln p(xt,θ/y1:t)

q(xt,θ) dxtdθ,

(10)

where θ = {Γ, γ} and θi represents each scalar in θ.
Since KLDV B ≥ 0, it implies that L(q) is a lower bound
on ln p(yt/y1:t−1). Moreover, ln p(yt/y1:t−1) is independent
of q(xt,θ) and therefore maximizing L(q) is equivalent to
minimizing KLDV B . This is called as ELBO maximization
and doing this in an alternating fashion for each variable in
xt,θ leads to,

ln(qi(θi)) =< ln p(yt,xt,θ/y1:t−1) >θi,xt
+ ci,

ln(qi(xt,i)) =< ln p(yt,xt,θ/y1:t−1) >θ,xt,i
+ ci,

p(yt,xt,θ/y1:t−1) = p(yt/xt, γ,y1:t−1)
p(xt/Λ,y1:t−1)p(Λ)p(γ).

(11)



Here <>k 6=i represents the expectation operator over the
distributions qk for all k 6= i. xt,i represents xt without xi
and θi represents θ without θi.

IV. SAVE SPARSE BAYESIAN LEARNING AND KALMAN
FILTERING

In this section, we propose a Space Alternating Variational
Estimation (SAVE) based alternating optimization between
each elements of xt and γ. For SAVE, not any particular
structure of At is assumed, in contrast to AMP which per-
forms poorly when At is not i.i.d or sub-Gaussian. The joint
distribution w.r.t the observation of (2) can be written as,

p(yt,xt,θ/y1:t−1) = p(yt/xt,θ)p(xt,θ/y1:t−1), (12)

where the predictive distribution p(xt,θ/y1:t−1) can be as-
sumed to gaussian distribution with mean x̂t|t−1 and diagonal
error covariance P̂t|t−1, CN (x̂t|t−1, P̂t|t−1). Each diagonal
entry of P̂t|t−1 is denoted as σ2

t,k|t−1. x̂t|t−1 is denoted as
the prediction (estimation of xt from y1:t−1).

ln p(yt,xt,θ/y1:t−1) = N ln γ − γ ||yt −Atxt| |2+

−M det(P̂t|t−1)−
(
xt − x̂t|t−1

)T
P̂−1
t|t−1

(
xt − x̂t|t−1

)
+(c− 1) ln γ + c ln d− dγ + constants,

(13)
In the following, cxt,k , c

′
xt,k

, cαk , cλk and cγ represents
normalization constants for the respective pdfs.

A. Prediction Stage

In this stage, we compute the prediction about xt at time
t− 1, x̂t,k|t−1. In the prediction step of Kalman, like in [19]
and based on the Chapman-Kolmogorov formula:

p(xt,Γ, γ|y1:t−1) =∫
p(xt|xt−1,Γ, γ,y1:t−1)p(xt−1,Γ, γ|y1:t−1)dxt−1

(14)

Using variational approximation to the posterior
p(xt−1,Γ, γ|y1:t−1) ∼ q(xt−1|y1:t−1)q(Γ, γ|y1:t−1), the ex-
pression above results in

p(xt,Γ, γ|y1:t−1) ∼ q(Γ, γ|y1:t−1)∫
p(xt|xt−1,Γ,y1:t−1)q(xt−1|y1:t−1)dxt−1

∼ q(Γ, γ|y1:t−1)q(xt|y1:t−1)
(15)

Using VB we approximate q(xt|y1:t−1) like the following,

ln q(xt|y1:t−1) ∼ Eq(Γ,γ|y1:t−1)(
ln
( ∫

p(xt|xt−1,Γ, γ,y1:t−1)q(xt−1|y1:t−1)dxt−1

))
(16)

Defining f̂k|t−1 as the mean of the approximate posterior for
fk and the variance as σ2

ak|t−1
at time instant t− 1. From the

time update equation of the standard Kalman filter,

xt,k = akx̂t−1,k|t−1 + vk,
〈 1
|ak|2σ2

t−1,k|t−1
+ 1
λk

(|xt,k|2 − xHt,kakx̂t−1,k|t−1−
aHk x̂t−1,k|t−1xt,k + |ak|2|x̂t−1,k|t−1|2)〉
= 1

σ2
t,k|t−1

|xt,k − x̂t,k|t−1|2
(17)

To compute the term 〈 fk
1
λk

+|fk|2σ2
t−1,k|t−1

〉, we write fk =

f̂k|t−1 + ãk|t−1, where ãk|t−1 is a complex gaussian random
variable with variance σ2

fk|t−1,

fk
1
λk

+|fk|2σ2
t−1,k|t−1

+ 1
λk

=

f̂k|t−1+ãk|t−1

(|ak|t−1|2+f̂k|t−1ã
H
k|t−1

+f̂H
k|t−1

ãk|t−1+|ãk|t−1|2)σ2
t−1,k|t−1

+ 1
λk

,

=
f̂k|t−1+ãk|t−1

(|ak|t−1|2σ2
t−1,k|t−1

+ 1
λk

)(1+
(f̂k|tã

H
k|t+f̂

H
k|tãk|t)σ

2
t−1,k|t−1

|ak|t−1|
2σ2
t−1,k|t−1

+ 1
λk

,

=
f̂k|t−1(1−

σ2
t−1,k|t−1

σ2
fk|t−1

<|ak|t−1|
2>σ2

t−1,k|t−1
+ 1
<λk>

)

<|ak|t−1|2>σ2
t−1,k|t−1

+ 1
λk

,

=
f̂k|t−1

<|ak|t−1|2>σ2
t−1,k|t−1

+ 1
<λk>

+σ2
t−1,k|t−1

σ2
fk|t−1

(18)
Finally we obtain,

σ2
t,k|t−1 = (|f̂k|t−1|2 + σ2

ak|t−1
)σ2
t−1,k|t−1 + 1

λ̂k|t−1
,

x̂t,k|t−1 = f̂k|t−1x̂t−1,k|t−1

(19)

B. Measurement or Update Stage

Update of qxt,k(xt,k): Using (11), ln qxt,k(xt,k) turns out to
be quadratic in xt,k and thus can be represented as a Gaussian
distribution as follows,

ln qxt,k(xt,k) = − < γ >
{

(yt −At,k < xt,k >)HAt,kxt,k −

xHt,kA
H
t,k(yt −At,k < xt,k >) + ||At,k| |2 |xt,k|2

}
−

1
2σ2

t,k|t−1

(
|xt,k|2 − xHt,kx̂t,k|t−1 − xt,kx̂Ht,k|t−1

)
+ cxt,k =

− 1
σ2
t,k|t

∣∣xt,k − x̂t,k|t
∣∣2 + c′xt,k .

(20)
Note that we split Atxt as, Atxt = At,kxt,k + At,kxt,k,
where At,k represents the kth column of At, At,k represents
the matrix with kth column of At removed. Clearly, the
mean and the variance of the resulting Gaussian distribution
becomes,

σ2
t,k|t = 1

<γ>||At,k||2 + 1

σ2
t,k|t−1

,

x̂t,k|t =

σ2
t,k|t

(
AH
t,k

(
yt − At,k < xt,k >

)
< γ > +

x̂t,k|t−1

σ2
t,k|t−1

)
,

(21)
where x̂t,k|t represents the point estimate of xt,k. One remark
is that forcing a Gaussian posterior q with diagonal covariance
matrix on the original Kalman measurement equations gives
the same result as SAVE.
Update of qγ(γ): Similarly, the Gamma distribution from
the variational Bayesian approximation for the qγ(γ) can be
written as,

ln qγ(γ) =
(c− 1 +N) ln γ − γ

(
< ||yt − Atxt| |2 > + d

)
+ cγ ,

qγ(γ) ∝ γc+N−1e−γ(<||yt−Atxt||2>+ d).
(22)



The mean of the Gamma distribution for γ is given by,

< γ >= γ̂t =
c+N

2

(ξt + d) ,

ξt = βξt−1 + (1− β) < ||yt − Atxt| |2 >, where,
< ||yt − Atxt| |2 >=

||yt| |2 − 2<(yHt Atx̂t|t) + tr
(
AH
t At(x̂t|tx̂

H
t|t + Σt|t)

)
,

Σt|t = diag(σ2
t,1|t, ..., σ

2
t,M |t), x̂t|t = [x̂t,1|t, ..., x̂t,M |t]

T ,
(23)

where we introduced temporal averaging also and β denotes
the weighting coefficients which are less than one.

C. Fixed Lag Smoothing

For fixed lag smoothing with delay ∆ > 0, we rewrite the
state space model as follows,

yt = AtF
∆xt−∆ +

∆−1∑
i=0

AtF
ivt−i + wt︸ ︷︷ ︸
w̃t

,

p(yt,xt−∆,θ/y1:t−1) = p(yt/xt−∆,θ)p(xt−∆,θ/y1:t−1),
(24)

where w̃t ∼ CN (0, R̃t), R̃t = At(I − |F|2∆)Γ)AH
t + 1

γ I.
The posterior distribution p(xt−∆,θ/y1:t−1) is approximated
using variational approximation as q(xt−∆,θ/y1:t−1) with
mean and covariance as x̂t−∆|t−1 and Σt−∆|t−1.

ln p(yt,xt−∆,θ/y1:t−1) = − 1
2 ln det R̃t−

(yt −AtF
∆xt−∆)HR̃−1

t (yt −AtF
∆xt−∆)

− 1
2 det(Σt−∆|t−1)−(

xt−∆ − x̂t−∆|t−1

)H
Σ−1
t−∆|t−1

(
xt−∆ − x̂t−∆|t−1

)
+ cx−∆.

(25)
Here |F| represents the matrix obtained by the amplitudes of
the entries in F and cx−∆ represents normalization constants.
Update of xt−∆:Using (11), ln qxt−∆

(xt−∆/y1:t) turns out
to be quadratic in xt−∆ and thus can be represented as a
Gaussian distribution with mean and covariance as x̂t−∆|t and
Σt−∆|t respectively,

Σt−∆|t = (F∆HAH
t < R̃−1

t > AtF
∆ + Σ−1

t−∆|t−1)−1,

x̂t−∆|t =

Σt−∆|t(Σ
−1
t−∆|t−1x̂t−∆|t−1 + F∆HAH

t < R̃−1
t > yt).

(26)

D. VB for AR(1) Parameters

In this section VB is used to learn the unknown correlation
coefficient fk and λk. The goal is to maximize the posterior
p(fk/xt,y1:t) and p(λk/xt,y1:t). We denote f̂k|t−1 as the
mean or the point estimate of fk at time instant t − 1. The
update of correlation coefficient at t can be written as, From
the state space model, xt,k = fkxt−1,k + 1√

λk
vt,k,

ln p(xt,xt−1Γ, fk,yt/y1:t−1) = lnλk−
λk |xt,k − fkxt−1,k|2 + ((a− 1) lnλk + a ln b− bλk)
+“constants”,

(27)

where “constants” denote terms independent of λk and fk.
Update of qλk(λk): Using variational approximation
ln q(λk|y1:t) ∼ Eq(xt,xt−1,γ,fk/y1:t) ln p(xt,Γ, γ, fky1:t),

lnλk − λk(< |xt,k − fkxt−1,k|2 > +b) + (a− 1) lnλk
+cλk ,

qλk(λk) ∝ λake
−λk(<|xt,k−fkxt−1,k|2>+b)

(28)
The mean and variance of the resulting gamma distribution
can be written as,

< λk >= (a+1)

(<|xt,k−fkxt−1,k|2>+b)
,

< βk >= (a+1)

(<|xt,k−fkxt−1,k|2>+b)2

(29)

Update of qfk(fk): Using variational approximation
ln q(fk|y1:t) ∼ Eq(xt,xt−1,γ/y1:t) ln p(xt,xt−1,Γ, γ,y1:t),

qfk(fk) ∝ e−<|xt−1,k|2>|fk−<xt,k><xHt−1,k>| (30)

Finally we write the mean and variance as,

σ2
fk|t = 1

x̂2
t−1,k|t+σ

2
t−1,k|t

,

f̂k|t = σ2
fk|tx̂

H
t−1,k|tx̂t,k|t =

x̂Ht−1,k|tx̂t,k|t

x̂2
t−1,k|t+σ

2
t−1,k|t

.
(31)

Algorithm 1: The Adaptive SAVE-KF Algorithm

Update Stage
σ2
t,k|t = σ2

t,k|t−1(σ2
t,k|t−1γ̂t−1 ||At,k| |2 + 1)−1,

Kt,k = σ2
t,k|tA

H
t,kγ̂t−1,

x̂t,k|t =
σ2
t,k|t

σ2
t,k|t−1

x̂t,k|t−1 + Kt,k

(
yt − At,kx̂t,k|t

)
,

γ̂t =
c+N

2

(ξt+ d) ,

ηk|t = <{f̂Hk|t−1x̂t,k|tx̂t−1,k|t−1},
λ̂k|t =

a+1

(|x̂t,k|t|2+σ2
t,k|t+|f̂k|t−1|2(|x̂t−1,k|t−1|2+|σ̂2

t−1,k|t−1
|2)−2ηk|t+b)

.

Prediction Stage
σ2
t+1,k|t = (|f̂k|t|2 + σ2

ak|t
)σ2
t,k|t + 1

λ̂k|t
,

x̂t+1,k|t = f̂k|tx̂t,k|t,
Estimation of AR(1) Parameters
σ2
fk|t = 1

x̂2
t−1,k|t+σ

2
t−1,k|t

,

f̂k|t = σ2
fk|tx̂

H
t−1,k|tx̂t,k|t =

x̂Ht−1,k|tx̂t,k|t

x̂2
t−1,k|t+σ

2
t−1,k|t

.

(32)

E. Computational Complexity

For our proposed SAVE, it is evident that we don’t need
any matrix inversions compared to [4]. Our computational
complexity is similar to [12]. Update of all the variable xt,Γ, γ
involves simple addition and multiplication operations. We in-
troduce the following variables, q = yHt At and B = AH

t At.
q,B and ||yt| |2 can be precomputed, so only computed once.

V. SIMULATION RESULTS

In this section we present the simulation results to validate
the performance of our SAVE-KF SBL algorithm (Algorithm
1) compared to the state of the art solutions. We consider the
special case of uncorrelated measurements ai = 0,∀i, thus



reducing it to the single measurement vector case. We compare
our algorithm with the Fast Inverse-Free SBL (Fast IF SBL)
in [12], the G-AMP based SBL in [20] and the fast version
of SBL (FV SBL) in [13]. For the simulations, we have fixed
M = 200 and K = 30. All the elements of At and xt are
generated i.i.d from a normal distribution, N (0, 1). SNR is
fixed to be 20 dB in the simulation.
A. MSE Performance
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Fig. 1. NMSE vs the number of observations.

From Figure 1, it is evident that proposed SAVE algorithm
performs better than the state of the art solutions in terms of
the Normalized Mean Square Error (NMSE). NMSE is defined
as NMSE = 1

M ||x̂− x| |2, x̂ represents the estimated value,
NMSEdB = 10 log 10(NMSE).
B. Complexity
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Fig. 2. Number of iterations vs the number of observations.
Since the proposed SAVE have similar computational re-

quirements compared to [12], [20] , we plot the execution
time in matlab for all the algorithms. It is clear from Figure 2
that proposed SAVE approach has lower exection time and
thus faster convergence compared to the existing fast SBL
algorithm. However, GAMP based [20] and IF-SBL [12]
has a better convergence rate compared to ours but with a
degradation in NMSE performance.

VI. CONCLUSION

We presented a fast SBL algorithm called SAVE-KF, which
uses the variational inference techniques to approximate the
posteriors of the data and parameters and track a time vary-
ing sparse signal. SAVE-KF helps to circumvent the matrix
inversion operation required in conventional SBL using EM

algorithm. We showed that the proposed algorithm has a faster
execution time or convergence rate and better performance
in terms of NMSE than even the state of the art fast SBL
solutions. SAVE-KF algorithm exploit the underlying sparsity
in the signal compared to the classical Kalman filtering based
methods.
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