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Abstract— In the context of the K-user MISO broadcast
channel with cache-aided receivers, recent multi-antenna coded-
caching techniques have sought to complement the traditional
multiplexing gains associated to multiple (L) antennas, with the
(potentially unbounded) caching gains (G) associated to coded
caching. To date, all known existing efforts to combine the
two gains, either resulted in a maximum known DoF L + G
that required though CSIT on all (L + G) users served at a
time (i.e., that induced potentially unbounded CSIT costs that
matched the DoF gains), or resulted in a much compromised
DoF where multiplexing gains came at the expense of bounded
or vanishing caching gains. We present here a new multi-antenna
coded caching algorithm that introduces a new XOR generation
structure which completely untangles caching gains from CSIT,
delivering the desired sum-DoF of L+G but with a much reduced
CSIT cost of only L channel vectors at a time (L × L CSIT
matrix). This means that for the first time in multi-antenna coded
caching, one can achieve full multiplexing gains and unbounded
caching gains, at the mere CSIT cost associated to achieving the
multiplexing gains. In the end, the result solidifies the role of
coded caching as a method for reducing feedback requirements
in multi-antenna environments.

I. INTRODUCTION

The promise of Coded Caching [1] is to enable a single
transmission to be useful to many users, thus decreasing the
delivery time significantly. In a broadcast setting where a set
of K users will each ask for some file from a library of N
popular files, the main idea is to cache a portion γ ∈ (0, 1)
from each file, such that users can benefit from the fact that
desired content is already partially stored in the cache, as well
as – most importantly – from the fact that the cached undesired
content can be used as side information to remove interference
stemming from other users’ requested files.

In the original single-transmitter (single-antenna) setting
of [1], this idea was shown to allow for treatment of 1 +Kγ
users at a time, corresponding to an (additive) caching gain
of G = Kγ, i.e., being able to serve – as a consequence of
caching – an additional Kγ users at a time. In the context
of a single-stream broadcast channel (BC) with normalized
link capacity of 1 file per unit of time, this implied a worst-
case (normalized) delivery time of T = K(1−γ)

1+Kγ < 1
γ , as well

as implied (the equivalent of) a Degrees-of-Freedom (DoF)
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performance dΣ(γ) ,
1−γ
T = 1 +Kγ which could in theory

increase indefinitely with an increasing K.
Recent works have extended the above idea to the multi-

transmitter case, with the ultimate goal of combining this
caching gain with the multiplexing gain that comes from
having multiple transmitters (multiple antennas). The work in
[2] showed that — in a wired multi-server (L servers) setting
which can easily be seen to correspond to the cache-aided
MISO BC setting with L transmit antennas — the two gains
could be combined additively, yielding (the equivalent of) a
sum-DoF equal to

dΣ = L+Kγ.

This was rather surprising because the two gains are attributed
to two seemingly ‘opposing’ approaches: multiplexing gain
is generally due to signal separation, while caching gain is
due to signal-combining, i.e., multicasting. Since then, many
works such as [3]–[8] have developed different coded caching
schemes for the multi transmit-antenna (MISO-BC) setting.

A. Scaling of CSIT Costs in Multi-Antenna Coded Caching

While the original coded caching approach [1] in the single-
stream (L = 1) setting, could achieve the near optimal (and
under some basic assumptions, optimal [9], [10]) caching gain
Kγ without requiring any channel state information at the
transmitter (CSIT), a main problem with all known multi-
antenna coded caching methods [2]–[6] that achieved the full
(maximum known) DoF L + Kγ, is that they came with a
maximal CSIT cost of L+Kγ CSI vectors, as they required
that each served user must feedback their full channel vector1.

The following example aims to demonstrate the aforemen-
tioned CSIT costs, and it focuses on a simple instance of the
original multiserver method in [2] which serves as a proxy to
many other methods with similar CSIT requirements.

Example 1. Let us consider the cache-aided MISO BC setting
with K = 4 users, normalized cache size γ = 1/2, and L = 2
transmit antennas, where the multiserver approach can treat
L + Kγ = 4 users at a time. Assuming that users 1, 2, 3, 4

1Other methods that considered reduced CSIT, experience reduced DoF.
For example, the work in [7] considers reduced quality CSIT on fewer served
users, but yields a maximum DoF that is bounded close to L.
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Fig. 1. An L-antenna transmitter having access to a library of N files and
communicating with K receivers each with cache size of M = γN files.

respectively request files A,B,C,D, then each of the three
transmissions takes the form

x =h⊥4 A23 ⊕B13 ⊕ C12 + h⊥3 A24 ⊕B14 ⊕D12+ (1)

+ h⊥2 A34 ⊕ C14 ⊕D13 + h⊥1 B34 ⊕ C24 ⊕D23

where h⊥k denotes the precoder orthogonal to the channel of
user k, and where Aij (respectively Bij , Cij , Dij) denotes the
part of file A (respectively of B,C,D) that is cached at users
i and j. We clearly see that the transmitter must know all
users’ channel vectors.

These maximal CSIT costs, place a fundamental limitation
on the full utilization of multi-antenna coded caching. As we
know from [11], the existence of bounded coherence periods,
sets a hard limit on the achievable DoF, as it essentially bounds
the number of CSIT vectors that can be communicated back
to the transmitter within that coherence period.

In this work we will introduce a fundamentally new algo-
rithm that requires feedback from only L users, irrespective
of how large the achieved caching gain is. The algorithm will
achieve the same maximal-known (near optimal2) sum-DoF
performance of dΣ = L + Kγ, thus untangling the caching
gains from the CSIT bottleneck, and proving for the first time
that coded caching in multi-antenna settings can use CSIT
to first provide the maximal multiplexing gain, and then use
the caches to provide an additional near-optimal caching gain
without any additional CSIT cost.

II. SETTING & NOTATION

a) System Setting: We assume K single-antenna receiv-
ing users connected to an L-antenna transmitter. The received
signal at user k ∈ {1, 2, . . .K} , [K] takes the form

yk = hTk x+ wk, ∀k ∈ [K], (2)

where x ∈ CL×1 denotes the transmitted vector from the L-
antenna array satisfying the power constraint E

{
‖x‖2

}
≤ P ,

where hT ∈ CL×1 denotes the random-fading channel vector
of user k, and where wk is the AWGN noise at receiver k. The
work considers DoF so the signal to noise ratio is considered
to be large.

Communication happens in two phases. First in the cache-
placement phase the caches are filled with content from the

2We note that this performance has been proven to have a gap of at most
2 from the one-shot linear optimal sum-DoF [3].

library of N files {W (n), n = 1, 2, · · · , N}, while then in
the delivery phase each user requests a single file from the
library, after which the base station serves these requested files,
accounting for the requests and the cached content. The aim is
to reduce the worst case (over all possible demands) delivery
time T . We will first assume that Kγ is an integer multiple
L, while for the other cases, we will use the standard memory
sharing3 approach.

b) Notation: For some set λ ⊂ [K] of |λ| = L users,
we will denote with H−1

λ the normalized inverse of the L×L
channel matrix to these users. We will use Zk to denote the
cache content of user k ∈ [K], and dk ∈ [N ] to denote the
index of the file4 requested by user k. Finally ⊕ will denote
the bitwise-XOR operator, and

(
n
k

)
will denote the n-choose-k

operator for some n ≥ k, n, k ∈ N.

III. MAIN RESULT AND AN EXAMPLE

We proceed with the main result, which is based on the
algorithm that we will describe in the next section.

Theorem 1. In the K-user cache-aided MISO-BC with L
antennas and normalized cache size γ, the DoF dΣ = Kγ+L
can be achieved with CSIT from only L users.

Proof. The proof is constructive, and will be provided by the
scheme description in Section IV.

a) Intuition and an example: Before fully describing the
scheme, we proceed with some intuition on the design.

First of all, the cache-placement method will be exactly like
in [1], while the XOR generation method will be fundamen-
tally different. The first step is to construct vectors of L XORs,
where each XOR is composed of Kγ

L + 1 subfiles, resulting
in vectors that hold a total of L+Kγ different subfiles aimed
at simultaneously serving a total of Kγ +L users. Each such
set of L+Kγ served (“active”) users will be divided into two
sets; the first set λ will have L users, while the other set π
will have Kγ users. The vector of XORs will be multiplied
by the inverse H−1

λ of the channel matrix corresponding to
the users in λ. As a result, each of the users in λ will only
receive one of the XORs (the rest will be nulled-out by the
precoder), while the remaining Kγ users (i.e., those in π) will
receive a linear combination of all L XORs. We design the
vector of XORs in such a way so that the first category of
users in λ can each “cache-out" Kγ

L subfiles (leaving them
only with their own desired file), while the second category
of users in π will be able to cache-out Kγ + L− 1 subfiles,
i.e., all but one subfiles.

Example 2. For example, for the case of K = 4, γ = 1/2
and L = 2, a transmitted vector takes the form5

3Thus if L > Kγ, we would apply memory sharing between points Kγ′ =
0 and Kγ′′ = L.

4In the examples we will assume the standard simplified notation where
W (d1) = A,W (d2) = B, and so on.

5Here the reader should note that there is a notational discrepancy between
the example here and the formal notation. The notation here was kept very
simple in order to more easily provide basic intuition on the structure of the
scheme. Example 4 provides the more detailed version of this example.



x = H−1
12 ·

[
A34 ⊕ C14

B34 ⊕D23

]
(3)

where H−1
12 can be the ZF precoder with respect to users

1, 2, where files A,B,C,D are requested by users 1, 2, 3, 4
respectively, and where Aij represents the part of A that can
be found in caches i and j (similarly for Bij , Cij , Dij). Hence
we see that user 1 and user 2 (users in first category λ), only
receive the first and second XOR respectively, due to the design
of H−1

12 , and hence can decode; user 1 can cache out C14 to
get A34 and user 2 can cache out D23 to get the desired B34.
On the other hand, for users 3 and 4 corresponding to the
second category π, we see that user 3 can cache out A34,
B34 and D23 to get the desired C14, while user 4 can cache
out A34, B34 and C14 to get the desired subfile D23.

IV. SCHEME DESCRIPTION

We proceed to describe the scheme, first briefly describing
the placement and then focusing on the delivery phase.

A. Placement Phase

The placement phase happens without knowledge of L,
and it follows the original scheme in [1] so that each file,
W (n), n ∈ [N ], is initially split into

(
K
Kγ

)
subfiles W (n)

τ , each
indexed by a Kγ-length set τ ⊂ [K], in which case each cache
takes the form

Zk =
{
W (n)
τ : ∀τ 3 k, |τ | = Kγ, ∀n ∈ [N ]

}
. (4)

B. Delivery Phase

Before designing the XORs, we must first further split each
requested subfile. After the requests {W (dk), k ∈ [K]} are
made, and after the number of antennas becomes known, each
requested subfile W (dk)

τ is further split twice as follows

W (dk)
τ →{W (dk)

σ,τ , σ ⊂ [K] \ (τ ∪ {k}), |σ| = L− 1} (5)

W (dk)
σ,τ →{Wφ,(dk)

σ,τ , φ ∈ [Kγ + L]}.

We note that, for clarity of exposition and to avoid many
indices, we will henceforth suppress the index φ, and thus
any W

φ,(dk)
σ,τ will be denoted as W (dk)

σ,τ unless φ is explicitly
described.

1) XOR design: For any two sets µ ⊂ [K], ν ⊂ [K], where
|µ| = Kγ

L + 1 and |ν| = Kγ L−1
L and where µ ∩ ν = ∅, and

for any σ ⊂ [K] \ µ \ ν, |σ| = L− 1, we construct the XOR

Xν,σ
µ =

⊕
k∈µ

W
(dk)
σ,(ν∪µ)\{k} (6)

to consist of Kγ
L +1 subfiles which are desired by the users in

µ and which are completely known by all the users in ν. The
set (ν ∪ µ) \ {k} will play the role of τ from the placement
phase, and the set σ will be a function of µ, ν and a function
of the set λ of users we will ZF against.

Example 3. For the case of Kγ = 4 and L = 2, let µ =
{1, 2, 3}, ν = {4, 5} and consider any σ ∈ [K]\{1, 2, 3, 4, 5}.
Then the designed XOR

X45,σ
{123} =W

(d1)

{σ,2345︸︷︷︸
τ

} ⊕W
(d2)
{σ,1345} ⊕W

(d3)
{σ,1245}

delivers the subfiles requested by the users in µ, where these
subfiles are all known by each user in ν.

Algorithm 1: Delivery Phase

1 for λ ⊂ [K], |λ| = L (precode users in λ) do
2 Create H−1

λ

3 for π ⊂ ([K] \ λ) , |π| = Kγ do
4 Break π into some Fi i ∈ [L] : |Fi| = Kγ

L ,⋃
i∈[L] Fi = π, Fi ∩ Fj = ∅,∀i, j ∈ [L]

5 for s ∈ {0, 1, ..., L− 1} do
6 ri = ((s+ i− 1) mod L) + 1, i ∈ [L]
7 Transmit

xsλ,π = H−1
λ ·



X
π\Fr1 ,λ\λ(1)

λ(1)∪Fr1

X
π\Fr2 ,λ\λ(2)

λ(2)∪Fr2
...

X
π\FrL ,λ\λ(L)

λ(L)∪FrL


. (7)

2) Vector design: At this point we describe how to generate
the vector of XORs to be transmitted, after precoding, across
the L antennas. Every transmission will serve completely
different subfiles to Kγ+L users (there is no data repetition),
while requiring CSIT from only L users.

• In Step 1, a set λ of L users is chosen.
• In Step 2, a (ZF-type) precoder H−1

λ is designed to
separate the L users in λ.

• In Step 3, another set π ⊂ [K]\λ of Kγ users is selected
from the remaining users.

• In Step 4 this set π of Kγ users is partitioned into L
non-overlapping sets Fi, i ∈ [L], each having Kγ

L users.
• In Step 5 a user from λ is associated to one of the sets Fi,

as a function of a parameter s that goes from 0 to L− 1.
For example, when s = 0, the first XOR of the vector
will be intended for users in set λ(1) ∪ F1, the second
XOR will be intended for the users in the set λ(2) ∪ F2

and so on. When on the other hand s = 1, then the first
XOR will be intended for users in λ(1)∪F2, the second
XOR will be for users in λ(2)∪F3, and so on, modulo L.
In particular, step 5 (and the adjoint step 6) allows us to
iterate over all sets Fi, associating every time a distinct
set Fi to a distinct user from group λ, until all users from
set λ have been associated with all sets Fi. Then, in the



last step (Step 7) the vector of the L XORs is transmitted
after being precoded by H−1

λ .
By design of the XORs (cf. (6)), the constructed vector

guarantees (together with the precoder) that the users in λ
can decode the single XOR that they receive, while also
guaranteeing that each user in π has cached all subfiles in
the entire vector, apart from their desired subfile.

C. Calculating the DoF performance

a) Showing that each desired subfile is transmitted: The
first task here is to show exactly in which transmission each
subfile appears. Let us take any arbitrary subfile W (dk)

σ,τ . This
first defines the set of active users to be σ ∪ τ ∪ {k} = λ∪ π.
Let us also recall that λ∩π = ∅, σ∩ τ = ∅ and σ ⊂ λ, where
|σ| = L − 1, |λ| = L, |π| = |τ | = Kγ. Recall that σ, τ, k are
derived from the subfile and as a result are fixed.

We consider two distinct cases. In the first case, let λ =
σ∪{k}, in which case W (dk)

σ,τ will appear in transmission xsλ,π ,
while π = (σ ∪ τ ∪ {k}) \ λ = τ and for s = 0, 1, · · · , L− 1.
The second case corresponds to when k /∈ λ, in which case
we can see that the set of all possible λ that can include σ, are
λ = σ∪τ(i), i = 1, 2, · · · ,Kγ. Hence the subfile W (dk)

σ,τ will
appear L times when case 1 occurs, and Kγ times when case
2 occurs, thus showing that W (dk)

σ,τ will appear in a total of
L+Kγ transmissions, and thus in each such transmission we
will send a different subfile Wφ,(dk)

σ,τ , φ = 1, 2, · · · , L +Kγ.
This proves that all the data is transmitted, and it also explains
the reason for the last subpacketization into W

φ,(dk)
σ,τ for the

L+Kγ different values of φ.
b) Decodability in each transmission: The decodability

in each transmission was explained in the description of the
algorithm; the type 1 users in set λ cache out Kγ/L files from
the one visible XOR, while type 2 users (in set π) cache out
Kγ + L− 1 files.

c) Calculating the DoF performance: The resulting DoF
can now be easily seen to be dΣ = L + Kγ by recalling
that each transmission includes Kγ + L different subfiles,
and that no subfile is ever repeated. A quick verification,
accounting for the number of iterations in each step and the
total subpacketization Q =

(
K
Kγ

)(
K−Kγ−1
L−1

)
(Kγ + L), yields

T = 1
Q

Step 1︷ ︸︸ ︷(
K

L

) Step 3︷ ︸︸ ︷(
K − L
Kγ

)
·
Step 5︷︸︸︷
L = K(1−γ)·L

L(Kγ+L) = K(1−γ)
Kγ+L which

implies as sum-DoF of dΣ = K(1− γ)/T = L+Kγ.

The following example employs the complete notation
W

φ,(dk)
σ,τ to demonstrate the iteration over all subfiles. As

before, we use A
(φ)
σ,τ to refer to W

φ,(d1)
σ,τ , B(φ)

σ,τ to refer to
W

φ,(d2)
σ,τ , and so on.

Example 4 (Example of scheme). Consider a transmit-
ter with L = 2 antennas, serving K = 4 users with
caching redundancy Kγ = 2. Each file is split into Q =

φ︷ ︸︸ ︷
(Kγ + L)

σ︷ ︸︸ ︷(
K −Kγ − 1

L− 1

) τ︷ ︸︸ ︷(
K

Kγ

)
= 24 subfiles, and the

following are the
(
K
L

)(
K−L
Kγ

)
L = 12 transmissions that will

satisfy all the users’ requests.

x1
12,34=H

−1
12

[
A

(1)
2,34⊕C

(1)
2,14

B
(1)
1,34⊕D

(1)
1,23

]
,x2

12,34=H
−1
12

[
A

(2)
2,34⊕D

(1)
2,13

B
(2)
1,34⊕C

(1)
1,24

]

x1
34,12=H

−1
34

[
B

(1)
4,13⊕C

(1)
4,12

A
(1)
3,24⊕D

(1)
3,12

]
,x2

34,12=H
−1
34

[
A

(1)
4,23⊕C

(2)
4,12

B
(1)
3,14⊕D

(2)
3,12

]

x1
24,13=H

−1
24

[
A

(2)
4,23⊕B

(2)
4,13

C
(2)
2,14⊕D

(2)
2,13

]
,x2

24,13=H
−1
24

[
B

(3)
4,13⊕C

(3)
4,12

A
(3)
2,34⊕D

(3)
2,13

]

x1
13,24=H

−1
13

[
A

(2)
3,24⊕B

(2)
3,14

C
(2)
1,24⊕D

(2)
1,23

]
,x2

13,24=H
−1
13

[
A

(3)
3,24⊕D

(2)
3,12

B
(3)
1,34⊕C

(3)
1,24

]

x1
14,23=H

−1
14

[
A

(3)
4,23⊕B

(4)
4,13

D
(3)
1,23⊕C

(4)
1,24

]
,x2

14,23=H
−1
14

[
A

(4)
4,23⊕C

(4)
4,12

B
(4)
1,34⊕D

(4)
1,23

]

x1
23,14=H

−1
23

[
A

(4)
3,24⊕B

(3)
3,14

C
(3)
2,14⊕D

(4)
2,13

]
,x2

23,14=H
−1
23

[
B

(4)
3,14⊕D

(4)
3,12

C
(4)
2,14⊕A

(4)
2,34

]
.

Observing for example the first transmission, we see that
user 1 only receives A

(1)
2,34 ⊕ C

(1)
2,14 and can thus decode

A
(1)
2,34 by caching out C(1)

2,14 and similarly user 2 receives only
B

(1)
1,34 ⊕ D

(1)
1,23 and can decode B(1)

1,34 by caching out D(1)
1,23.

On the other hand, user 3 can decode C(1)
2,14 by caching out

A
(1)
2,34, B

(1)
1,34, D

(1)
1,23, and user 4 can decode D(1)

1,23 by caching
out A(1)

2,34, B
(1)
1,34, C

(1)
2,14. As we see, the delay is T = 12

24 and
the sum-DoF is dΣ = K(1−γ)

T = 4.

D. Complete example of a more involved scheme

To further understand the algorithm we will provide a more
involved example.

Here we will present all the transmissions for the case where
K = 6, L = 2, and γ = 2/3 (Kγ = 4).

x1
12,3456 = H−1

12

[
A

(1)
2,3456 ⊕ C

(1)
2,1456 ⊕D

(1)
2,1356

B
(1)
1,3456 ⊕ E

(1)
1,2346 ⊕ F

(1)
1,2345

]

x2
12,3456 = H−1

12

[
A

(2)
2,3456 ⊕ E

(1)
2,1346 ⊕ F

(1)
2,1345

B
(2)
1,3456 ⊕ C

(1)
1,2456 ⊕D

(1)
1,2356

]

x
(1)
13,2456 = H−1

13

[
A

(1)
3,2456 ⊕B

(1)
3,1456 ⊕D

(1)
3,1256

C
(2)
1,2456 ⊕ E

(2)
1,2346 ⊕ F

(2)
1,2345

]

x2
13,2456 = H−1

13

[
A

(2)
3,2456 ⊕ E

(1)
3,1246 ⊕ F

(1)
3,1245

C
(3)
1,2456 ⊕B

(3)
1,3456 ⊕D

(2)
1,2356

]

x1
14,2356 = H−1

14

[
A

(1)
4,2356 ⊕B

(1)
4,1356 ⊕ C

(1)
4,1256

D
(3)
1,2356 ⊕ E

(3)
1,2346 ⊕ F

(3)
1,2345

]

x2
14,2356 = H−1

14

[
A

(2)
4,2356 ⊕ E

(1)
4,1236 ⊕ F

(1)
4,1235

D
(4)
1,2356 ⊕B

(4)
1,3456 ⊕ C

(4)
1,2456

]

x1
15,2346 = H−1

15

[
A

(1)
5,2346 ⊕B

(1)
5,1346 ⊕ C

(1)
5,1246

E
(4)
1,2346 ⊕D

(5)
1,2356 ⊕ F

(4)
1,2345

]

x2
15,2346 = H−1

15

[
A

(2)
5,2346 ⊕D

(1)
5,1236 ⊕ F

(1)
5,1234

E
(5)
1,2346 ⊕B

(5)
1,3456 ⊕ C

(5)
1,2456

]



x1
16,2345 = H−1

16

[
A

(1)
6,2345 ⊕B

(1)
6,1345 ⊕ C

(1)
6,1245

F
(5)
1,2345 ⊕D

(6)
1,2356 ⊕ E

(6)
1,2346

]

x2
16,2345 = H−1

16

[
A

(2)
6,2345 ⊕D

(1)
6,1235 ⊕ E

(1)
6,1234

F
(6)
1,2345 ⊕B

(6)
1,3456 ⊕ C

(6)
1,2456

]

x1
23,1456 = H−1

23

[
B

(2)
3,1456 ⊕A

(3)
3,2456 ⊕D

(2)
3,1256

C
(2)
2,1456 ⊕ E

(2)
2,1346 ⊕ F

(2)
2,1345

]

x2
23,1456 = H−1

23

[
B

(3)
3,1456 ⊕ E

(2)
3,1246 ⊕ F

(2)
3,1245

C
(3)
2,1456 ⊕A

(3)
2,3456 ⊕D

(2)
2,1356

]

x1
24,1356 = H−1

24

[
B

(2)
4,1356 ⊕A

(3)
4,2356 ⊕ C

(2)
4,1256

D
(3)
2,1356 ⊕ E

(3)
2,1346 ⊕ F

(3)
2,1345

]

x2
24,1356 = H−1

24

[
B

(3)
4,1356 ⊕ E

(2)
4,1236 ⊕ F

(2)
4,1235

D
(4)
2,1356 ⊕A

(4)
2,3456 ⊕ C

(4)
2,1456

]

x1
25,1346 = H−1

25

[
B

(2)
5,1346 ⊕A

(3)
5,2346 ⊕ C

(2)
5,1246

E
(4)
2,1346 ⊕D

(5)
2,1356 ⊕ F

(4)
2,1345

]

x2
25,1346 = H−1

25

[
B

(3)
5,1346 ⊕D

(2)
5,1236 ⊕ F

(2)
5,1234

E
(5)
2,1346 ⊕A

(5)
2,3456 ⊕ C

(5)
2,1456

]

x1
26,1345 = H−1

26

[
B

(2)
6,1345 ⊕A

(3)
6,2345 ⊕ C

(2)
6,1245

F
(5)
2,1345 ⊕D

(6)
2,1356 ⊕ E

(6)
2,1346

]

x2
26,1345 = H−1

26

[
B

(3)
6,1345 ⊕D

(2)
6,1235 ⊕ E

(2)
6,1234

F
(6)
2,1345 ⊕A

(6)
2,3456 ⊕ C

(6)
2,1456

]

x1
34,1256 = H−1

34

[
C

(3)
4,1256 ⊕A

(4)
4,2356 ⊕B

(4)
4,1356

D
(3)
3,1256 ⊕ E

(3)
3,1246 ⊕ F

(3)
3,1245

]

x2
34,1256 = H−1

34

[
C

(4)
4,1256 ⊕ E

(3)
4,1236 ⊕ F

(3)
4,1235

D
(4)
3,1256 ⊕A

(4)
3,2456 ⊕B

(4)
3,1456

]

x1
35,1246 = H−1

35

[
C

(3)
5,1246 ⊕A

(4)
5,2346 ⊕B

(4)
5,1346

E
(4)
3,1246 ⊕D

(5)
3,1256 ⊕ F

(4)
3,1245

]

x2
35,1246 = H−1

35

[
C

(4)
5,1246 ⊕D

(3)
5,1236 ⊕ F

(3)
5,1234

E
(5)
3,1246 ⊕A

(5)
3,2456 ⊕B

(5)
3,1456

]

x1
36,1245 = H−1

36

[
C

(3)
6,1245 ⊕A

(4)
6,2345 ⊕B

(4)
6,1345

F
(5)
3,1245 ⊕D

(6)
3,1256 ⊕ E

(6)
3,1246

]

x2
36,1245 = H−1

36

[
C

(4)
6,1245 ⊕D

(3)
6,1235 ⊕ E

(3)
6,1234

F
(6)
3,1245 ⊕A

(6)
3,2456 ⊕B

(6)
3,1456

]

x1
45,1236 = H−1

45

[
D

(4)
5,1236 ⊕A

(5)
5,2346 ⊕B

(5)
5,1346

E
(4)
4,1236 ⊕ C

(5)
4,1256 ⊕ F

(4)
4,1235

]

x2
45,1236 = H−1

45

[
D

(5)
5,1236 ⊕ C

(5)
5,1246 ⊕ F

(4)
5,1234

E
(5)
4,1236 ⊕A

(5)
4,2356 ⊕B

(5)
4,1356

]

x1
46,1235 = H−1

46

[
D

(4)
6,1235 ⊕A

(5)
6,2345 ⊕B

(5)
6,1345

F
(5)
4,1235 ⊕ C

(6)
4,1256 ⊕ E

(6)
4,1236

]

x2
46,1235 = H−1

46

[
D

(5)
6,1235 ⊕ C

(5)
6,1245 ⊕ E

(4)
6,1234

F
(6)
4,1235 ⊕A

(6)
4,2356 ⊕B

(6)
4,1356

]

x1
56,1234 = H−1

56

[
E

(5)
6,1234 ⊕A

(6)
6,2345 ⊕B

(6)
6,1345

F
(5)
5,1234 ⊕ C

(6)
5,1246 ⊕D

(6)
5,1236

]

x2
56,1234 = H−1

56

[
E

(6)
6,1234 ⊕ C

(6)
6,1245 ⊕D

(6)
6,1235

F
(6)
5,1234 ⊕A

(6)
5,2346 ⊕B

(6)
5,1346

]
V. CONCLUSION

In this work we provided a new algorithm designed for the
L antenna MISO-BC with K cache-aided receivers, and we
have shown that the algorithm can achieve the theoretical order
optimal6 DoF of Kγ +L served users at a time, with a CSIT
cost that is a function only of the number of antennas.

A. Various benefits of reducing feedback: higher effective DoF,
separability of design, and feedback reuse

This feedback reduction has multiple beneficial effects.
Firstly, the reduced feedback requirements increase the effec-
tive DoF simply because they allow for more time (within
any given coherence block) to transmit actual data. Secondly,
the algorithm allows us to increase the number of users and/or
their cache size, without having to change the amount of CSIT
feedback, and without additional training overhead. Thirdly,
the structure of the algorithm allows for training to happen less
often, since by choosing one group of users for the precoding
(i.e., by choosing λ), the resulting H−1

λ can stay fixed for a
large number of time slots (can stay fixed for all possible τ ),
thus allowing — within a coherence period — for a substantial
reuse of the acquired feedback.
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