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Abstract
The first DIHARD challenge aims to promote speaker diariza-
tion research and to foster progress in domain robustness. This
paper reports EURECOM’s submission to the DIHARD chal-
lenge. It is based upon a low-resource, domain-robust binary
key approach to speaker modelling. New contributions in-
clude the use of an infinite impulse response - constant Q Mel-
frequency cepstral coefficient (ICMC) front-end, a clustering
selection / stopping criterion algorithm based on spectral clus-
tering and a mechanism to detect single-speaker trials. Exper-
imental results obtained using the standard DIHARD database
show that the contributions reported in this paper deliver relative
improvements of 39% in terms of the diarization error rate over
the baseline algorithm. An absolute DER of 29% on the evalua-
tion set compares favourably with those of competing systems,
especially given that the binary key system is highly efficient,
running 63 times faster than real-time.
Index Terms: Speaker diarization, binary key, spectral cluster-
ing, zero-resource diarization

1. Introduction
While speaker diarization research attracted significant interest
in the past, the field has somewhat stagnated in recent times.
This is perhaps due to the lack of significant datasets; those used
in the NIST Rich Transcription evaluations [1] contained only a
small number of recordings which makes the comparison of dif-
ferent technologies rather difficult. Even more recent databases
such as those used for the ETAPE [2] and REPERE [3] eval-
uations are modest in size. All of these datasets are further-
more narrow in terms of their application scenario, e.g. broad-
cast news, meetings or televised chat shows. As a result, each
database and evaluation has a somewhat limited audience.

The DIHARD initiative [4] was born to re-energise the re-
search effort. The availability of a larger, standard dataset sup-
porting a broader range of application scenarios, e.g. includ-
ing medical interviews, conversations involving children, even
monologues, stands to rejuvenate research interest and espe-
cially to foster progress in domain-robust speaker diarization;
the DIHARD dataset contains no training data and represents
the broadest domain variation captured in a single speaker di-
arization dataset to date.

There are two distinct approaches to address such a chal-
lenge. The first entails the optimisation of systems using a large
quantity of training data that spans adequately the domain varia-
tion captured in the DIHARD data. The second is an inherently
domain-neutral approach that requires no background training
data, or rather acquires background data from acoustic streams
at runtime. A hybrid approach might aim to exploit the benefit
of background training data, but with the facility to adapt to a
specific domain at runtime.

Given our interest in low-resource and computationally ef-
ficient, practicable speaker diarization technology, our efforts to

address the first DIHARD challenge have explored the second
approach. Past work has shown the merit of a so-called binary
key approach to speaker diarization [5] that does not require
any background training data. It has been applied successfully
to the diarization of variable domain data [6] and operates sub-
stantially faster than realtime.

Since it does not require background training data, it is ide-
ally suited to domain-robust diarization. However, while its
principal merit relates to computational efficiency, rather than
raw performance, it is not necessarily expected to be competi-
tive with the best-performing submissions to the first DIHARD
challenge. Results show nonetheless that, with the introduction
of three modifications, it remains surprisingly competitive.

Modifications involve new front-end processing, a new
clustering selection / stopping criterion and a mechanism to
detect single-speaker trials. The front-end uses infinite im-
pulse response - constant Q Mel-frequency cepstral coefficients
(ICMCs) developed originally for automatic speaker verifica-
tion [7]. Cluster selection is based upon spectral clustering,
shown by other authors to improve diarization performance
by estimating more reliably the number of speakers. Single-
speaker detection is found to be beneficial in reducing errors
attributed to the under-clustering of single-speaker trials.

The remainder of this paper is organised as follows. The
original binary key approach to speaker diarization is described
in Section 2. Enhancements to the baseline systems are de-
scribed in Section 3. Experiments and results are described in
Sections 4 and 5. Conclusions are presented in Section 6.

2. Baseline system
EURECOM’s submission to the DIHARD challenge is based
on a binary key (BK) modelling technique. Applied originally
to speaker recognition [8, 9], BK modelling has since been ap-
plied to a variety of different tasks such as speech activity de-
tection [10], emotion recognition [11] and to speaker diarization
and related tasks [5, 10, 12–15].

2.1. Binary key modelling

The merit of BK modelling for speaker diarization lies in com-
putational efficiency. Whereas many competing approaches
such as conventional agglomerative hierarchical clustering
(AHC) techniques are often computationally impracticable,
BK-based approaches run substantially faster than realtime [5,
10, 15]. BK-based approaches to speaker diarization are also
flexible in their use of background training data and can operate
entirely without training data [5, 6], learning necessary back-
ground information at runtime.

By making no assumptions about the domain, this particular
quality of BK-based approaches to diarization make it particu-
larly well suited to domain-robust diarization. This is especially
so given that the diarization task is often characterised by sub-
stantial variability such as acoustic content, number of speakers
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Figure 1: An illustration of the BK extraction procedure based
upon the comparison of acoustic features and the KBM.

and differences in speaker floor time, all examples of variation
which characterise the DIHARD dataset.

2.2. The binary key background model

BK-modelling relies on a so-called binary key background
model (KBM). Its purpose is similar in nature to that of a tra-
ditional universal background model (UBM) [16]. The KBM
is learned using traditional acoustic features, i.e. MFCCs in the
original work [5]. The feature stream is then segmented into
2-second windows and a single, multi-variate Gaussian distri-
bution is then fitted to the set of frames in each window. This
generates an over-sampled representation of the acoustic space
in the form of a pool of multi-variate Gaussian components.
In order to remove redundancy, the pool is decimated accord-
ing to the recursive procedure described in [5]. This procedure
is performed by measuring iteratively the cosine similarity be-
tween each already selected component and the remaining com-
ponents in the pool. The most dissimilar Gaussian among those
in the pool is extracted and added to the KBM. The procedure
is performed iteratively to give a KBM of N components.

2.3. Cumulative vector / binary key extraction

Binarised features are obtained from the comparison of acous-
tic features with the KBM. The process is illustrated in Fig. 1.
A sequence of nf acoustic features is transformed into a bi-
nary key (BK) whose dimensionN is dictated by the number of
components in the KBM. For each acoustic feature vector (la-
belled 1 to the left of Fig. 1), the likelihood given each of the
N KBM components is computed and stored in a vector which
is sorted by Gaussian index. The top NG Gaussians defined as
those with the NG highest likelihoods (2 - illustrated in solid
blue) are then selected and used to create binarised versions of
the acoustic features (3).

This process is repeated for each frame of acoustic features
thereby resulting in a binary matrix of dimension nf ×N , each
column of which has NG values equal to binary 1. A row-wise
addition of this matrix is then used to determine a single cu-
mulative vector (CV) which reflects the number of times each
Gaussian in the KBM was selected as a top-Gaussian (4). The
final BK is obtained from theM positions with highest values in
the CV (5). Corresponding elements in the BK are set to binary
1 whereas others are set to 0. Both the CV and the BK provide
a sparse, fixed length representation of a speech segment based
on similarity to the acoustic space modelled by the KBM. Di-
arization can be performed using CVs or BKs. The work in [5]
shows that CVs perform best. Accordingly, all work presented
in this paper was performed using CV features.
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Figure 2: The baseline, bottom-up agglomerative hierarchical
clustering process.

2.4. Diarization system

The baseline speaker diarization system is that described in [6]
and illustrated in Fig. 2. It is based upon a bottom-up, agglom-
erative hierarchical clustering (AHC) algorithm with cluster
model re-training and segment reassignment. According to cu-
mulative vector extraction procedure described in Section 2.3,
test data is first converted into a sequence of CVs each repre-
senting contiguous intervals of 3s, overlapped by 2s. The AHC
algorithm is then initialised with the definition of Ninit = 25
contiguous, equally sized segments. Upon initialisation, the
acoustic features in each segment are used to define a single
cluster CV following the same CV extraction algorithm.

The iterative AHC algorithm is then applied to the set of
segment and cluster CVs, with the number of clusters being
reduced by one upon each iteration. Segment CVs are com-
pared one-by-one to cluster CVs using the cosine similarity and
are re-assigned to the closest cluster. Cluster CVs are then re-
estimated from cluster contents.

Using a cluster CV cosine similarity matrix, all segments
assigned to the two closest clusters are then reassigned to a
new, merged cluster CV such that the number of clusters de-
creases by one. The re-segmentation and re-estimation process
is performed iteratively, each time followed by a step of cluster
merging until there remains only a single cluster. A cluster se-
lection algorithm is then applied to determine the best number
of clusters, i.e. the number of speakers. As described in [15],
selection is performed using an elbow criterion which is ap-
plied to the curve of the within-class sum-of-squares (WCSS)
of all clustering solutions, with the goal of finding a trade-off
between the number of clusters and cluster dispersion. A fi-
nal maximum likelihood re-segmentation using 128-component
Gaussian mixture models (GMM) is performed at the acoustic
feature level in order to refine the segmentation of the selected
clustering.

3. Baseline enhancements
This paper reports three enhancements to the baseline system
that were found to improve performance in the face of domain
variability. They involve the use of different acoustic features,
a different cluster selection / stopping criterion and an approach
to detect single-speaker documents.

3.1. Acoustic features

In place of baseline MFCC acoustic features, EURECOM’s
submission to the first DIHARD challenge uses infinite im-
pulse response, constant Q transform Mel-frequency cepstral
coefficients (ICMC). ICMC features were explored originally
in the context of speaker recognition and utterance verifica-
tion [10]. ICMC extraction performs spectro-temporal decom-
position with the constant Q transform [17], a perceptually mo-
tivated alternative to the short-time Fourier transform (STFT).
Whereas the spectro-temporal resolution of the STFT is con-
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Figure 3: Affinity matrix of cosine similarities between CVs for
the file D 0028.wav before (a) and after (b) the refinement pro-
cess.

stant, that of the CQT exhibits a constant Q factor. The Q factor
is a measure of the filter selectivity and is defined as the ratio
between the centre frequency and the bandwidth. A constant Q
factor gives greater spectral resolution at lower frequencies, and
greater temporal resolution at higher frequencies. The human
perception system approximates a constant Q factor between
500Hz and 20kHz. This is the principal motivation behind the
use of the CQT for speech and audio analysis [18–21].

Unfortunately, compared to the STFT, the CQT is computa-
tionally expensive. In order to mitigate additional computation,
all work reported in this paper was performed using the infi-
nite impulse response - constant Q transform (IIR-CQT) algo-
rithm proposed in [22]. The IIR-CQT, a compromise between
computational cost and design flexibility, gives a constant Q
spectro-temporal decomposition through IIR linear time variant
filtering of the STFT. Full details can be found in [22]. ICMC
features are then obtained from the IIR-CQT with traditional
Mel-cepstral analysis1.

3.2. Clustering

Motivated by other reports of its successful application to
speaker diarization [23–25], we explored the use of spectral
clustering [26] with binary key modelling. Spectral clustering
overcomes the drawbacks of more conventional approaches to
clustering that are linked to the use of parametric density esti-
mators and optimisation to local minima. The general idea is
to perform clustering using the eigenvectors corresponding to
the top eigenvalues estimated from an affinity matrix derived
from the similarities between data points being clustered, i.e.
the CVs.

All work reported in this paper was preformed using the
spectral clustering algorithm presented in [25]. This work pro-
poses a number of refinements to the affinity matrix that are ap-
plied prior to eigenvalue decomposition and that give improved
speaker diarization performance. They are based on the tempo-
ral locality of speech data. Contiguous speech segments uttered
by the same speaker should have similar CVs and hence similar
values in the affinity matrix. Given a test audio file, represented
by a sequence of M segment CVs, the M -by-M affinity ma-
trix is determined using the cosine similarity and then treated
by a series of operations including Gaussian blurring with stan-
dard deviation σ, row-wise thresholding of similarities below
the p-percentile, symmetrisation, diffusion and row-wise Max
normalisation. Full details of each are given in [25].

Fig. 3 shows an example of an affinity matrix computed

1A Matlab implementation is available at http://audio.
eurecom.fr/content/software

for DIHARD development set file DH 0028.wav (a) before and
(b) after refinement which smooths and denoises the data in
the similarity space. Even if the original affinity matrix al-
ready highlights patterns corresponding to different speakers
and turns, these are more uniform and sharper after refinement.
These improvements are crucial to subsequent eigenvalue de-
composition.

Eigenvalue decomposition is then performed and the eigen-
values are sorted in descending order: λ1 > λ2 > ... > λn.
The number of clusters k̃ is then selected according to the value
k which maximises the eigengap defined as:

k̃ = arg max
1≤k≤n

λk

λk+1
(1)

The M -by-k̃ matrix of eigenvectors corresponding to the k̃
largest eigenvalues is then used to obtain a k̃-dimensional repre-
sentation of the M input CVs. These lower dimensional repre-
sentations are then clustered with a k-means algorithm using the
squared Euclidean distance. Since the algorithm estimates both
the number of clusters and the clustering, it can also be used
only as a stopping criterion for other clustering algorithms.

3.3. Single-speaker detection

Finally, having found that diarization errors in single-speaker
documents produce high error rates, we designed a specific
mechanism for single-speaker detection. Since the spectral
clustering algorithm described above results too often in the
estimation of a single speaker, it is configured to force the re-
turn of two or more clusters. Single-speaker detection is then
performed pre-clustering according to the thresholding of the
eigengap between the two largest eigenvalues. In the case that
λ1 − λ2 exceeds a threshold θ, then the number of clusters is
forced to 1.

4. Experimental setup
All experimental work reported in this paper was performed
with the standard DIHARD database [4, 27, 28]. The develop-
ment set contains 164 audio documents from 9 different do-
mains. All results correspond to the use of ground-truth speech
activity detection annotations, i.e. track 1 of the DIHARD chal-
lenge.

Baseline acoustic features are MFCCs comprising 19 static
coefficients computed from windows of 25ms with 10ms over-
lap and with a filterbank of 20 channels. ICMC features use
longer windows of 128ms, also with 10ms overlap. The KBM
is determined from a pool of Gaussians, each estimated using
windows of between 0.5 to 2 seconds duration set dynamically
so as to ensure a minimum of 1024 components. The size of the
KBM after Gaussian selection is set to an empirically optimised
percentage of the number in the original pool, details of which
are presented later. Segment CVs are estimated using 3s win-
dows with 2s overlap. The top number of Gaussians per frame
is set to NG = 5.

AHC clustering is initialised with Ninit = 25 clusters.
Based on the distribution of the number of speakers per doc-
ument on the development set, the maximum number of output
clusters is set to 10. For spectral clustering, only eigenvalues
larger than a threshold δ = 2.1 are used to compute eigengaps
to decide the number of clusters. This is done after observ-
ing that very low eigenvalues may produce anomalously large
eigengaps, resulting in excessive clusters. The single-speaker
detection threshold is set to θ = 410. System performance is



Table 1: Speaker diarization performance in terms of diarization error rate (DER, %) of the baseline system and after incorporating
the proposed enhancements, on the development and evaluation sets. DER is also broken-down by domain for the development set (D1:
SEEDLINGS, D2: SCOTUS, D3: DCIEM, D4: ADOS, D5: YP, D6: SLX, D7: RT04S, D8: LIBRIVOX, D9: VAST).

Development Eval.
Systems D1 D2 D3 D4 D5 D6 D7 D8 D9 ALL ALL
1. MFCC / AHC / elbow (baseline) 59.64 8.36 44.35 46.38 28.34 46.97 46.99 66.69 56.75 44.47 48.31
2. ICMC / AHC / elbow 44.85 9.37 46.05 46.58 24.39 49.49 46.02 66.97 59.63 44.85 48.70
3. ICMC / SC 48.68 17.31 17.85 31.02 11.36 23.65 43.04 27.31 45.16 30.13 34.29
4. ICMC / AHC / SC#spk 43.78 14.19 9.70 27.48 12.71 23.99 42.24 11.22 38.33 25.77 30.44
5. ICMC / AHC / SC#spk / 1-spk 43.78 14.19 11.02 27.48 12.71 23.99 43.55 5.36 38.24 25.56 29.33

assessed using the standard diarization error rate (DER) with
no forgiveness collar. Intervals containing overlapping speech
regions are also scored.

5. Results
Results presented in Table 1 show diarization performance mea-
sured in terms of the DER for both development and evaluation
sets. Results are shown for the baseline system (line 1) and for
the same system with the proposed enhancements (lines 2-5).
The baseline system uses MFCC features, standard AHC and
elbow cluster selection. It achieves a DER of almost 50% for
the evaluation set.

System 2 is identical except for the use of ICMC features.
While these results show that ICMC feature give worse per-
formance than MFCC features, results illustrated Fig. 4 indi-
cate otherwise. Fig. 4 plots DER results against the KBM size
for MFCC and ICMC features for oracle cluster selection. For
smaller KBM sizes, ICMC produces substantially lower DERs
than MFCC features. Thus, assuming more reliable cluster se-
lection, then ICMC features will give lower DERs. This hy-
pothesis is confirmed by the results of subsequent experiments.

System 3 uses spectral clustering (SC) in place of AHC and
elbow cluster selection. The use of SC leads to a 29% rela-
tive reduction in DER over the baseline for the evaluation set.
System 4 combines AHC clustering with the SC selection al-
gorithm (SC#spk) Performance improves again, this time giv-
ing a relative improvement of 37% over the baseline system.
System 5 is identical to system 4 except for the application of
the single-speaker detection mechanism reported in Section 3.3.
This system gives the best performance, with an absolute DER
of 29% corresponding to a relative improvement of almost 40%
over the baseline.

Table 1 also shows granular results for each of the 9 do-
mains D1-D9 (consult [4] for details) contained in the develop-
ment set. Diarization performance improves for most domains
with the application of the proposed system enhancements. The
exception is D2, for which the baseline system performs the
best. This is attributed to the tendency of the spectral cluster-
ing selection algorithm to underestimate the number of clusters.
Of particular note are improvements for D8. Documents cor-
responding to this domain contain only a single-speaker. Here,
the single-speaker detection mechanism is especially effective
in reducing the error rate.

While overall performance is lower than the best submis-
sions to the DIHARD challenge, results are surprisingly com-
petitive. The system proposed in this paper offers an appeal-
ing compromise between performance and efficiency. System 5
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Figure 4: Comparison of MFCC and ICMC features for dif-
ferent KBM sizes when using an oracle selection of clustering
solutions (those which minimise DER).

processes the entire development set in 835s running on an Intel
Core i5-3470 3.20GHz CPU with 16GB of RAM. This corre-
sponds to real-time factor of 0.016 (63 times faster than real-
time). Few other systems are so computationally efficient.

6. Conclusions
This paper reports EURECOM’s submission to the first DI-
HARD challenge in domain-robust speaker diarization. While
the baseline system is shown to perform poorly, the three en-
hancements reported in this paper lead to substantial improve-
ments over the baseline system. Enhancements include fea-
tures extracted using a perceptually motivated, variable spectro-
temporal decomposition, a robust approach to cluster selection
based upon spectral clustering and a mechanism designed to
detect single-speaker segments. When combined, these en-
hancements bring a relative reduction in the diarization error
rate of almost 40% over the baseline system. Performance, al-
though lower than that of top-ranked systems, still compares
favourably. This is especially so given that the proposed system
requires no background data and is highly efficient, with execu-
tion times in order of 63 times faster than real time when run on
a consumer-grade desktop computer.

With respect to the goal of domain-robustness, the pro-
posed system based on binary-key modelling is a ready-to-run
or off-the-shelf solution to speaker diarization. The estimates
of speaker diarization performance reported in this paper are
likely to be reasonably reliable estimates of performance if the
same system were to be tested using data collected in other
domains; the system is not dependent on optimisation using
domain-specific background data and is instead tuned at run-
time. This is seen as a significant advantage over competing
systems. This quality should be of appeal to practical applica-
tions of speaker diarization technology which is, after all, often
an enabling technology rather than the final application.
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