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ABSTRACT

Equalization for digital communications constitutes a very particular blind decon-
volution problem in that the received signal is cyclostationary. Oversampling (OS)
(w.r.t. the symbol rate) of the cyclostationary received signal leads to a stationary
vector-valued signal (polyphase representation {PR)). OS also leads to a fractionally-
spaced channel model and equalizer. The multichannel formulation also arises in
mobile communications, when multiple receiving antennas are used. In the multi-
channel case, channel and equalizer can be considered as an analysis and synthesis
filter bank. Zero-forcing (ZF) equalization corresponds to a perfect-reconstruction
filter bank. We show that in the multichannel case FIR ZF equalizers exist for a
FIR channel. The noise-free multichannel power spectral density matrix has rank one
and the channel can be found as the (minimum-phase) spectral factor. The multi-
channel linear prediction of the noiseless received signal becomes singular eventually,
reminiscent of the single-channel prediction of a sum of sinusoids. As a result, a ZF
equalizer can be determined from the received signal second-order statistics by linear
prediction in the noise-free case, and by using a Pisarenko-style modification when
there is additive noise. Due to the singularity and the FIR assumption, the speciral
factorization reduces to the triangular factorization of a finite covariance matrix. In
the given data case, Music {subspace)} or ML techniques can be applied. We present
these developments by drawing the parallel with existing techniques for the sinusoids
in noise subspace problem. '
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1 INTRODUCTION

Consider linear digital modulation over a linear channel with additive Gaussmn
noise so that the received signa! can be written as

y(t) = Y _e(kh(t — KT} + v(t) (1.1)

k

where the a(k) are the transmitted symbols, T' is the symbol period, h(t) is
the combined impulse response of channel and transmitter and receiver filters,
but is often called the channel response for simplicity. Assuming the {a(k)}
and {v{t)} to be (wide-sense) stationary, the process {y(t}} is (wide-sense}
cyclostationary with period T. If the channel would be known, then one could
pass the received signal through a matched filter and sample the output at the
symbol rate. These samples would provide sufficient statistics for the detection
of the transmitted symbols. If {y(t)} is sampled with period T, the sampled
process is (wide-sense) stationary and its second-order statistics contain no
information about the phase of the channel. Tong, Xu and Kailath [1] have
proposed to oversample the received signal with a period A = T/m, m > 1.
In what follows, we assume h(?) to have a finite duration. Tong et al. have
shown that the channel can be identified from the second-order statistics of the
oversampled received signal.

We review a number of developments in this context that have been inspired
by their work. We shall concentrate here on the blind identification of a multi-
channel,i.e. without the use of training sequences for the transmitted symbols.
In terms of second-order statistics, we shall only consider the statistics of the
stationary vector received signal corresponding to the multickannel, and not
cyclic statistics of possibly oversampled signals. We shall also not consider the
exploitation of other side information such as the distribution of the symbols.
The case of multiple sources was treated in e.g. {2].

1.1 Linear Multichannels

The multiple discrete-time channels we consider here come about by represent-
ing a diversity chantiel at the symbol rate. The diversity considered here can
be spectral diversity, in which case oversampling w.r.t. the symbol rate exploits
excess bandwidth (see Fig. 1), or spatial diversity obtained through multiple
receiving antennas (and/or multiple polarizations) in wireless communications,
see Fig. 2. A third case of diversity arises if the symbol constellation is one-
dimensional {e.g. PAM or BPSK) and the transmitted signal is modulated. In
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Figure 2 Vector channel representation of a sighal received through multiple
{2) antennas and sampled at the symbol rate.

that case the baseband channel impulse response has a real and an imaginary
- component, whereas the input is purely real. Hence, working with real signals
only, we get a one-input two-output system. We assume in all cases the channel
to be FIR with duration approximately NT'. To further develop the case of over-
sampling, consider the sampling rate f¢. The sampling instants for the received
signal in (1.1) are to+T{k + L) for integer k and j = 0,1,...,m—1. We intro-
duce the polyphase description of the received signal: y; (k) = y(to+T(k + #))
for § =0,1,...,m—1 are the m phases of received signal, and similarly for the
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channel impulse response and the additive noise. In the case of Fig. 1, the two
polyphase components are the even and odd samples. In principle, it suffices
to introduce a restricted ¢ty € [0, T) to be fully general. However, we shall take
tg = th + dT where 1 € [0,7) and d is chosen as the smallest integer such that
h(0) = [h(th+dT)---h( f,+(d+-”—‘n-§l)T)]T # 0 (superscript T denotes trans-
pose). The channel being causal implies that d is nonnegative; d represents an
inherent delay. The ztransform of the channel response at the sampling rate
2 is H{z) = 2;-"=1 2z~ U=UH; (2™).

The oversampled received signal can be represented in vector form at the symbol
rate as

N-1
y(k) = Y h{i)a(k—i) +v(k) = HAn(F)+v(k},
1=0
v (k) vy (k) hy ()
yiky=| ¢ letk)=| : |RE)=| : (1.2)
Y (k) ven (k) B (k)

H = [h(N=1) --h(0)], An(k) = [alk— N+1)¥ ... o(k)}E] ¥

where superscript ¥ denotes Hermitian transpose. We formalize the finite du-
ration NT assumption of the channel as follows (AFIR): h(0) #0, A(N—-1)#£0
and h{f} =0fori<Oori> N.

A sequence of received signal samples can be represented as
Yo(k) =T (H)Ap4n-1(k) + VL (k) (1.3)

where Y (k) = [y¥ (k—=L+1) - -y¥ (k)}¥ and similarly for V(k), and T (=)
is a (block) Toeplitz matrix with M (block) rows and [ 0 x (a1}, as first
(block) row (r x s is the size of the blocks in z). The generic identifiability of
the channel (and the symbols) in the multichanne] case becomes apparent by
considering equation (1.3) in the noiseless case: »{k) = 0. In this case, (1.3)
represents a set of mlL equations in mN (in H)} plus L+N-1 (in Ap4n-1(k))
unknowns. This set of equations can in principle be solved for the unknowns if
ml > mN+L+N—1, hence if L > {mUN=1 For any finite channel length N
a data record length L can be found to satisfy this constraint if the number of
channels m > 2. The systemn of equations is always underdetermined however
for a single channel (m = 1).
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Figure 3 Polyphase representation of the T/m f{ractionally-spaced channel
and equahzer form = 2

1.2 FIR Zero-Forcmg (ZF) Equallzatlon

In the multlchannel representa.tlon, the Single Input Multlple Output (SIMO)
vector channel transfer function from the single input a(k) to the multiple
outputs is H(z)} = ):{Ll h(i)z=! so that we can write for the vector re-
ceived signal: y(k) = H(q)a(k) + v(k), where g~ la(k) = a(k 1). Con-
sider now (in the oversamplmg context) a fractionally-spaced ( ) equahizer
of which the ztransform can also be decomposed into its polyphase compo-
nents: F(z) = E_;" 2~ (m=3)F;(z™)., We assume the equalizer phases to be

causal and FIR of length L: F;(2) = Sorco fi(k)=™*, 5 = 1,...,m. The

polyphase representation of the fractlona.lly spaced equalizer lea.ds t.o a Multi

Input Single Output (MISO) system representation F(z) = Y 5o f(k)z~*

- with f(k) = [fi(k)--+ fm(k)] and F = [f(L—1)--- f(0)], see Fig. 3 for m = 2.

This MISO equalizer obvisouly applies to all multichannel formulations. The

* condition for the equalizer to be ZF is F(z)H(z) = 371, Fi(z ) H;(z) = 27"
where n € {0,1,...; N+L— 2} By equating equal powers of 27}, we can write
this in matrix. form as .

7 FTL(H) ={0.---010---0] (1.4)
where the 1 is in the n+1st position from the end. (1.4) is a system of L+N—1

" equations in Lm unknowns. To enable zero-forcing (ZF) equalization, we need
"+ - to choose the equalizer length L such that the system of equations (1. 4) is

exactly or underdetermined. Hence
N-1
> —_ . .
L= {m - 1] (1.5)

The block Toeplitz matrix 7y, (H) is also a generalized Sylvester‘ matrix. It
can be shown that for L > L it has full column rank if H(z) # 0, Vz or in
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other words if the H;{z) have no zeros in common. Assuming 77, (H) to have
full column rank, the nullspace of 7,7 (H) has dimension L(m~1)-N+1. If
we take the entries of any vector in this nullspace as equalizer coefficients, then
the equalizer output is zero, regardless of the transmitted symbols. We shall
call such an equalizer & blocking equalizer.

To find a ZF equalizer (corresponding to some delay n), it suffices to take an
equalizer length equal to L. We can arbitrarily fix L{m—1)—N+1 equalizer co-
efficients (e.g. take L(m—1)—N+1 equalizer phases of length L—1 only, or fix
the excess degrees of freedom by requiring minimal noise enhancement). The
remaining L+ N—1 coefficients can be found from (1.4) if H(z) # 0, Vz. This
shows that in the multichannel case, a FIR equalizer suffices for ZF equaliza-
tionl With m = N channels, the minimal required total number of equalizer
coefficients N is found (L = 1). In the multichannel case, FIR ZF equalization
is an issue of finding an FIR synthesis bank given an FIR analysis bank so
that the overall filterbank has the perfect reconstruction property. In [3], an-
other interpretation of the ZF condition is given in the oversampled case that
is similar to the Nyquist condition in the continuous-time case.

2 SINUSOIDS IN NOISE: A REVIEW

As can be seen from (1.3), the blind equalization problem in the multichannel
case is a signal subspace estimation problem. That means that all the tech-
niques that have been developed for subspace problems are applicable here also.
Therefore we shall review these techniques in the context of a basic subspace
problem: the sinusoids in noise problem. Afterwards we shall show that all the
methods applicable to the sinusoids in noise problem are also applicable to the
blind multichanne] equalization problem.

2.1 Second-Order Statistics

Consider a signal zx consisting of a sum of sinusoids
M :
T = ZA, COS(W,‘]C + ¢,) Y = Tk + Uk . (16)
i=1
We shall assume that the amplitudes A; and the frequencies f; = w; /2 are
deterministic unknowns, while the phases ¢; are unknown and random, inde-
pendent of each other and uniformly distributed over [0,2r). Hence zj is a
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stationary process with zero mean. The actual measured signal y is a noisy
version of z) with v being independent white noise with variance 0'3. But we
first concentrate on the noise-free signal zx. The support of the power spec-
tral density function Ses(f) = YN, AL(6(f— fi) + 6(f+i)) has measure zero.
The covartance matrix Rxx has rank 2M whenever its dimension exceeds 2M.
Hence, the rank remains finite, even if the dimension goes to infinity. The
frequencies and phases can easily be determined from S;-(f).

2.2 Noise-free Prediction Problem

A sum of sinusoids satisfies a homogeneous difference equation. In particular
M
P(g)zx =0, P(z) = [[(1-2cosw; z7'+27%). (1.7)
i=1
Hence, z, is perfectly predictible from its previous 2M samples. P(z) and
hence the w; can be found by linear prediction: this is Prony’s method. The
normal equations governing the linear prediction problem are .

PRxx=[0---00%, o*=0 (1.8)
where
RBxx = EXXT, X = [:co‘--ng]T
P = [PgM---Pl Po} (19)
Po = 1, P,‘=P2M._,‘, I.=0,...,M—1.

2.3 Slgnaland Noise Subspacés

The signal structure can be revealed by considering X =V 5 : -

: ' Ay cos
zg 1 0 .- 1 0 1 €08 $1
. . . . —A;sin¢y
£ coswy sSinw; --- COSWyf  SIwps
) . ’ ’ . Apg cos
Tk coswik sinwi ik .-+ coswmk sinwpuk M .¢M
—Apgsin ¢pr
(1.10)

where V = V(Q) with = [w; - - -wwm]7 is a block Vandermonde matrix. Indeed,
two consecutive block elements of a block column of V are proporticnal:

[coswik sinwik] = [cosw;(k—1) sinw,-(k—l)][ cosui Si““"’] . {1.11)

—sirw; COs Wy
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One calls
Range{V} = §SS = signal subspace

(Range{V})* = NSS = noise subspace

We get for the covariance structure of the noisy signal

(1.12)

Vi = Xe4+Vi = Ve S+ Vi = Ryy = VRssV +07I (1.13)

where Rss = § diag { A}, A,. .. AM,A }. The signal component X of the
measurement vector Y can on]y live in the signal subspace, whereas in the
noise subspace only noise can be found.

Consider the eigendecomposition of Ryy (M > Aa 2 -}t

k41
Ryy = ZAVVH + 3 NVVE = VsAsVE + VvAnV (1.14)
i=2M +1

where Vs = [V} -+ Vo), Vv = [Vasr 1 -« - V1], As = diag{A,..., den} and
Ax = 02l 11-2m. Assuming V and Rgs to have full rank (all w; € (0, )
are different, all A; > 0), the sets of eigenvectors Vs and Vy are orthogonal:
Vi Vy =0,and X; > 02, i =1,...,2M. The following equivalent descriptions
of the signal and noise subspaces result:

SSS = Range{Vs} = Range{V(Q)}

1.15
NSS = Range{Vy} : VEV=0. (1.15)

So far we have a parametric description of the SSS and we can compute both
subspaces from the eigendecomposition of Ryy. We can also find a parametric
description of the NSS. Indeed, we have P(g) cosw;k == 0 and P(g) sinw;k =0,
hence G(P)TV =0 where

P2M Lo P Pg o .-« 0
0 P -~ P Py --

GPT =Tipam(P)=| . T | (s
0 i 0 Py -~ P Py

is a Toeplitz matrix of full rank, equal to the dimension of the NSS. Hence
NSS = Range{G(P)} . (1.17)

Note that both the SSS, V(Q2), and the NSS, G(P), are parameterized by M
independent parameters.
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2.4 Frequency Est1mat10n from Second-Order
Statistics

Linear Prediction from Denoised Statistics

In the case of additive white noise, we can retrieve the noise-free prediction
coeffictents by replacing the monic constraint of linear prediction by a norm
constraint in the minimization of the prediction error variance. We get the
Pisarenko method

min PT= min PR PT+0 :
R R P= i, P Rxx (1.18)
= PRxx = [0-++0], PT = Vomrn

This is the case of £ = 2M: NSS dimension = 1. Equivalently, we can identify
o2 = Aapm41 and apply linear prediction to the denoised statistics Rxx =
Ryy — demrlanr .

Signal Subspace Fitting

We have two theoretically equivalent signal subspace descriptions: V() and
Vs = Vs(Ryy): both matrices have the same column space, hence one matrix
can be transformed into the other one. Vs can be computed from the covari-
ance matrix. By fitting V() to Vs, we can determine Q. With an estimated

covariance matrix, Vs is approximate, so consider the following subspace fitting
* criterion

min{|V(Q) - VsTll» (1.19)

where T is a square transformation matrix and the Frobenius norm is defined
as J|A|l% = trA¥ A with tr denoting trace. The minimal value of the criterion is
zero if Vs is exact. This criterion differs from the original subspace fitting strat-
_egy proposed in [4], which would propose ming 7 {|V(Q)T — Vs||F as criterion.
We propose (1.19) because it leads to a simpler optimization problem. Both
approaches can be made to be equivalent by the introduction of column space
weighting. The criterion in (1.19) is separable. In particular, it is qua.dratic
in 7. Minimization w.r.t. T leads to T = V'V and V — V3T = Py, V where

P‘f,-s = I — Py, and Py, is the projection matrix on the signal subspace (Vs).
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Hence
min{[V(Q) - VsTlE = IPEVIE
= VI PE Y =tr VT Py, V = |[VIVIZ :
. ok (1.20)
= 3 WAVIE=Y] Y IVl
i=2M 41 F=li=2M+1

where Vi{w) = [1 ¢/ ...e/*]V; is the Fourier transform of the elements of
Vi. The last expression in (1.20) needs to be minimized w.r.t. the w;. An
approximate solution can be found as follows. Plot as a function of w and find
the w; as the abscissae of the M largest peaks of

1
- (1.21)

> Wiw)l?

1=2M+1
This method 1s called MUSIC.

Noise Subspace Fitting

We have again two theoretically equivalent noise subspace descriptions: G(P)
and Vy = Vy(Ryy). By fitting G(P) to Vi, we can determine P. We introduce
the following noise subspace fitting criterion

1piplIG(P) — VaTllr . (1.22)

Minimization w.r.t. T first leads again to T = VG and G — VyT = Pdr”g and
hence

miplG(P) =~ VaTlle = P40} = wGTPEG = wG™PuG

It

M 1.23
WZGlIE = D g vl (122)

i=1

Due to the commutativity of convolution, we can write GTV; = #; PT where
H; = H(V;) is Hankel. The symmetry of P can be expressed as P = P J where
J is the reverse identity matrix {ones on the main antidiagonal). We can assure
the symmetry of the solution for P by explicitly expressing the symmetry of
P. In this way, minimization of the last criterion in (1.23) w.r.t. P leads to

2M 2M
min P O HIH)+ IO _HTH)JI| PT (1.24)

i=1 i=1
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subject to Pp = 1 or ||P|| = 1. Roughly this approach has been proposed
recently in [5].

2.5 Frequency Estimation from Data: ML

With white Gaussian additive noise v, the likelihood function becomes the
following least-squares criterion

: _ 2
min([¥ - V(W) SII” . (1.25)

The criterion is égain separable and minimization w.r.t. S first leads to S =
VTV~ 1WTY. Hence

min[[Y - VS| = YT REY = YT PyyY = PYT(G(PYTG(P)IVPT (1.26)

where we again exploited the commutativity of convolution: G(P)TY = #(Y) PT
=Y PT. Note that in (1.26), we went from the SSS parameterization in terms
of 2 to the equivalent NSS parameterization in terms of P. The reason is that
now a straightforward iterative procedure suggests itself, known as the Jterative
Quadratic Maximum Likelihood (IQML) procedure {6]. At iteration n, we get
the following quadratic criterion:

g}}g P(n)yT(g(P(n—l))Tg(P(n-l)))—ly P(n)T (1_27)
subject to Po = 1 or |P|| = 1. We could again incorporate the symmetry
of P. The IQML iterations are not guaranteed to converge. However, with

"a consistent initialization (such as obtained from the second-order statistics
based methods), only one iteration is required to get an Asymptotically Best
Consistent (ABC) estimate for P and hence .

2.6 Adaptive Notch Filtering

The model for the sum of sinusoids P{g)zx = 0 naturally leads to the following
constrained ARMA representation for the measured signal y:

P(q/p)

where as indicated we can in principle recover the additive noise v from
the measurements.yx using an infinitely sharp notch filter. This infinitely

P(gw =P(g)ve = v = P(g) ye = N(g) % aspS1 (1.28)
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sharp notch filter is in practice approximated by the IIR notch filter N(z) =
P(z)/P(z/p) with zeros et and poles pe*/“i. When the coefficients of P
in N(z) (the notches) are not properly chosen, the notch filter output will
not equal (approximate) v but can be written in general as e, = N(q)w =
N(q)zi +N(g)vx. The notch filter output variance is (N(f) = N(ef?*/))

Bd = J

L IN(DSea(£)df + [2, NSl
M 1.29
S A N+ a2 )

i=1

L
Z

where the expression for the second term is valid for infinitely sharp notches.
We can find P by minimizing the notch filter output variance w.r.t. it since
indeed

rr}én Ee = ol. (1.30)

Due to the long transients of the notch filter, this approach lends itself to
adaptive filtering. An adaptive notch filter can be obtained by applying any
adaptive filtering strategy to the MMSE criterion. Remark in particular that
the ML criterion is in fact the sum of squares of the additive noise v = yp—zs.

3 BLIND CHANNEL ESTIMATION

Now we shall draw the parallel of the previous approaches for the blind equal-
ization problem.

3.1 Channel Identification from Second-order
Statistics: Frequency Domain Approach

Consider the noise-free case and let the transmitted symbols be uncorrelated
with variance ¢Z. Then the power spectral density (psd) matrix of the station-
ary vector process y(k) is

Syy(z) = o2H(z)H'(2) (1.31)

where H(z) = H¥(2=*). The following spectral factorization result can be
found in [7]. Let K(z) be a m x 1 rational transfer function that is causal and
stable. Then K(z) is called minimum-phaseif K(z) # 0, |2| > 1. Let Syy(z) be
a rational m x m spectral density matrix of rank 1. Then there exists a rational
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m x 1 transfer matrix K(z) that is causal, stable , minimum-phase, unique up
to a unitary constant, of (minimal) McMillan degree deg(K) = 1 deg(Syy)
such that ‘

Syy(z) = K(z)K'(z) . (1.32)

In our case, Syy is polynomial (FIR channel) and H(z) is minimum-phase since
we assume H(z) # 0, Vz. Hence, the spectral factor K(z) identifies the channel

K(z) = o, ¢*H(2) (1.33)

up to a constant A So the channel identification from second-order statis-
tics is simply a-multivariate MA spectral factorization problem.

- Note that the bsd matrix of the noise-free signal y, is of rank one and hence
is singular in the multichannel case m > 1. We recall that the input-output
relation of the channel is '

Yi(k) = T (H) Apan-1(k). (1.34)
Therefore, the structure of the covariance matrix of the received signal y(k) is
RY = EY (Y (K) = To ()R v T2 (H) (1.35)

where RS = EAL(K)AH (k) > 0. When mL > L+N-1, RY is singular. If then

L increases further by 1, the rank of R? increases by 1 and the dimension of
rank  _ L+N-—1 L0 1

' dimension ~ mL m*

its nullspace increases by m—1. In fact
So the channel can in principle be identified by spectral factorization, an iter-
ative procedure that represents an infinite number of computations. We shall

see however that due to the singularity and the FIR assumption the channel
can be identified from the triangular factorization of a finite covariance matrix.

3.2 N-oi-'s.e-free | Prediction Problem

Multichannel Linear Prediction

Consider now the problem of predicting y(k) from Yt (k—1} The prediction
error can be written as

TRy ony = VB BBy ory = Pr¥oms(k)  (136)



14 CHAPTER 1

with Py = [Pr--+Pr1 Pro), Pro = In. Minimizing the prediction error
variance leads to the following optimization problem

in_ PRy PE = ok, (1.37)
L-& L.0=im
or hence

PiRY,, =1[0---0] o, (1.38)

When mL > L+N-1, Ty (H) has full column rank. Hence, using (1.34) and
(1.36),

a(k)]YL(k—l) = y(k |.4,,+~_1(k -1y = y(k) - (k)lAL+N_;(k-1)
~1 N-1

= Z h(i)a(k—1) —- E h{i) a(k— ’)IAL+N-1U¢"1)
1—D
~1

= E h(i)a{k—i) — Z‘ h{i)a(k—1) — h{0) B(k) 4, . k1)
= h(O) a'(k)lAL.Hv_l(k—l)
(1.39)

Now let us consider the prediction problem for the transmitted symbols. We
get similarly

) gy ooy = @)= B(E) gy = Qar Amr(k=1), Qe Ripyy =[0---002, |
(1.40)
where Qu = [Qprar -+ Qa1 1) We find from (1.39),(1.40)

VBN h-1) = PrTosr (H) Apan(k) =h(0) @iy 1 ALyn (k) (1.41)
for all Ay 4n(k) and hence
PrTi41(H) = h(0)Qryn-y (1.42)
From (1.39), we also get

= h(0)o

n'L+N_1hH(0) : (1.43)

2
Y.L
All this holds for L > L. As a function of L, the rank profile of cr% | behaves

like
rank (a’%.L) {

1 y L
m-me€ {2,3,...,m} , L (1.44)
m , L

AV
lh It‘- Je

Al
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where m = mL—(L+N-1) € {0,1,...,m—2} represents the degree of singu-
larity of Rg. Note that multichannel linear prediction corresponds to block
triangular factorization of (some generalized) inverse of RY. Indeed,

Ly RLLL =Dp, (LL)a.J = Pi1 A—j DL)II —O'y' 1 (1.45)

where L is block lower triangular and Dy is block diagonal. (A slight gen-
eralization to the singular case of) the multichannel Levinson algorithm can
be used to compute the prediction quantities a.nd hence the triangular factor-
ization above in a fast way. In the case that RL is singular, some precaution
is necessary in the determination of the last block coefficient Pp.p (see [8]).
Similar singularities will then arise at higher orders.

Uncorrelated Symbols

We shall now concentrate on the case in which the symbols a(k) are uncorre-
_ lated. In this case the noise-free received signal is a singular multivariate MA
- process. Observe that for L = L we have

k)+EPL.y =§,(k) = h(0)aL4n-1(F) = h{0)a(k)  (1.46)

so that the prediction error is a singular white noise. This means that the noise-
free received signal y(k) is also a singular multivariate AR process. Hence

Py=[--0 P, cr-;Lza%L.L>L-~ (1.47)

" Hence the factors L and DL in the factorlza.tlon (1.45) become block Toeplitz
_ after L lines. .

For L =L, (1. 43) allows us to find h{0} up to a scalar multiple. We see from

R (1.42) that —g—(—)—PL is a gzero-delay ZF equalizer. Given h(0) from (1.43)

h%o)h(o)
and Pp, we can solve for the channel impulse response H from (1.42). The
channel can alternatively be found from

Py EYpu(WYF(R+N-1) = o2 RO (0)---hT (N-1)]  (148)

or from Pr(z)H(z) = h(0) = H(z) = _l(z) h(0) using the la.ttlce parame-
terization for Py (z) obtained with the Levinson algorithm.

In the uncorrelated symbols case, the prediction problem allows us also (in
theory) to check whether the H; have zeros in common. Indeed, the common
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factor colors the transmitted symbols (MA proc&ss) and hence once 0§ be-

comes of rank 1, its one nonzero eigenvalue o2 hH (0)R(0) continues to

aL+N-1
decrease as a function of L since for a MA process, a% L is a decreasing function
of L. ,

Correlated Symbols

Now consider the case in which the symbols a(k) are correlated Still, for L = L,
(1.43) allows us to find };0) up to a scalar multiple. Let A be m x (m—1) of
rank m—1 such that k* Z h{0) = 0, then

Fi,, =ht" Py (1.49)

is a set of m—1 blocking equalizers since indeed F®Y (k) = 0. We introduce
a block-componentwise transposition operator ¢, viz.

. . t _ fpTra_ T
H' = [h(N-1)-- h(O)] = T['h (N-1)---K" ()] (1.50)
= [H(L-1)-- = [F(z-1)--- ()]

where 7T is the usual transposition operator. Due to the commutativity of
convolution, we find

F Ty (Hy) = 0 &> HyTw(FY) =0, (1.51)

Now

dim ( Range* {TN (Fi)}) =1 (1.52)

so that we can identify the channel H4¥ (up to scalar multiple) as the last right
singular vector of Ty (Fit-i-l) (2 QR factorization would require less computa-
tions but might be less reliable numerically). From (1.42), one can furthermore

identify Q , N-1 and via (1.40), this leads to the identification of the (Toeplitz)
symbol covariance matrix Ry | up to a multiplicative scalar.

' Modular Multichannel Linear Prediction

We noted previously that the consecutive multichannel linear prediction prob-
lems correspond to a block triangular factorization. They also correspond to
Gram-Schmidt orthogonalization of the block components of the vector Y. We
can alternatively introduce sequential processing in the orthogonalization pro-
cess and orthogonalize scalar component by scalar component the elements of
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the vector Y. This leads to cyclic prediction filters and a true (non-block) trian-
gular factorization. To make the orthogonalization process unique in the singu-
lar case, we need to introduce a convention, We shall assume that components
of Y of which the orthogonalized versions are zero are not used in the orthogo-
nalization of the further components (this corresponds to some minimum-norm
choice). The consequence of this convention is that zeros will appear in the
triangular factor (cyclic prediction filters). We get

L, RYLE = D} (1.53)

where L}, is a unit-diagonal lower triangular factor and DL isa diagonal ma-
trix. After. mL rows, both matrices become block Toeplitz aga.m in the case
‘of uncorrelated symbols. The steady-state diagonal elements of D, ¢ become in
" that case oZ|hy(0)}? followed by m—1 zeros (since h(0) # 0, we can w.lo.g.
assume that h;(0) # 0). If we introduce a permutation matrix P

?LLRyL PH = PD,PH = ["& ]R}f[{} ] = [1"6 g]

(1.54)

so that the non-singular and singular parts get separated (D" is non-singular).
L" eventually becomes block Toeplitz with 1 x m blocks. Its repeated row then

- corresponds to a zero-delay ZF equalizer (up to a scalar multiple). ¢ = G(G} is
block Toeplitz with (m—1) x m blocks and contains m-~1 blocking equalizers
parameterized by G. The number of elements in G is mN—1 (the number
.of degrees of freedom in H that can be determined blindly). Apart from the

' elements of G G also conta.ms 1’s.

) Whereas a'modular multlcha.nnel Levinson algorithm (slightly adapted to han-
 dle singularities) can be used to find this factorization and the prediction quan-
- tities involved fast, similarly, a corresponding modular multlcha.nnel Schur al-
'gonthm [9] can be used to find the LDU factorization of RL 1tself

RY=Uf D; UL -~ (1.55)

- . where we get the same diagonal factor and Uy is a unit-diagonal upper tri-

angular matrix. Also Uy becomes block Toeplitz after mL rows. If we again
introduce the permutation matrix P, then

RY = (Uf'P_H) (PDLPH) (PUL)
(1.56)

Il
S
S
U'-:
o
&
S
I
d
tj:
q--
)
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After a finite number of columns, U" becomes block Toeplitz with m x 1
blocks and the column that gets repeated contains (a multiple of) the channel
impulse response for reasons that are related to the fact that L” contains a
ZF equalizer and to (1.48). This shows our earlier claim that the spectral
factorization of Syy(2) can be replaced by a triangular factorization of a finite
covariance matrix RY. More details can be found in [10)

3.3 Signal and Noise Subspaces

Consider now the measured data with additive independent white noise v{k)
with zero mean and assume Ew(k)v¥ (k) = 02, with unknown variance o]
(in the complex case, real and imaginary parts are assumed to be uncorrelated,
colored noise with known correlation structure but unknown variance could

equally well be handled). A vector of [ measured data can be expressed as

Yo(k) = To(H) ALen-1(k) + VL(k). (1.57)
Therefore, the structure of the covariance matrix of the received signal y(k) is
= EYL(MYE(K) =T (H)RE 4wy T (H)+070ms - (1.58)

Clearly, the column space of 7z, (H ) is the signal subspace. Since G{G)TL(H) =
0, the column space of G¥ is the noise subspace and G provides a linear pa-
rameterization for it.

Consider the eigendecomposition of Rg of which the real positive eigenvalues
are ordered in descending order:

L+N-1
= Y AUVE+ E MVVA = VeAsVE + VpAnVE  (159)
i=1 i=L4+N

where Ay = o, I(m L-N+1 (see (1. 58)) The sets of eigenvectors Vs and Vi
are orthonormal: V¥ Vy =0, and X; > o, 2 i=1,...,L+N~1. We then have

the following equivalent descriptions of the signal a.ncl noise subspaces
SSS = Range{Vs} = Range{T.(H)} (1.60)
-NSS = Range{Vnx)} = Range {G(G)¥} . o

The noise subspace parameterization that we consider here is prediction based.
It can perhaps be more easily expressed in the frequency domain by noting that

Fo(z)H(z) = 0, F®(z) = ht¥P(2). (1.61)
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G above is not the same but is related to this choice of F®(z). Another set
of blocking equalizers and hence another linear parameterization of the noise
subspace is channel based, e.g.

Hg(z) —-H]_ (Z) 0
F’(z) = 5 (1.62)
Hm (Z) 0 —H1 (z]
Many other choices of F?(z) are possible involving other pairs of channels. It is

also possible to consider more than m~1 blocking equalizers, possibly involving
up to all ﬂ%'ll possible pairs of channels.

3.4 Channel Estimation from Second-Order
Statistics

Linear Prediction from Denoised Statistics

o2 can again be identified as the smallest eigenvalue of R%. Replacing R%’ by
Rg — 021,51 gives us the covariance matrix for noise-free data, to which the
prediction techniques discussed previously can be applied.

Signal S ub.épace Fitting

Consider now the following subspace fitting problem
min ||To (H) - Vs Tllg - 1.63
gl -Vl (169

The optimal transformation matrix 7' can again be found to be
' T = VET(H) . (1.64)

Using (1.64) and the commutativity of the convolution operator, one can show
that (1.63) is equivalent to

mL
g 5wy )

H! .
=L+ N (1.65)

i=1

. fLEN-1
- [chmz-m (5 ey 7 )
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where VH is considered 2 block vector with L blocks of size 1 x m. These
optimization problems have to be augmented with a nontriviality constraint
on H'. In case we choose the quadratic constraint [| H t’"z = 1, H® is found
as the minimum eigenvector of the first matrix in brackets in (1.65). This
solution reflects orthogonalization of parameterized SSS and estimated NSS.
Alternatively, the last term in (1.65) leads equivalently to

L4+N-1
g (L mem o) e s

i=1

the solution of which is the eigenvector corresponding to the maximum eigen-
value of the matrix appearing between the brackets. This solution reflects really
the attempt to fit parameterized and estimated S55’s.

Noise Subspace Fitting

Alternatively we may work with the parameterized noise subspace and consider
the following subspace fitting approach

H
min |7 (F*)" - Vy T (1.67)
P F
One choice would be i
mip |g(G) _ T”F . (1.68)

Again, two possible solutions can be obtained, depending on whether we at-
tempt to orthogonalize the parameterized NSS to the estimated SSS or to fit
it to the estimated NSS. The choice of F® as in (1.62) corresponds to Xu’s
deterministic least-squares channel identification approach.

3.5 Channel Estimation from Data: ML

The transmitted symbols a; are considered deterministic, the stochastic part
is considered to come only from the additive Gaussian white noise. We assume
the data Y pr(k) to be available. The maximization of the likelihood function
boils down to the following least-squares problem

min [V ar(k) = Tae (H) Apgan-1 ()3 - (1.69)
H.AM+N_|(’=)
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The optimization problem in (1.69) is separable. Eliminating Aar4n-1(k) in

terms of H, we get
2

(1.70)

min
H

L
Pra¥u®)|
subject to a nontriviality constraint on H. In order to find an atiractive iter-
ative procedure for solving this optimization problem, we should work with a
minimal parameterization of the noise subspace, which we have obtained before.
Indeed,

4 —

The number of degrees of freedom in H and G is both mN—1 (the proper
scaling factor cannot be determined). So H can be uniquely determined from
G and vice versa. Hence, we can reformulate the optimization problem in (1.70)

me [|PgmG)YM(k)”: L | (1.72)

Due to the (almost) block Toeplitz character of Gar, the product GarY ar(k)
‘represents a convolution. Due to the commutativity of convolution, we can
write Gum (Q)Y m(k) = In(Y m(k))[1 GH}¥ for some properly structured
Yn(Y pm(k)). This leads us to rewrite {1.72) as

. 1 H H H -1 1
min| &] (k) Gu@8f@) nrmin [ 3] a7

This optimization problem can now easily be solved iteratively in the classical
IQML style.- An’initial estimate may be obtained from the subspace fitting
approach discussed above. Such an initial estimate is consistent and hence one
.iteration of {1.73) will be sufficient to generate an estimate that is asymptot-
ically equivalent to the global optimizer of (1.73). Cramer-Rao bounds have
‘been obtained and analyzed in [3]. The choice of the noise subspace parameter-
ization in (1.62) using all pairs of channels leads to Yingbo Hua’s ML method.
More discussion on the ML method can be found in {11],[12].

3.6 Constrained‘_IIR Filter DFE

Here we consider an equalizer structure with decision feedback. The approach
is in fact a multichannel extension of the adaptive notch filter approach for
sinusoids in noise. As a consequence, the method will continue to work well
even if the additive noise and/or the transmitted symbols are colored.
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Let Pﬁ,,(z) and sz.(z) be the ztransforms of the forward prediction and pre-
diction error filters {of the noise-free case) so that P (z2) = I, - z"Pa (z).
L
To alleviate the notation, P(z) will continue to represent Pﬁ,,(z) (as before).
Since P(z)H(z) = h(0), the noise-free received vector signal y(k) = H(q)ax,
which is a multichannel MA process, is also a (singular) multichannel AR pro-
cess: P(q)y(k) = h(0)ax. For the noisy received signal y(k) = H(q)ax + v(k),
we get
P(q)y(k) = h(0)ar + P(q)v(k) (1.74)

which is a constrained multichannel ARMA process, apart from the term
h(0)ax, which will require detection. In the scalar case, the prediction er-
ror filter is minimum-phase. For the multichannel case, the extension is that
det[P(z)] is minimum-phase, even in the singular case. So we can recover v (k)
as follows:

v(k} = P~(q)[P(a)y(k) — h(0)ax] . (1.75)
This can be more straightforwardly implemented by the following procedure

«(H) = Py, (gv(¥) - Pg, (03041

~ _ 0

G = dec[ma(k)] (1.76)
v(k) = s(k) — h(0)as

where dec denotes the decision operation, whose argument is ideally ax +

H
7—-(—l—h hia); (o)v(k). Various algorithms are now possible to adapt the coeflicients
Pﬁ such as the Recursive Prediction Error Method and its simplifications.

L
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