
Team Deep Neural Networks for Interference
Channels

Paul de Kerret ‡, David Gesbert ‡, and Maurizio Filippone §
‡ Communication Systems Department, EURECOM

§Data Science Department, EURECOM

Abstract—In this paper1, we propose to use Deep Neural Net-
works (DNNs) to solve so-called Team Decision (TD) problems, in
which decentralized Decision Makers (DMs) aim at maximizing
a common utility on the basis of locally available Channel
State Information (CSI) without any additional communication
or iteration. In the proposed configuration –coined Team DNNs
(T-DNNs)–, the decision at each DM is approximated using a
DNN and the weights of all DNNs are jointly trained, even
though the implementation remains fundamentally decentralized.
Turning to a practical application, the problem of decentralized
link scheduling in Interference Channels (IC) is reformulated as
a TD problem so that the T-DNNs approach can be applied.
After adequate training, the scheduling obtained using the T-
DNNs flexibly adapts to the decentralized CSI configuration to
outperform other scheduling algorithms, thus proposing a novel
efficient solution to a problem that has remained elusive for years.

I. INTRODUCTION

A. Decentralized Coordination in Wireless Networks

Coordination between the Transmitters (TXs) in wireless
network has received significant attention as a mean to
improve Quality-of-Service (QoS) and spectral efficiency,
through coordinated scheduling, interference reduction and
alignment, joint beamforming, pilot coordination, and power
control among many other possibilities. Coordination is often
designed in a centralized setting whereby a computing node
gathers all the necessary Channel State Information (CSI)
from all TXs, computes utility maximizing decisions and
forwards these decisions to the devices. In the realm of
cellular networks, such a centralized implementation has been
considered in the context of Cloud Radio Access Network
(RAN) or C-RAN (See for example [1]) supported by high-
end all-optical backhaul architectures.

Yet considering the high cost and relative lack of flexibility
of C-RAN deployments there is rising interest for decentral-
ized forms of coordination. In emerging ultra-flexible and
heterogeneous deployment scenarios featuring access points
mounted on buses, drones [2], or those allowing backhaul-
less Device-to-Device communications, decentralized control
becomes a highly desirable feature as it allows for cheaper,
faster, and more flexible coordination schemes.

However, decentralized coordination between the TXs also
comes with its own challenges. While the centralized imple-
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mentation allows to perfectly share CSI from all TXs (so-
called logically centralized), in contrast the devices in a de-
centralized setting must cope with their own local uncertainties
regarding the global CSI in order to make a transmission
decision, which calls for innovative algorithm designs.

Indeed, in the distributed CSI configuration, the TXs aim
at cooperating on the basis of different locally available infor-
mation, which can be recast as decentralized Team Decision
(TD) problem [3]. The key challenge in TD stems from
the fact that each decision maker (here, device) is limited
by the local uncertainties (noise) affecting its view of the
global CSI, making it difficult to predict the behavior of other
devices with which it seeks to coordinate its actions. In prior
works, attempts to derive noise-robust policies are reported
[4], yet always relying on scenario specific policy models
and heuristics, making the implementation non-generic. In [5],
[6] more generic approaches are proposed. Yet, they rely on
discretization thus making the approaches non-scalable.

In this work, we show how Team Deep Neural Networks
(DNNs) under a suitable learning strategy allow for a generic
approach to robust decentralized coordination. The principles
of our approach are exemplified through the case of link
scheduling in wireless interference channels [7].

We first give the reader a quick background on classical
DNNs before moving to the newer decentralized scenario.

B. Supervised Deep Learning: A (Very) Short Overview

In supervised deep learning, we aim at learning a mapping f
between xi and f(xi) from a training data set (xi, f(xi))

n
i=1.

In this work, we model the function using Deep Neural
Network (DNN) such that the function is restricted to be
obtained from the output of a multiple-layer feed-forward
DNN. A DNN consists of multiple layers where the jth layer
contains nj nodes. The output of each node is then obtained
from a linear combination of the outputs of the previous layer
followed by the application of a so-called activation function
which introduces the required non-linearity. Thus, a DNN is
obtained from the composition of non linear functions, where
each function is a linear combination of activation functions.

Specifically, let us denote by yji the output of the ith node
of layer j and by Φ the activation function. The output of
node i of layer j is then given by

yji = Φ

(
nj∑
i=1

θj−1i yj−1i

)
(1)



where θji for all values of i and j form the parameters of
the DNN that need to be trained. Clearly, the last layer has a
number of node corresponding to the output space while the
first layer corresponds to the input space. Activation functions
are chosen so as to reach the desired accuracy in the training
at the fastest rate. Currently, the most widely used activation
function is the so-called ReLu function given by

ReLu(z) = max(z, 0). (2)

One important advantage of the ReLu function is that its
derivative is either 0 or 1 and hence easily implemented. DNNs
have been known for many years but were notably difficult to
train until recent breakthroughs both in terms of hardware and
in terms of algorithms, which made possible computationally
efficient training of DNNs [8], [9].

C. DNN Literature Overview

DNN has been applied to many different scenarios, achiev-
ing striking performances and successes [9], [10] yet mostly
related to computer vision or speech processing. Decentral-
ized implementation of reinforcement learning have recently
attracted a lot of attention (See among others [11], [12]).
Yet, these works rely on a markov decision process model
and cannot be applied to our setting, as it will become clear
through this work.

Turning to wireless communication, the application of the
new deep learning tools is only at its infancy, although
recently gaining a lot of momentum. DNNs have been used in
some cases to reproduce (approximate) known algorithms. The
advantage of this approach is that the demanding computations
are then done during the training of the DNNs. Once the DNNs
coefficients are obtained, the use of the DNN requires only
very simple computations, thus allowing for quasi-real time
processing. This approach is studied in [13] for caching and
in [14] for resource allocation in interference channels.

In [15] a framework to incorporate machine learning in
cognitive radio is described while its application to coding is
discussed in [16], [17]. In [18], deep learning is used for detec-
tion to reduce complexity while it is used in [19] to make up
for the absence of channel model while performing detection
in molecular communication. In [20], learning is applied to the
determination of the optimal cell-load in wireless networks by
deriving and exploiting mathematical properties of the problem
considered.

In [21], [22], the use of deep learning to design the physical
layer is discussed and it is in particular shown how the TX,
the channel, and the RX can been seen as a single DNN
and trained as an autoencoder, which is a model combining
encoding and decoding that are learned jointly.

D. Main Contributions

In contrast to the previous literature on deep learning for
communication systems, we propose in this work the use of a
novel Team DNNs (T-DNNs) with the specific goal to enable
robust transmission schemes in a decentralized multi-device
setting with uncertainties. To the best of our knowledge, such

an application has not been considered before. In this context
we bring the following contributions:
• We consider T-DNNs consisting of multiple parallel

DNNs that are centrally trained to achieve efficient coor-
dination with distributed information.

• We propose a suitable training strategy for the T-DNNs
allowing for robustness with respect to an arbitrary con-
figuration of channel feedback uncertainties existing at
each device (decision maker).

• We apply the above principle to the example of link
scheduling in wireless interference channels with arbi-
trary noisy channel feedback at each TX. We show how
the scheduling obtained using the trained T-DNNs out-
performs other scheduling schemes in terms of network
sum throughput.

II. TEAM DECISION PROBLEM: A PRIMER

A. Team Decision Scenario

We now provide briefly a formulation of TD problems in a
general multi-agent optimization context. A TD optimization
problem occurs every time several Decisions Makers (DM)
aim at maximizing a common utility on the basis of their
own information and is hence encountered in many areas of
engineering such as control, economics, and networking. We
follow closely the formulation of a TD problem given in [23]
and formulate the TD problems from the following parameters:
• K: The number of DMs.
• x ∈ Cm : The state of the world represented by this

random variable.
• x̂(j) ∈ Cm: The estimate at DM j of the state of the

world x.
• sj : Cm → Aj ⊂ Cdj : The strategy of the j-th DM. It is

a function which takes value in a predefined subspace Aj

which forms the set of the possible decisions.
• sj(x̂

(j)) ∈ Aj ⊂ Cdj : The decision taken at DM j for
the given realization x̂(j).

• f : Cm × ΠK
j=1Cdj → R: The joint objective of the

K DMs.
• px,x̂(1),...,x̂(K) : The joint probability distribution of the

state of the world and the estimates at the K DMs. This
is a common knowledge shared at each DM.

A team decision problem consists in the maximization by the
K DMs of the expected joint objective on the basis of their
individual information:

(s?1, . . . , s
?
K) = argmax

s1,...,sK

E
[
f(x, s1(x̂(1)), . . . , sK(x̂(K)))

]
(3)

where the maximizing is taken over all possible strate-
gies sj ,∀j ∈ {1, . . . ,K} and where the difficulty resides
in the fact that each strategy si can only depend on local
input x̂(j) and not on observations made by other DMs. Note
that problem (3) reflects the fundamental assumption that DMs
are not allowed to further exchange information, neither about
decisions made nor about local state observations. However,
the fact that the observations x̂(j) can be jointly correlated,



and correlated with the actual system’s state x, makes the
model very general in the sense that some arbitrary (limited)
information exchange mechanism may pre-exists, but strictly
prior to the decision making stage. Furthermore, solutions
of such a TD problem could then be extended to allow for
iterations and exchanges between DMs.

B. Existing Approaches: Naive and Locally Robust Solutions

Before introducing in the next paragraph the robust Team
DNN approach, we start by presenting what are the strategies
of reference.

The first approach –called the naive approach– simply con-
sists in neglecting the statistical information available. Hence,
each DM considers its information as perfect and implicitly
assumes that the other DMs share the exact same information.
The optimization problem which is solved at DM j is then(

s
′

1, . . . , s
′

j−1, s
naive
j , s

′

j+1 . . . , s
′

K

)
= argmax
s1,...,sK

E [f(x, s1(x), . . . , sK(x))] .
(4)

A more advanced approach, called the Locally Robust
(LR) approach– consists in taking into account the statistical
information relative to the imperfect knowledge of the channel,
yet neglecting the discrepancies between the estimates at the
different DMs (i.e., the decentralized nature of the CSI). The
optimization problem which is solved at DM j is then(

s
′′

1 , . . . , s
′′

j−1, s
LR
j , s

′′

j+1 . . . , s
′′

K

)
= argmax
s1,...,sK

E
[
f(x, s1(x̂(j)), . . . , sK(x̂(j)))

]
.

(5)

The difference between (4) and (5) comes from considering
the true state-of-the-world instead of the estimate in the
objective evaluation. Note that in both (4) and (5), only sLRj is
implemented in practice. The other strategies are only auxiliary
optimization variables.

III. TEAM DEEP NEURAL NETWORKS

The Team Decision (TD) problem formulated in (3) is a
challenging problem. Specifically, there are two main technical
difficulties (i) the functional nature of the optimization variable
and (ii) the decentralized structure of the information. We will
now show how T-DNNs can overcome these two problems.

In the proposed T-DNNs framework, the transmission strat-
egy at TX j is parametrized by a DNN denoted by sθj and
taking as input the multi-user estimate x̂(j) and returning
as output the decision sθj (x̂(j)) ∈ Aj . Consequently, the
complete strategy space is reduced to the space that can be
parametrized by the DNNs. To avoid introducing any sub-
optimality, it is necessary that the DNN space is large enough
such that it contains the optimal strategy s?j or approximates it
asymptotically well. This will be ensured by choosing a DNN
with enough coefficients, i.e., large/deep enough. Yet, it is also
necessary that the coefficients θj can be trained efficiently to
reach their optimal values. This will be further discussed in
the experiments section.

With this parametrization, the original TD problem is now
approximated as

(θ?1 , . . . ,θ
?
K) =argmax

θ1,...,θK

E
[
f
(
x, sθ11 (x̂(1)), . . . , sθKK (x̂(K))

)]
.

(6)
The key aspect comes from the fact that the coefficients θj
can be optimized using very efficient learning methods briefly
introduced in Section I-B. Indeed, the instantaneous objective
function f is differentiable and can be used as objective for
gradient-based optimization methods. Furthermore, as all the
probability density functions are assumed to be known, the
training data set, denoted by Strainn can be obtained from
n Monte-Carlo realizations of the channel and the channel
estimates generated according to px,x̂(1),...,x̂(K) such that

Strainn ,
{(
xi, x̂

(1)
i , . . . , x̂

(K)
i

) ∣∣i = 1, . . . , n
}
. (7)

Generating this training set can be seen as approximating the
expectation in (6) using Monte-Carlo realizations to yield

(θ?1 , . . . ,θ
?
K)

≈ argmax
θ1,...,θK

1

n

n∑
i=1

R
(
xi, p

θ1
1 (x̂

(1)
i ), . . . , pθKK (x̂

(K)
i )

) (8)

where the approximation becomes exact as the number of
samples n increases to infinity.

It is important to note two elements. First, the training of
the strategies/decision functions is done jointly at all TXs,
while the implementation of the strategies/decision functions
is decentralized at each TX. This is possible as the training
depends only on the statistics which are known to all TXs.
Second, this approach can be seen as a particular reinforcement
learning approach as it does not require knowing any label,
but the objective function is directly maximized using the
stochastic gradient.

Formulation (8) allows for the use of deep learning tools
implemented in high levels packages such as TensorFlow to
train the T-DNNs. Yet, the training of DNNs is known to
be sensitive to DNN parameters (number of training steps,
learning rate, ...) and is the focus of ongoing works.

IV. APPLICATION TO DECENTRALIZED POWER CONTROL
IN INTERFERENCE CHANNEL

We now turn to the practical scenario of decentralized link
scheduling in interference channel with distributed CSIT. After
formulating this problem as a TD problem, we will show how
Team DNNs can be used to efficiently tackle this otherwise
difficult problem.

A. System Setting

We consider a K-user Interference Channel (IC) consisting
of K single-antenna Transmitters (TXs) and K single-antenna
Receivers (RXs) with RX i being only served by TX i. The
gain of the wireless channel between TX j and RX i is denoted
by Gi,j and all the gains are put together to form the channel
gain matrix G ∈ RK×K where

{G}i,j , Gi,j . (9)
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Fig. 1: Illustration of how Team-DNNs (T-DNNs) can be
used to solve TD problems. Key aspects are the joint training
using the common knowledge of the distribution and the
decentralized application of the strategy.

The channel gain matrix can be generated according to any
probability density function pG known to all TXs as it is a
long term information that can be estimated and shared among
all TXs . We study link scheduling which means that each
TX may decide between transmitting with a fixed maximum
power level P or staying idle for one channel realization. This
is akin to a binary power control problem whereby the power
level Pj at TX j can take its values in {0, P}. Note that the
proposed approach is easily extendeable to additional discrete
power levels. We assume for ease of notation that all TXs have
maximum power constraint P and that the RXs undergo a unit
variance Gaussian noise.

We further assume that the data symbols transmitted are dis-
tributed as i.i.d. Gaussian and that each RX treats interference
as noise such that the instantaneous sum rate is given by [24]

R(P1, . . . , Pk)=

K∑
k=1

log2

(
1 +

Gk,kPk

1 +
∑

`=1, 6̀=kGk,`P`

)
.

(10)
Our common welfare objective in this work will be the
expected sum rate. With perfect knowledge of the gain matrix,
maximizing the expected sum rate comes down to maximizing
the sum rate for each individual channel realization such that
the optimal power control function pPCSI

1 , . . . , pPCSI
K can be

obtained from:

(pPCSI
1 (G), . . . , pPCSI

K (G))= argmax
(P1,...,PK)∈{0,P}K

R (G, P1, . . . , PK) .

(11)
Binary forms of power control were shown to be rate optimal
in the case of 2-user IC with perfect CSI at all TXs and
near optimal with more users [7]. Importantly, perfect link
scheduling at every TX requires (logically) centralized and
perfect knowledge of the matrix gain G above.

Due to imperfect CSI feedback and limited CSI sharing
links across TXs, each TX is now assumed endowed with its
own imperfect estimate of the current channel state. Specif-
ically, TX j obtains the estimate Ĝ(j) ∈ CK×K of the

channel gain matrix and chooses its transmission power Pj as
a function of Ĝ(j), without any form of information exchange
with the other TXs.

This distributed CSI model is very general as it allows for
any joint distribution pG,Ĝ(1),...,Ĝ(K) . The estimates at the
different TXs can for example be correlated, and in the limiting
case where the estimates at all TXs are exactly equal, the
(logically) centralized CSI configuration is recovered.

B. Formulation as a Team Decision Problem

Based on the locally available channel state informa-
tion Ĝ(j), TX j choses its binary power control Pj . Yet, the
optimal instantaneous choice of Pj would normally depend
on the power control decisions at the other TXs, which are
unknown. Consequently, we need to introduce the power
control strategies denoted by p1, . . . , pK and given by

pj : RK×K → {0, P}
Ĝ(j) 7→ pj(Ĝ

(j))
(12)

Specifically, the TXs aim at jointly maximizing the expected
sum rate, such that the TD problem formulated is given by

(p?1, . . . , p
?
K)= argmax

(p1,...,pK)∈P
E
[
R
(
G, p1(Ĝ(1)), . . . , pK(Ĝ(K))

)]
(13)

where the expectation is carried out across all random vari-
ables, i.e., according to pG,Ĝ(1),...,Ĝ(K) and P is defined by

P ,
{

(p1, . . . , pK)|pj : RK×K → {0, P}
}
. (14)

Following the discussion in Section II-B, we will compare
the robust T-DNNs power control function of TX j with
the conventional approaches that are the naive power control
pnaivej and the Locally Robust power control function pLRj .

C. Team DNNs Scheduling

Now that the problem of decentralized power control with
distributed CSIT has been reformulated as the TD prob-
lem (13), it is possible to apply the Team DNNs approach
presented in Section III where the power control function at
TX j is parametrized by a DNN denoted by pθj with weights
θj ∈ Rnj and the objective function is the sum rate.

Using the right initialization is key to an efficient training
[25] and we have chosen to initialize the DNN at TX j
with the coefficient θj that best approximates the naive link
scheduling pnaivej . Consequently, we start by generating a
training codebook from Monte-Carlo realizations:

T naive
n , {(Gi, p

naive
j (Gi))}ni=1. (15)

Using the training dataset T naive
n , the coefficients θj can

then be trained using any supervised learning classification
algorithm with conventional loss function for classification
(e.g., cross-entropy) [8], [9].
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parameter σ. As the CSI quality at TX 1 degrades, the strategy at
TX 2 becomes more deterministic with TX 1 adapting to this change.

Fig. 2: Simulation results in a 2-users IC with TX 2 having perfect CSI and TX 1 having imperfect CSI parametrized by σ.

V. EXPERIMENTS

In our experiments, we use a TensorFlow implementation
of a 3-layer DNN with fully connected layers comprising 30
neurons each and using the ReLu activation function defined
in (2). We have used n = 30000 Monte-Carlo realizations with
batch size of 5000 realizations. We furthermore use a drop-
out probability equal to 0.5 at each node to avoid overfitting
[26]. Finally, we run the Adam gradient based optimizer 10000
times with a learning rate of 0.001.

It is however important to understand that the used archi-
tecture results only from a limited trial and error approach,
and could clearly be more optimized. Studying in depth what
would be the optimal architecture and what would be the
optimal value for the hyper-parameter is an ongoing very
interesting research area but is clearly out or the scope of this
paper, in which we aim only at illustrating through simulations
the proposed innoative approach.

We further consider Rayleigh fading such that the channel
gains are distributed as i.i.d. Chi-square random variables. To
model the distributed CSI configuration, we also consider for
simplicity an additive Gaussian model such that the estimate
at TX j is given by

Ĝ(j) , Σ̄(j) �G + Σ(j) �∆(j) (16)

where � is the element-wise (Hadamard) product, ∆(j) con-
tains i.i.d. Chi-square random variables and Σ(j) is the matrix
containing the variance of the CSI noise at TX j while Σ̄(j)

is defined such that

{Σ̄(j)}i,k ,
√

1− {Σ(j)}2i,k, ∀i, k ∈ {1, . . . ,K}. (17)

We will compare the trained T-DNNs with the following
schemes:

• Perfect CSI scheduling: This corresponds to the optimal
link scheduling with perfect CSI instantaneously at all
TXs, and is hence clearly an (a priori) loose outerbound.

• Always-on Scheduling: All TXs are always active.
• TDMA: Only one of the TX is active for all channel

realizations.
• Naive scheduling: See Section II-B.
• Locally Robust (LR) scheduling: See Section II-B.
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Fig. 3: Expected sum rate as a function of the CSI quality
parameter σ in a 3-users IC with TX 1 having imperfect CSI
parametrized by σ, and TX 2 and TX 3 having perfect CSI.



A. Two-User Interference Channel

Let us consider a 2-users distributed CSI configuration with
the CSI noise covariance matrices given by

Σ(1) =

[
σ σ
σ σ

]
, Σ(2) =

[
0 0
0 0

]
. (18)

In Fig. 2a, the LR scheduling does not improve significantly
from the naive scheduling. In contrast, T-DNNs scheduling
goes as expected from naive scheduling with near perfect CSI
to a solution outperforming TDMA when one TX is fully
uninformed. Looking at the percentage of transmission for
each TX in Fig. 2b when σ = 1, the uninformed TX transmits
all the time while the informed TX adapts to this transmission
using its perfect estimate to optimally balance opportunistic
gain and coordination gain.

B. Three-User Interference Channel

We now turn to a 3-user IC with the following CSI noise
covariance matrices:

Σ(1) = σ13×3, Σ(2) = Σ(3) = 03×3, (19)

which means that two TXs are perfectly informed, and one TX
has uniform intermediate CSI. In Fig. 3, when σ is near zero,
all TXs have practically perfect CSI and T-DNNs scheduling
is slightly outperformed by naive scheduling. This can be
understood as the need for a larger training set, i.e., for more
computing power. Furthermore, the performance of the T-
DNNs scheduling seems to slightly increase with σ when σ is
large, which is either due to difficulties in the training process
that will be further investigated.

VI. CONCLUSION

In this work, we have shown how DNNs could be used
collaboratively –in Team– to obtain an efficient robust solution
to challenging decentralized coordination problems. When
applied to decentralized link scheduling, the proposed robust
solution outperforms previously known methods and is able
to adapt to any distribution of channel and CSI configuration.
The proposed method is very generic and could be used in
many other applications and scenarios. Finally, scaling the
simulations to a large number of decision makers and larger
decision spaces requires developing an efficient distributed
implementation of the learning algorithm.
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