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Abstract—The Internet of Things (IoT) technology has ex-
panded widely across the world, promising new data manage-
ment opportunities for industries, companies and individuals in
different sectors, such as health services or transport logistics.
The exponentially increasing number of IoT devices, their origin
diversity, their limited capabilities in terms of resources, as well
as the ever-increasing amount of data, raise new challenges for
security and privacy protection, precluding traditional access
control solutions to be integrated to this new environment. In
this paper, we propose a reliable, server-aided, policy-based
access control mechanism, named CHARIOT, that enables an
IoT platform to verify credentials of different devices requesting
access to the data stored within it. CHARIOT enables IoT devices
to authenticate themselves to the platform without compromising
their privacy by using attribute-based signatures. Our solution
also allows secure delegation of costly computational operations
to a cloud server, hence relieving the workload at IoT devices’
side.

Index Terms—Access Control, Cloud Computing, Internet of
Things

I. INTRODUCTION

The Internet of Things (IoT) has been developed to enable
the interconnection between various devices, such as mobile
phones, sensors and actuators, that collect and transmit data
at large-scale. While many platforms are available for the
IoT, access control issues are often overlooked; various at-
tacks against such platforms have been noticed1. Preventing
unauthorized access to the platform and consequently to the
data stored in there, becomes extremely challenging due to
the nature of IoT devices. The latter, that are often simple
and resource-constrained, cannot perform costly computational
operations. Since platforms are usually installed at untrusted
third parties, such as data centers or cloud servers, such parties
must not obtain any information about the identity of IoT
devices and the data that is being collected or accessed.

Traditional credential-based access control systems do not
suit this environment as resource-limited IoT devices are
often not able to generate credentials or signatures to satisfy
the access control policy defined for an IoT platform. We
hence aim to develop a server-aided access control solution,
named CHARIOT, which ensures the privacy of the devices’
identity and of the data towards the platform. CHARIOT
relies on the use of attribute-based signatures to ensure the

1https://motherboard.vice.com/en us/article/4xav93/more-security-
vulnerabilities-found-in-hello-barbie-toys-servers (25/01/16)

proper authentication of devices, by defining an access control
policy for the data stored at the IoT platform. Furthermore,
CHARIOT enables an IoT device to delegate most of the
access control operations to a more powerful third party such
as a cloud server, and only perform minor operations at its side
in order to optimize the use of its resources. The outsourced
computation of the credentials is based on a simple secret
sharing of the signing key between the cloud server and the
IoT device. Once the cloud server has executed the main part
of the generation of the signature, the IoT device performs
very few additional operations to finalize it and sends the
resulting signature to the platform. CHARIOT ensures that
no information about the devices’ attributes in the credentials
is leaked to the platform nor to the cloud server.

In the following section, we detail the problem of designing
an access control protocol in the IoT environment and high-
light the main features of our cloud server-assisted protocol.
Section III describes the proposed solution CHARIOT. In
Section IV, we evaluate the performance of our solution and
recall the existing work. We finally conclude the paper in
Section V.

II. PROBLEM STATEMENT

In the IoT context, giving access to sensitive information
to unauthorized parties brings serious issues on security [1].
Access control systems appear to be the essential strategy to
overcome these threats. Nevertheless, traditional access control
solutions relying on public-key infrastructures fall short for
this technology mainly because of the very limited computing
capabilities of IoT devices and storage.

A suitable technique allowing the secure authentication
of devices to the platform is Attribute-Based Signature
(ABS) [2]. Informally speaking, an ABS protocol in the IoT
environment ensures that given an access policy, whenever a
device signs a message using its attributes, if the attributes
satisfy this access policy, then this signature is valid and the
device successfully authenticates and accesses the platform.
Additionally, ABS ensures that these attributes remain hidden
in the signature, and thus the device’s identity remains
private. However, current ABS solutions [3], [4] suffer from
the computational burden of the signature generation.

In most of the existing ABS solutions, the generation of the
signature and its size depend on the number of attributes in the



signing policies. Yet, in the context of an IoT environment, a
typical access control policy may contain numerous attributes
because of the large number of IoT devices and their hetero-
geneity. Herranz et al. [4] present a Threshold ABS scheme
with compact signatures whereby their size does not depend
on the number of attributes in the policies. While the solution
is suitable for the IoT technology, the computational cost still
remains significant: the number of modular exponentiations is
linear with the number of attributes and therefore cannot be
afforded by resource-constrained IoT devices.

We propose to improve the computational cost of the above
solution at the device’s side by delegating most of the signature
generation to a powerful cloud server. Similarly to [5], the
signing key is secretly shared between the cloud server and
the IoT device, ensuring a secure delegation of the signature
computation. The cloud server computes a partial signature
using an outsourcing key, and sends it to the IoT device.
The latter finalizes the signature by performing additional
lightweight operations using its private key, and forwards it
to the platform. The signature is accepted by the platform if
the device’s attributes, embedded into the signature, satisfy the
access control policy.

Yet, the ABS solution in [4] incurs extra computational and
storage overhead since the signature generation is fixed to an
upper bound due to the use of dummy attributes. Following a
technique introduced in [6], we modify the original ABS in
[4] by removing the presence of dummy attributes. We hence
obtain a more efficient Threshold ABS scheme with constant-
size signatures and no dummy attributes whereby the most
computationally-intensive operations are securely delegated to
a cloud server. The proposed solution guarantees privacy of
participating IoT devices against the platform and cloud server.

III. CHARIOT

A. Preliminaries

Let G and GT be two cyclic multiplicative groups of prime
order p and e : G × G → GT be an admissible pairing with
properties of bilinearity, non-degeneracy and computability.
Let g ∈ G and ~v = (v1, v2, v3)> ∈ G3. We denote E(g,~v)
the pairing-based vector (e(g, v1), e(g, v2), e(g, v3))> ∈ G3

T .
We let the multiplication between two column vectors be
(v1, v2, v3)> · (v′1, v′2, v′3)> = (v1 · v′1, v2 · v′2, v3 · v′3)> ∈ G3.
Let Y be a finite set and y ∈R Y be a random variable
uniformly chosen from Y . Let X be an attribute set, at ∈ X ,
τ be an injective encoding such that all τ(at) are pairwise-
distinct, and γ ∈ Zp. We denote FX(γ) =

∏
at∈X(γ + τ(at))

the polynomial of degree |X|.

B. Building Blocks

Similarly to Herranz et al. [4], our ABS scheme relies
on two main features, namely the Attribute-Based Encryption
(ABE) scheme with constant-size ciphertexts proposed by [7]
and the Groth-Sahai proof systems for bilinear groups [8].

The ABE scheme in [7] is designed for the threshold case,
where users are authorized to decrypt if they have at least

t attributes matching the ones from an attribute universe,
for some threshold t chosen by the party who encrypts the
message. Such scheme relies on expressing a polynomial as
the product of irreducible factors of degree 1 with coefficients
equal to the attributes from either the user’s set or the universe.
Fraction of such polynomials can thus be simplified when t
attributes among the user’s set and the universe match.

Herranz et al. [4] design their Threshold ABS scheme by
enabling the signer to implicitly prove that it can decrypt a
ciphertext generated as in the ABE scheme [7]. To do so,
the signer generates a Groth-Sahai proof [8] in which the
message and access policy are binded using a technique from
[9]. Informally, by hashing the to-be-signed message using
Waters’ techniques [10] and embedding it into the Groth-Sahai
Common Reference String (CRS), the technique in [9] allows
signatures of knowledge.

In addition, we modify the ABS scheme presented in [4]
by outsourcing the signature generation to a cloud server.
Similarly to Chen et al. [5], we let the cloud server and the IoT
device hold shares of a secret element chosen by the trusted
attribute authority, and use them to generate the signature such
that the combination of the two shares recover the secret.

For more details on our building blocks, we let the reader
refer to the full version of the paper [11].

C. Overview

The proposed solutions consists of six algorithms. The
Setup algorithm generates the public parameters accessible to
all participating parties, and a master secret key forwarded to
an off-line trusted attribute authority. The Keygen algorithm,
run by the trusted attribute authority, creates the outsourcing
key for the cloud server and the private key for the IoT device,
regarding the access attributes of this device. The outsourcing
key embeds the attributes of the device in their hashed form
(using a keyed Hash Message Authentication Code (HMAC))
while the private key is calculated in order to enable the device
to complete its access requests to the platform. Informally
speaking, the outsourcing key and the device’s private key
contain shares of a secret enabling to apply the outsourced
signature generation technique.

Secure authentication of the IoT device towards the platform
is permitted with algorithms Request, Signout, Sign and Verify.
The IoT device runs Request to hash the access policy for the
cloud server using the HMAC. The access policy is defined
by the platform and made accessible to the device, but should
remain hidden from the cloud server’s view. Then, the cloud
server, given this hashed access policy, creates the outsourced
signature using its outsourcing key. It forwards the outsourced
signature to the IoT device. From there, the device finalizes the
signature generation by using its private key and choosing the
message. It forwards the final signature to the IoT platform.

Outsourced and final signatures are constructed as in the
threshold case, based on polynomial fractions defined over
the attributes of the device and of the access policy. By doing
so, if the device holds less attributes than a certain threshold,
the signature verification will fail and the device will not have



Fig. 1. CHARIOT protocol overview
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access to the platform. Contrary to [4], the signature generation
does not require the use of dummy attributes into polynomials
to reach correctness of the verification process. Moreover,
signatures embed Groth-Sahai proof systems allowing the
device to implicitly prove that it can decrypt a ciphertext
corresponding to the ABE scheme [7].

Once receiving an access request from the IoT device,
the platform executes Verify to check the validity of the
device’s signature and thus its right for access, using the public
parameters, the current policy and the chosen message. If the
result is positive, meaning that the device has the required
attributes satisfying the policy, then it is authorized for access.
The verification phase works thanks to the correctness of the
ABE scheme [7] and to the perfect completeness, soundness
and composable zero-knowledge of the Groth-Sahai proofs.

Figure 1 illustrates the CHARIOT protocol where a trusted
attribute authority, an IoT platform, a cloud server and an IoT
device participate.

D. Construction

The CHARIOT construction is made of six algorithms:

Setup(λ,P, n) → (params,msk). On inputs the security
parameter λ, an attribute universe P and an integer n that
is an upper bound on the size of threshold policies, the algo-
rithm outputs the public parameters params (which contain
(λ,P, n)) and the master secret key msk (for the trusted
attribute authority) as follows:

The algorithm first chooses two cyclic groups G,GT of
prime order p > 2λ with an efficiently computable bilinear
map e : G × G → GT . Let g, h be two generators of G and
H : {0, 1}∗ → {0, 1}k be a collision-resistant hash function
for some k ∈ N. Let τ be a HMAC that, given a key K,
sends an attribute at ∈ P onto an element τ(K, at) ∈ Z∗p
such that all output values are different. The algorithm then
picks α, β, γ ∈R Z∗p and computes u = gβ , vi = g

α

γi

and hi = hαγ
i

for i ∈ [0, n]. It generates the Groth-Sahai
CRS by first choosing two generators g1, g2 of G. Then, it
defines the vectors ~g1 = (g1, 1, g)> and ~g2 = (1, g2, g)>. For
i ∈ [0, k], it picks ξi,1, ξi,2 ∈R Zp and defines the vector

~g3,i = (~g1)ξi,1 · (~g2)ξi,2 = (g
ξi,1
1 , g

ξi,2
2 , gξi,1+ξi,2)>. Exponents

{ξi,1, ξi,2}i∈[0,k] can then be discarded since they are no longer
needed.

Finally, the algorithm sets the public parameters params =
(λ,P, n, p,G,GT , e, g, h, u, {vi}i∈[0,n]{hi}i∈[0,n], ~g1, ~g2,
{~g3,i}i∈[0,k], H, τ) and the master secret key msk = (α, β, γ).

KeyGen(params,msk,Ω) → (oskΩ, skΩ, skPT ). On inputs
the public parameters params, the master secret key msk, an
attribute set Ω ⊂ P , the trusted attribute authority outputs the
outsourcing key oskΩ (for the cloud server), the private key
skΩ (for the IoT device) and the secret key skPT (for the IoT
platform) as follows:

Let K be a random key to be shared between the device
and the platform, that will be used to hash the attributes. Let
Ω ⊂ P be an attribute set. The authority picks β1 ∈R Z∗p and
sets β2 = β + β1. It then chooses r ∈R Z∗p and computes
g

r
γ+τ(K,at) for at ∈ Ω, hrγ

i

for i ∈ [1, n− 1], h(r−β2)γn , gβ1

and hβ1γ
n

.
The authority sets the outsourcing key oskΩ =

({g
r

γ+τ(K,at) , τ(K, at)}at∈Ω, {hrγ
i}i∈[1,n−1], h

(r−β2)γn , gβ1)
for the cloud server, the private key skΩ = (hβ1γ

n

,K) for the
IoT device and the secret key skPT = K for the IoT platform.

Request(Γ, skΩ) → Γ̃. On inputs a threshold signing policy
Γ = (t, S) where the set S ⊂ P has |S| = s ≤ n attributes
and 1 ≤ t ≤ s, and the private key skΩ, the IoT device
hashes each attribute at ∈ S with τ resulting into τ(K, at),
and creates the HMAC-hashed set S̃ containing the values
τ(K, at) for all at ∈ S. It sets the HMAC-hashed threshold
signing policy Γ̃ = (t, S̃) and forwards it to the cloud server.

Signout(params, oskΩ, Γ̃) → σ′. On inputs the public pa-
rameters params, the outsourcing key oskΩ and an HMAC-
hashed threshold signing policy Γ̃ = (t, S̃) where S̃ is the
HMAC-hashed set of S ⊂ P and 1 ≤ t ≤ s ≤ n, the cloud
server outputs an outsourced signature σ′ as follows:

The cloud server returns 1 if |Ω ∩ S| < t; otherwise, it
finds a subset ΩS ⊂ Ω ∩ S such that |ΩS | = t. The cloud
server works on the HMAC-hashed sets to verify the number
of attributes contained in the intersection, since it should not
get any information about the attributes in Ω and S except
that there are at least t matching attributes.

For all at ∈ ΩS , the cloud server then runs
the algorithm Aggregate({g

r
γ+τ(K,at) , τ(K, at)}at∈ΩS ) =

g
r∏

at∈ΩS
(γ+τ(K,at)) = g

r
FΩS

(γ) = T1. Let the polynomial
FS\ΩS (γ) be as FS\ΩS (γ) =

∏
at∈S\ΩS (γ + τ(K, at)) =∑s−t

i=0 γ
ibi such that bs−t = 1. Then, it computes T ′2 =

h(r−β2)γn ·
∏s−t−1
i=0 (hrγ

i+n−s+t
)bi that is possible given the

public parameters params and the outsourcing key oskΩ. The
obtained values T1 and T ′2 should satisfy the equality:

e(T ′2, v
−1
n−s+t) · e(T1, h

αFS(γ)) = e(u · gβ1 , hs−t)

Then, it picks r1, s1, r2, s2 ∈R Zp and computes ~C ′T1
=

(1, 1, T1)>·(~g1)r1 ·(~g2)s1 and ~C ′T2
= (1, 1, T ′2)>·(~g1)r2 ·(~g2)s2 .



Let θ ∈ G with commitment ~C ′θ = (1, 1, θ)> ·(~g1)rθ ·(~g2)sθ for
rθ, sθ ∈R Zp, which takes θ = hs−t and proves the following:

e(T1, HS) = e(u · gβ1 , θ) · e(T ′2, vn−s+t) (1)
e(g, θ) = e(g, hs−t) (2)

where HS = hαFS(γ) = hα
∏
at∈S(γ+τ(K,at)). Eqs. 1 and 2

are called proofs ~π′1 and ~π′2 respectively, and are given by
~π′1 = (Hr1

S · (ugβ1)−rθ ·v−r2n−s+t, H
s1
S · (ugβ1)−sθ ·v−s2n−s+t, 1)>

and ~π′2 = (grθ , gsθ , 1)>. It also computes gβ1rθ and gβ1sθ .
Finally, the cloud server sets the outsourced signature

σ′ = (~C ′T1
, ~C ′T2

, ~C ′θ, ~π
′
1, ~π
′
2, T

′
2, HS , g

β1rθ , gβ1sθ ) and
forwards it to the IoT device.

Sign(params, skΩ,M, σ′)→ σ. On inputs the public param-
eters params, the private key skΩ, a message M and an
outsourced signature σ′, the IoT device outputs a signature
σ as follows:

Given T ′2 from the outsourced signature σ′ and hβ1γ
n

from the private key skΩ, the IoT device computes T2 =
T ′2 · hβ1γ

n

= h(r−β2)γn ·
∏s−t−1
i=0 (hrγ

i+n−s+t
)bi · hβ1γ

n

=

h(r−β)γn ·
∏s−t−1
i=0 (hrγ

i+n−s+t
)bi . The obtained values T1 and

T2 should satisfy the equality:

e(T2, v
−1
n−s+t) · e(T1, h

αFS(γ)) = e(u, hs−t) (3)

Thereafter, it computes M = m1 · · ·mk = H(M) ∈ {0, 1}k.
It uses M to form a message-specific Groth-Sahai CRS
gM = (~g1, ~g2, ~g3,M ). More specifically, for all i ∈ [0, k], ~g3,i

is parsed as (gX,i, gY,i, gZ,i)
> and the device sets ~g3,M =

(gX,0 ·
∏k
i=1 g

mi
X,i, gY,0 ·

∏k
i=1 g

mi
Y,i, gZ,0 ·

∏k
i=1 g

mi
Z,i)
>. The

device then generates the Groth-Sahai commitments to the
values T1 and T2 using gM. It picks t1, t2 ∈R Zp and
computes:

~CT1
= ~C ′T1

· (~g3,M )t1

~CT2
= ~C ′T2

· (1, 1, hβ1γ
n

)> · (~g3,M )t2

Then, it generates the NZIK proof that the pair of committed
variables (T1, T2) satisfies the pairing-product in Eq. 3. To
do so, let the commitment ~Cθ = ~C ′θ · (~g3,M )tθ = (1, 1, θ)> ·
(~g1)rθ · (~g2)sθ · (~g3,M )tθ for tθ ∈R Zp, which takes θ = hs−t
and proves the following:

e(T1, HS) = e(u, θ) · e(T2, vn−s+t) (4)
e(g, θ) = e(g, hs−t) (5)

where HS = hαFS(γ). Eqs. 4 and 5 are called proofs ~π1 and
~π2 respectively, and are given by:

~π1 = ~π′1 · (g−β1rθ , g−β1sθ , Ht1
S · u

−tθ · v−t2n−s+t)
>

~π2 = ~π′2 · (1, 1, gtθ )>

Finally, the IoT device sets the signature
σ = (~CT1 ,

~CT2 ,
~Cθ, ~π1, ~π2) and sends it to the IoT platform.

Verify(params, skPT ,M, σ,Γ) → 0/1. On inputs the public
parameters params, the secret key skPT , a message M, a

signature σ and a threshold policy Γ = (t, S), the IoT platform
outputs 0 if the signature is valid and 1 otherwise.

The IoT platform computes M = m1 · · ·mk =
H(M), forms the vector ~g3,M = (gX,0 ·

∏k
i=1 g

mi
X,i, gY,0 ·∏k

i=1 g
mi
Y,i, gZ,0 ·

∏k
i=1 g

mi
Z,i)
>, and sets HS = hαFS(γ) =

hα
∏
at∈S(γ+τ(K,at)) where K = skPT . Let ~πj =

(πj,1, πj,2, πj,3)> for j ∈ {1, 2}. It returns 0 if and only if:

E(HS , ~CT1
) = E(u, ~Cθ) · E(vn−s+t, ~CT2

) · E(π1,1, ~g1)

·E(π1,2, ~g2) · E(π1,3, ~g3,M )

E(g, ~Cθ) = E(g, (1, 1, hs−t)) · E(π2,1, ~g1)

·E(π2,2, ~g2) · E(π2,3, ~g3,M )

Correctness. For any λ, n ∈ N, any universe P , any pub-
lic parameters and master secret key (params,msk) ←
Setup(λ,P, n), any set Ω ⊂ P , any threshold policy Γ =
(t, S) where 1 ≤ t ≤ |S| ≤ n, and any message M,
it is required that Verify(params, skPT ,M,Sign(params,
skΩ,M,Signout(params, oskΩ, Request(Γ, skΩ))),Γ) = 0
whenever (oskΩ, skΩ, skPT ) ← KeyGen(params,msk,Ω)
and |Ω∩S| ≥ t. The correctness is demonstrated based on the
one for Groth-Sahai proofs, including the correctness of Eq.
3 that is given in the full version of the paper [11].

E. Security Analysis

The unforgeability proof relies on the Decisional LINear
(DLIN) problem [4] related to the group G and on the Aug-
mented Multi-Sequence of Exponents Computational Diffie-
Hellman (aMSE-CDH) problem [4], [6] related to the group
pair (G,GT ). The privacy proof relies on the DLIN problem
related to the group G [4]. We let the reader refer to the full
version of the paper [11] for the proof sketches of CHARIOT.

IV. PERFORMANCE ANALYSIS

A. Performance Comparison

We compare the computational and storage costs between
our CHARIOT scheme and the original Threshold ABS
scheme [4]. In the following tables, ”ExpG”, ”MultG” and
”PairGT ” denote exponentiation and multiplication in G and
pairing operation in GT respectively. ”n.a.” means ”not avail-
able”. Let n be the upper bound on the size of the policies
and k be the parameter used for the Groth-Sahai proofs. Let
Ω be the device’s attribute set, S be the signing attribute set
such that s = |S|, t be the threshold value and ΩS = Ω ∩ S
such that |ΩS | = t.

In Table I, let d be the number of dummy attributes such that
d = n+t−1−s ≤ n−1 as in [4]. ′′−′′ means no computation
of the given operation. Using dummy attributes in [4] increases
the number of multiplications and exponentiations in G during
the signature generation. By removing dummy attributes, up
to n− 1 modular multiplications and exponentiations are cut
for the CHARIOT signing phase. Then, in CHARIOT, the
computations done by a device are limited to the Groth-Sahai
proofs’ ones; all other calculations are delegated to the cloud
server. Therefore, with the assistance of a cloud server, the
device is relieved from most of the signing computations.



TABLE I
COMPUTATIONAL COST

Threshold ABS [4] CHARIOT
MultG ExpG MultG ExpG

Setup - 2n+ 3k + 5 - 2n+ 3k + 6
KeyGen - |Ω|+ n - n+ |Ω|+ 2
Signout n.a. n.a. s− t+ 17 2s+ t2 − t+ 32
Sign d+ s d+ 2s 3k + 5 3k + 4

−t+ 17 +t2 − t+ 32
+3k + 5 +3k + 4

Verify 3k s+ 3k + 1 3k s+ 3k + 1

TABLE II
CHARIOT STORAGE COST COMPARED TO [4]

params msk oskΩ skΩ σ
−d− 1 +1 +|Ω|+ n+ 3 −|Ω| − n+ 2 =

In Table II, only the storage difference in CHARIOT com-
pared to the ABS scheme in [4] is taken into account: an
element +1 (resp. an element −1) in one cell means that
there is one extra element (resp. there is one less element) in
the CHARIOT protocol compared to Herranz et al.’s protocol.
′′ =′′ in a given column denotes that storage is identical in the
two protocols regarding the component linked to this column.
The number d of dummy attributes is equal to n − 1 as in
[4]. Hence, in [4], a set of n − 1 dummy attributes should
be stored in params in order to let the device generate its
signature, while in CHARIOT, such storage cost is saved. An
extra secret element is required in msk in CHARIOT to enable
the outsourcing of signing computations. The outsourcing key
oskΩ in CHARIOT is mainly the private key skΩ in [4]. The
device in CHARIOT simply receives an extra element from
the shared secret and the key for the HMAC τ as its private
key skΩ. Signatures are of equal size in Herranz et al.’s ABS
[4] and CHARIOT schemes, and independent of the number
of attributes.

B. Experimental Study

We implement CHARIOT in Charm [12] based on Python
language. We set two different configurations2, one for the
trusted attribute authority, the cloud server and the IoT plat-
form, and another one for the IoT device. We assume that
the attribute authority, the cloud server and the platform have
similar resources, while the device has much less resources
than these three parties.

Policies are supposed to contain up to 30 attributes regarding
real scenarios [13], [14]. Hence, we choose an upper bound
n equal to 30, a policy set S with s = 15 attributes, a
threshold t equal to 13 and a device’s attribute set Ω with 20
attributes. The parameter k is chosen regarding the bit-size of
the hashed message. Since the message to be signed is public,

2The experiments are tested on a processor Intel Core i5-2500 CPU
@3.30GHz ×4 with RAM 16GiB and OS Linux Ubuntu 14.04 LTS (Con-
figuration 1 for the attribute authority, cloud server and platform) and on a
processor Genuine Intel(R) U2300 CPU @1.20GHz with RAM 2GiB and
OS Linux Ubuntu 17.10 (Configuration 2 for the device).

the hash function does not require to be cryptographic but
rather collision-resistant. We also suppose that the dictionary
of messages picked by IoT devices is of finite and moderated
size. Therefore, we evaluate k with the values 10, 20 and 40
in order to avoid collisions with high probability. The given
timings are an average from 10 rounds of the CHARIOT
protocol.

TABLE III
TIMINGS IN MILLISECONDS

k = 10 k = 20 k = 40
Configuration 1 Setup 143.77 190.67 284.54
(attribute authority, KeyGen 76.19 75.47 75.17
cloud server Signout 265.07 272.69 271.55
and platform) Verify 65.66 108.93 194.12
Configuration 2 Request 0.16 0.16 0.17
(device) Sign 182.55 322.01 601.6

In Table III, the setup phase is costly but should be executed
only once. It largely depends on the upper bound n on the size
of threshold policies and on the parameter k used for Groth-
Sahai proofs. The key generation phase is also performed only
once by the trusted attribute authority, and is relatively fast
since it only relies on n that should not exceed 30 in an IoT
environment.

By outsourcing the signature generation to a cloud server,
we speed up by three times the computational timing. Indeed,
the cloud server approximately needs 270 milliseconds to run
the algorithm Signout while the device would require 870
milliseconds to do the same (when setting Configuration 2
as for the device). We recall that the algorithm Signout does
not depend on the parameter k, and thus does not variate with
it. Most of the signature generation is thus done by the cloud
server running the algorithm Signout. The finalization of the
signature generation is accomplished by the device by running
the algorithm Sign and remains less than 870 milliseconds (re-
sulting from running the algorithm Signout with Configuration
2). However, timings for signature finalization and verification
increase with the parameter k as these two phases largely rely
on such parameter. Hence, k should not exceed 40 in order to
keep the advantage of outsourcing the signature generation to
a cloud server.

In the CHARIOT protocol, the parameter k refers to the
bit-size of the hashed message. This parameter k should
be selected such that collisions are highly avoided. If the
dictionary of messages to be signed is really small, then
k = 10 is optimal. Otherwise, if the dictionary is slightly
bigger, then k = 20 is still a reasonable choice. In addition,
signature finalization and verification take similar timings to
be performed since they are composed of the same kinds of
computations. The difference comes from the constant number
(equal to 27) of pairing operations carried out when checking
the validity of the signature. Because of the number of pairing
computations required for verification, the Groth-Sahai proof
systems appear to be inefficient. Blazy et al. [15] propose a
significant reduction of the cost of Groth-Sahai proof systems
by using batch verification techniques. The authors improve



the verification cost up to four times the number of pairings
per proof verification. We can integrate their batch verification
techniques into the CHARIOT protocol to improve the timings
of the verification phase.

C. Related Work

Maji et al. [16] introduce the notion of ABS. Subsequent
works on ABS are given in [3], [17], [18] where trade-
off between efficiency and security is not optimal. More
recently, Herranz et al. [4] suggest an ABS construction with
threshold policies and constant-size signatures, which requires
the presence of dummy attributes following the technique from
Dynamic Threshold Public-Key Encryption [19].

The problem of securely outsourcing expensive computa-
tions is studied in [20]–[22]. However, alleviating computa-
tional burdens induced by signature generation is not possible.
Server-aided signature schemes [23], [24] aim to decrease the
computational cost due to exponentiation calculations by out-
sourcing the latter to a server, but access control management
based on credentials is not enabled. Mediated cryptographic
protocols [25], [26] require a partially trusted on-line server
but cannot be used to extend ABS into an outsourced ABS.
More recently, Chen et al. [5] present two outsourced ABS
schemes. Yet, the cloud server must know the attributes of the
signers and of the signing policies in plain in order to proceed,
compromising privacy.

V. CONCLUSION

In this paper, we propose CHARIOT, a new server-aided
access control protocol in IoT with cloud server assistance,
constant-size signature and no dummy attributes. Outsourcing
most of the calculations to a cloud server for the signature gen-
eration relieves the workload at the device’s side. Removing
the presence of dummy attributes implies a more efficient and
practical ABS scheme compared to existing ones. Moreover,
privacy and secure identity management of the involved parties
are guaranteed. These contributions make our scheme suitable
for securely authorizing devices with constrained resources to
access an IoT platform.
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