A Car as a Semantic Web Thing:
Motivation and Demonstration

Benjamin Klotz*1, Soumya Kanti Dattal, Daniel Wilms*, Rapha¢l Troncy1L and Christian Bonnet
*BMW Group Research, New Technologies, Innovations
Munich, Germany
Email: benjamin.bk.klotz@bmwgroup.com
tEURECOM, Sophia Antipolis, France
Email: firsthame.lastname @ eurecom.fr

Abstract—Car signal data is usually hard to access, under-
stand and integrate for non automotive domain experts.

In this paper, we use semantic technologies for enriching
signal data in the automotive industry and access it through
Web of Things interactions. This combination allows the access
and integration of car data from the web.

We built VSSo, a Vehicle Signal ontology based on
SOSA/SSN Observations and Actuations, and generated WoT
Actions, Events and Properties, enriched with domain meta-
data. We mapped VSSo to a Web of Things ontology and we
developed a Web of Things protocol binding with LwM2M,
and made an implementation in a real car.

This implementation resulted in a first working prototype,
and a number of future improvements required in order to be
compliant with automeotive standards.

Keywords-Semantic Web; Automotive; Web of Things; WoT;
VSS; Ontology; LwM2M

I. INTRODUCTION

Current and future automotive innovations are based on
the interconnection of systems such as the vehicle, infras-
tructure back-ends and external data sources.

In current research [1], [2], [3], we experience that in-
terconnection of various vehicle-related systems, as well
as their growing autonomy requires a mean for them to
understand their surroundings and share this knowledge.
Vehicle produce massive amounts of data and there is room
for solutions based on Web Technologies. Many standards
are emerging to solve parts of this problem: GENIVI’s
Vehicle Signal Specification! defines paths and a vocabu-
lary for car signals, SOSA/SSN [4] defines ontologies for
Observations and Actuations, Sensors and Actuators, and the
Web of Things defines technology and protocol-independent
interactions with Web Things. All those standards enable
partly a semantic enrichment of dynamic automotive data.

By combining these standards, we want to enable access
and interaction to car signals, from the web, give the ac-
cessed data a meaning, make it reusable and allow semantic
web developers to integrate it. The car data we are interested
in is therefore the characteristics of a car and its signals.

Uhttps://github.com/GENIVI/vehicle_signal_specification

In this paper, we aim to answer the research question:
How should we best define car data and link it to external
knowledge through WoT interaction patterns?.

The remaining of this paper is organized as follows. In
Section II, we describe the ontological approaches to vehicle
data and WoT, in Section III, we describe the design of our
Vehicle Signal ontology based on GENIVI’s Vehicle Signal
Specification (VSS). In Section IV, we describe the pattern
for integrating our Vehicle Signal ontology with a WoT
ontology. Then in Section V we describe the Car Web Thing
prototype we developed for the W3C WoT F2F meeting
(Diisseldorf, 2017) with another contribution by defining a
new Protocol Binding with LWM2M. Finally in section VI,
we conclude with the future work.

II. BACKGROUND

A. Ontologies for dynamic signals

Already largely used on the web, especially by search
engines and the schema.org initiative, Semantic Technolo-
gies are more and more extended to physical devices in the
Internet of Things®> and automotive domain?.

A well-though combination of ontologies may enable
queries about complex driving contexts. It may include car
signals, location, time and external data as well as labels
tagging the driver, extracted from sensor data.

For instance in [5] we focus on two main use cases:
generate segments of trajectory annotated according to the
evolution of a given signal value, and a “smooth” driving
percentage label attached to a trajectory when longitudinal
and angular acceleration are bound.

This is made possible by combining a Vehicle Signal
ontology with SOSA/SSN[4] for Observation patterns and
STEP[6] for Semantic Trajectory annotation patterns.

SOSA/SSN defines terms related to signals, sensors, ac-
tuators, observations and actuations of systems. Its pattern
is a base for developing a domain signal ontology.

Zhttp://iot.schema.org
3http://auto.schema.org

sosa:FeatureOfinterest

sosa:0bservableProperty

22,2km/h**cdt:UCUM

rdf:type [
sosa:Result quay
Nupy,
qudt:unit 7P”flr’,}/{/u
a i

double

Figure 1. Overview of SOSA classes from an Observation point of view

For simplification, we consider that are two types of data
that can be linked to a vehicle*: static and dynamic. Static
data are the car’s Afttributes such as its model, number
of wheels, dimensions and embedded sensors. Dynamic
data are car Signals and depend both on time and space.
In addition, embedded sensors and actuators only produce
dynamic data if they exist in the static car description in a
list of known signals.

B. Web of Things

For interacting with heterogeneous systems following
different standards in the Internet of Things (IoT), we look at
the solution proposed by the Web of Things (WoT). Its goal
is to allow the discovery, sharing, composition and reuse of
connected physical devices in a web layer and, therefore,
counter the fragmentation of the IoT>.

The World Wide Web Consortium (W3C) has launched
the Web of Things Working Group® (WG) in 2016. Its goal
are to develop initial standards for the Web of Things, reduce
the costs of development, lessen the risks to both investors
and customers, and encourage exponential growth in the
market for IoT devices and services.

At the heart of WoT is the WoT servient[7]: an entity
consisting of a Web client, a Web server and device control
capabilities. It is essentially a virtual device which provides
access, controls and get statuses from physical IoT devices.

The W3C Web of Things WG presented a few use cases
of servients including one about a connected car’ as visible
in Figure 2, with WoT-based services running in the back-
end of the connected car. In this use case, after a discovery
phase of car components through a connection gateway, the
WoT servient collects data pushed from car components and
allows services to access car components through its WoT
interface. The collection and analysis is deployed to a fleet

of cars to determine traffic patterns.
4www.automotive-ontology.org
Shttps://webofthings.org/2016/01/23/wot-vs-iot- 12/
Ohttps://www.w3.org/WoT/WG/
7https://w3c.github.io/wot-architecture/#connected-car

Dl)

Gateway

Figure 2.
server

W3C Web of Things use case: a connected car with a cloud

This example shows the main benefit of WoT for the auto-
motive domain: it allows the decorrelation from automotive
standard for car data - and therefore allows developers who
are not automotive experts to use WoT interaction patterns
with vehicles as Web Things. It also enables the collection
and analysis of sensor data coming from vehicles of different
models and brands. We are using WoT in our research to
benefit from WoT interactions and be able to combine them
in a common web layer.

In the Thing Descriptions (TD) are attached anno-
tations about Things, capacities and interactions. The
WoT ontology [8] defines those terms. In this on-
tology, a wot:Thing implements a wot:Security,
defined as its security mechanism, and a number of
wot:InteractionPattern that can be subclassed
as wot:Property, wot:Action and wot:Event.
Their instances are the interactions associated with
a Thing, and are defined by a wot:Link and
wot :CommunicationProtocol to access the device,
and wot:DataSchema for their input/output. In addi-
tion to that wot:Property instances can have a property
wot : isMeasuredIn to define a om:Unit?.

III. VSSO MODELING

Some papers define ontologies for car sensors and con-
trols [1], [9], or for driving context[2], [3], [10], [11] or
even for ADAS[12]. They highlight the potential interest of
ontological representation of car data and driving context.
However, they lack an extensive representation of available
car signals, sensors and actuators. Only small sets of tenth
of signals are present in those ontologies and vocabularies.
This limits the possibilities of ontology-based interactions
with vehicle data.

This prevents people who are not domain experts from
developing applications based on data outside the limited
set of well-known signals that those papers define.

On another note, the W3C Automotive Working Group
develops Open Web Platform specifications for exposing

8http://www.wurvoc.org/vocabularies/om- 1.8/Unit_of_measure

wot:isReadable
Through

wot:provides
InteractionPattern

wot:hasOutputData
wot:hasinputData

om:Unit_of_measure

Figure 3.

wot:DataType

A set of WoT classes, as visible in a TD

vehicle signal information. One of them is the Vehicle
Information Service Specification’ (VISS): the “in-vehicle”
server responsible for exposing vehicle data in a manner
consistent with a given data model to enable client applica-
tions to get, set, subscribe and unsubscribe to vehicle signals
and data attributes. Its current data model is the Vehicle
Signal Specification (VSS) from GENIVI. The VSS is a
common naming space to decouple the vehicle electrical
network from its original representation to exchange data
with third parties. It contains an extensive set of vehicle parts
and signals, defined by a name, comment, unit and format.
In its current version, the VSS defines 43 car attributes, 451
branches and 1060 signals.

N

[Engine] [Body]

RP peed [Mirror][Door] [Weight]

[Left] [Right]

Dimmed

[[branch] ((attribute]]

Heated

Figure 4. GENIVI Vehicle Signal Specification structure

In order to represent Observations of car signals, we
adopt the SOSA/SSN'® W3C recommendation[4]. Its pattern
allows the extension with a domain ontology, which must
be extensive enough. Our idea is to generate an ontology

9https://www.w3.org/TR/vehicle-information-service/
10nttps://www.w3.org/TR/vocab-ssn/

based on the VSS according to the SOSA/SSN pattern of
sosa:0Observation, sosa:0ObservableProperty
and sosa:Sensor.

First, we complement the VSS by adding sensor entries
for signals that are produced by one. An equivalent task is
done for signals associated with actuators. The remaining
signals will become properties of a branch, or be linked to

the class vss:VirtualSensor. For instance:

e Signal.Drivetrain.Transmission.Speed
represent the speed sensed by the gearbox, and is
measured by a speedometer.

e Signal.Body.Mirrors.Left.Heating.Status
is the status of the actuator heater of the left mirror.

e Signal.OBD.FuelType is an attribute of the OBD
Branch, limited in the values it can have.

rdfs:subClassOf
sosa:Sensor

vss:Drivetrain
sosa:ObservableProperty
vss:ObservableSignal)

vss:Branch

vss:Transmission vss:Speed sosa:Result

=
=
=

3

Figure 5. Modeling pattern of VSSo from SOSA, from an Observation
of Speed point of view

We apply then the following pattern for creating triples.

vss:0bservableSignal is defined as
a subclass of sosa:0ObservableProperty
and vss:ActuableSignal a subclass of
sosa:ActuableProperty. All signals defined
in VSS are specific subclasses of them. They are
defined with restrictions on their sensor/actuator and
unit. All sensors are also subclasses of repectively
sosa:Sensor and sosa:Actuator. Thus the object
property sosa:isObservedBy defines the link between
a signal and its sensor. Likewise, there is the property
sosa:isActedBy between a signal and its actuator.

vss:Branch is defined as a component of the vehicle.
All branches in VSSo are subclasses of vss:Branch
and follow the tree structure of VSS branches using the
component property vss:partOf.

vss:attribute is defined as a datatype property. Its
range is a vss:Branch. All attributes from VSS are
then defined as subProperty of vss:attribute with
restrictions on their ranges with custom datatypes.

Because of the many exceptions, we cannot do an auto-
matic conversion of VSS into RDF triples. Here are some
modeling choices we made for consistency:

1) Punning: for instance Engine.Speed,
Drivetrain.Speed and Navigation.Speed
are different concepts: the first is a rotation speed,
the second and third observe the same phenomenon

sosa:Observation

qudt:unit
qudt:unit (wsmcuon) qudtUnit

but with different sensors. We define the classes
vss:RotationSpeed and vss:VehicleSpeed
for the 2 phenomenon.

2) Sensors, Actuators, both or none: some signals are
only readable, consumable or not attached to any
physical sensor/actuator. In the first two cases we
define subclasses of vss:0ObservableSignal or
vss:ActuableSignal, for the second case it is a
subclass of both. In the final case, we define a virtual
system to be compliant with SOSA.

3) position of branches: some branches contain an
indication about its position (e.g. "Left”, "Row1”’). We
remove all branches defining a position and define an
attribute vss : position on the concerned branches.

4) structure of branches: all branches should be
part of a branch representing the whole vehi-
cle vss:Vehicle. We define all branches as
vss:partOf it.

Listing 1 is an extract from the VSS ontology describ-
ing vss:TravelledDistance, a signal measured by a
vss:0dometer, with the unit unit :Kilometer.

Listing 1. VSSo sample: vss:VehicleSpeed signal definition in
vss: VehicleSpeed a rdfs:Class, owl:Class;
rdfs:subClassOf vss:ObservableSignal;
rdfs:label ”Speed”@en;
rdfs :comment
”Signal.Drivetrain. Transmission. VehicleSpeed .
Vehicle speed, as sensed by the gearbox.” @en;
rdfs :subClassOf [
a owl: Restriction ;
owl:onProperty sosa:isObservedBy;
owl:allValuesFrom vss:Speedometer.

a owl: Restriction ;
owl:onProperty qudt:unit;
owl:allValuesFrom qudt: KilometerPerHour.

IV. VSSO-WOT MODELING PATTERNS

Web Things are defined in their Thing Descriptions, which
are based on the WoT ontology [8]. They are usually
serialised in JSON-LD using the WoT ontology as main
context.

For instance a car, defined as a wot:Thing, has an
interaction to control a window. It is an instance of
wot :Action, that expects an input. It has another inter-
action to read its speed value. In this case, it is instantiated
as a wot :Property and expects a wot :DataSchema
output as well as a unit.

With VSSo, we apply the following matching
rules. All vss:0bservableSignal and
vss:ActuableSignal instances can be used
as wot:Property of a Car Thing, and all
vss:0ObservableSignal instances are not writable.
Likewise, all vss:ActuableSignal instances can

be used as wot:Action. We do not cover the case of
wot :Event in this research.

wot:Thing

rdfs:subClassOf

wot:provides
InteractionPattern

wotislWritable | vss:ActuableSignal wotisWritable

(restriction)

wot:hasOutputData

ol: haslnputData

qudt:unit wot:DataSchema

(restriction)
wot:isMeasuredin

Figure 6. Modeling pattern of VSSo with WoT. VSS in blue, WoT in
green, Units and literals in orange.

Listing 2. extracts from a TD representing a car and the wot:Property of
the vss:VehicleSpeed

”@context”: [

“https ://w3c. github.io/wot/w3c—wot—td—context.jsonld/”,
“https ://w3c. github .io/wot/w3c—wot—common—context.jsonld/”,

{”om”:” http ://www.wurvoc.org/vocabularies /om—1.8/"},
{”auto”: “https://auto.schema.org/” },

{”vss”: “http ://automotive .eurecom. fr/vsso#” }]
"@type”: [”Thing”,”vss: Vehicle”, "auto:Car”],
“name” : "BMW 7 Series”,

7auto:brand” : "BMW”,

“interaction” : [

3 9

"@type”: [”Property”,”vss: VehicleSpeed”],
”wot:isMeasuredIn”:”om: Speed_Unit”,

“name”: “speed”,
“outputData”™: { "type”: "float” },
”observable ”: true ,
“writable ”: false ,
”link ”:
t{
“href” : ”property/read/speed”,
"mediaType”: “application/json”
3

V. AUTOMOTIVE SEMANTIC WEB THING PROTOTYPE

In our prototyping, we have three challenges in regard to
vehicle data-based applications:

« Find the right degree of abstraction in form of a data

model for vehicle data and services,

o Transport the data to the cloud reliably, securely and

efficiently

« Ease the access to both, internal and external applica-

tions.

This demonstration establishes the benefits of using a
combination of ontologies and WoT patterns and was pre-
sented at the W3C WoT F2F meeting (Diisseldorf, 2017).

In this prototype, we demonstrate the feasibility of im-
plementation of a car as a WoT servient. The prototype
highlights the potential use of properties, actions and events
on a motionless vehicle based on doors/windows sensors and
actuators.

A. Architecture

As visible in Figure 7, the general architecture of the
prototype contains 6 main parts:

1) Car data access with the computing device, through
the OBD interface

2) Implementation of a LwM2M client on the computing
device and server in the cloud exchanging messages
over CoAP,

3) Protocol Binding: implementation of a mapping be-
tween LWM2M and WoT (Table 1)

4) Thing Description: retrieval and parsing of metadata

5) Scripting API: WoT endpoint

6) WoT client in a browser exchanging over HTTP with
the WoT server.

The vehicle is connected to a computing device through its
OBD dongle, which is then connected to the cloud via a LTE
connection. A CoAP!' (Constrained Application Protocol)
server is running on the latter, that can notice a client running
on the computing device and do GET/SET/SUBSCRIBE
calls. When a sensor value is required, the client sends an
OBD job to the vehicle to retrieve the raw information, then
enrich it with semantic annotations based on its TD, and
sends the enriched data to the server.

We use the device management protocol LwM2M!2
(LightweightM2M) specified at the Open Mobile Alliance'?
for exchanging data between the vehicle and our cloud.
LwM2M is designed for remote management of sensor
networks in machine-to-machine environments. It is built on
CoAP and features a RESTful architectural design, with an
extensible resource and data model.

A READ request can give information about a sensor
value at one moment. If the server subscribes to speed sensor
value, in fact the client will do regular READ request and
the server will access it in soft real-time.

A WRITE request can update a value for an actuator. In
this case, the WRITE request would also contain a parameter
value pushed to the vehicle.

A discovery and a Thing Description consumption phase
provides the remote servient a description of properties,
actions and events that can be called through LwM2M
equivalent operations on mapped objects. In this case, a
mapping between LwM2M and WoT operations, as well as
a definition of TD as LwM2M objects will be provided.

B. LwM2M binding (part 3 in Figure 7)

One possible implementation of LwM2M in java is the
open source project Leshan'®. Through Leshan and an addi-
tional implementation running in the vehicle, it is possible
to have read and write access to selected and published data

http://coap.technology/
2http://openmobilealliance.org/iot/lightweight-m2m-lwm2m
Bhttp://openmobilealliance.org
https://www.eclipse.org/leshan/

streams of the vehicle. To facilitate an easy integration of
other components and domains a separate high-level, but
proprietary API is implemented. An important aspect is to
work on the same data model throughout the stack. Table
1 presents the WoT interactions patterns mapped between
HTTP in the OEM cloud and LwM2M to reach the vehicle.

Our implementation demonstrates the usability of
LwMZ2M as protocol for WoT, and allows its usage. This is
especially relevant for applications with constrained devices.

WoT LwM2M Input

Interaction | Method Method P
Property Regd Ree}d Property gbject

Write Write Property instance, parameter
Action Invoke Exgcule] Act@on gbject

Update/cancel task Write on instance | Action instance, parameters
Event Subscribe _ Ob§erve] Event pbject

Update/Cancel subscription | Write on instance | Event instance, parameter

Table 1
WOT BINDING OF LWM2M WITH HTTP

C. Implementation notes

In our implementation, we used a Rasperry Pi as a
computing device, connected to the OBD interface.

In this demonstration, we implement the following inter-
actions:

« Properties Speed, passenger door lock,

« Actions passenger doors lock and unlock, honk

« Event speed value: built as a subscription to a property

speed.

VI. CONCLUSION AND FUTURE WORK

From the experience carried out, and the feedback given
at the W3C WoT F2F meeting (Diisseldorf, 2017), we see
a number of improvement to the system.

Security and authorization: The automotive domain
requires well-thought and secure authorization means. We
did not focus on this aspect in this demonstration and this
is the next requirement before being compliant with the
automotive industry requirements. An existing initiative is
being carried out by the W3C Automotive Working Group,
which released a W3C Candidate Recommendation for Vehi-
cle Information Service Specification [13] in February 2018.
A the W3C WoT WG is experimenting different security and
authentication mechanisms, it is going to be a future step for
our work to make a connection between those 2 works.

Ontology Design Pattern for Web Things: We manually
extended the TD with semantic metadata about the car.
We use auto.schema.org for defining the car and the vss
ontology for signals. We now want to generalize it for all
potential signals present in the VSS, and map interactions
with iot.schema.org. This will make semantic integration
easier based on the common schema, and include domain
description about vehicles, capacities, signals sensors and
actuators.

OEM Cloud

WoT client
? chrome

HTTH

®

\S

Ontologies WoT &VSSo

Figure 7.
scheme of the WoT servient architecture.

Automatic generation of WoT TD: Thing Descriptions
are being currently hard-coded as the specification is in a
working draft. However, for the case of a car, a complete
TD would contain thousands of interactions and there is a
need for automatic generation of them. A future step will
be to translate a rdf-based representation of a car signals,
sensors and actuators into a TD with WoT interactions.

Use with cache and WoT Events: Another potential
improvement for our prototype would consist in including
complex event properties, using records of timed events. A
use case could be to do signal analysis on a sliding window
like in [5]. This would enable more complex applications
based on WoT interactions and ultimately, WoT-based en-
richment of car data.

Use with a context ontology: A final future step will
consist in using a driving context ontology for representing
abstracted information. This context could be again access
through WoT interactions and allow the access and reuse of
abstracted data directly from a car’s back-end as a Semantic
Web Thing.

REFERENCES

[1] L. Zhao, R. Ichise, S. Mita, and Y. Sasaki, “Core Ontologies
for Safe Autonomous Driving,” in 14" International Seman-
tic Web Conference, Posters and Demos Track (ISWC), 2015.

[2] A. Armand, D. Filliat, and J. Ibaez-Guzman, “Ontology-based
context awareness for driving assistance systems,” in /EEE
Intelligent Vehicles Symposium Proceedings, 2014, pp. 227—
233.

[3] M. Madkour and A. Maach, “Ontology-based context mod-
eling for vehicle context-aware services,” vol. 31, 2011.

[4] K. Janowicz, S. Cox, K. Taylor, D. L. Phuoc,
M. Lefrancois, and A. Haller, “Semantic sensor network
ontology,” W3C, W3C Recommendation, Oct. 2017,
https://www.w3.0org/TR/2017/REC-vocab-ssn-20171019/.

[5] B. Klotz, R. Troncy, D. Wilms, and C. Bonnet, “ Generating
Semantic Trajectories Using a Car Signal Ontology,” April
2018, to appear.

[6] T. Paiva Nogueira, “A Framework for Automatic Annota-
tion of Semantic Trajectories,” Ph.D. dissertation, Université
Grenoble Alpes, 2017.

(71

(8]

9]

[10]

[11]

[12]

[13]

Prototype architecture: a WoT servient runs in the OEM clouds and interacts with a WoT client in a browser. Box colors match the color

K. Kajimoto, R. Matsukura, J. Hund, M. Ko-
vatsch, and K. Nimura, “Web of things (wot)
architecture,” W3C, W3C Unofficial Draft, Feb.
2018, https://w3c.github.io/wotwg/architecture/wot-

architecture.html.

V. Charpenay, S. Kibisch, and H. Kosch, “Introducing Thing
Descriptions and Interactions: An Ontology for the Web of
Things.”

M. Feld and C. Miiller, “The Automotive Ontology: Man-
aging Knowledge Inside the Vehicle and Sharing it Between
Cars,” in 3" International Conference on Automotive User
Interfaces and Interactive Vehicular Applications, Salzburg,
Austria, 2011, pp. 79-86.

Z. Xiong, V. V. Dixit, and S. T. Waller, “The development of
an Ontology for driving Context Modelling and reasoning,”
in IEEE 19th International Conference on Intelligent Trans-
portation Systems (ITSC), 2016, pp. 13-18.

S. Fuchs, S. Rass, and K. Kyamakya, “Integration
of Ontological Scene Representation and Logic-Based
Reasoning for Context-Aware Driver Assistance Systems,”
ECEASST, vol. 11, 2008. [Online]. Available: http:
/fjournal.ub.tu-berlin.de/index.php/eceasst/article/view/127

S. Kannan, A. Thangavelu, and R. Kalivaradhan, “An in-
telligent driver assistance system (i-das) for vehicle safety
modelling using ontology approach,” International Journal
Of UbiComp (1JU), vol. 1, no. 3, July 2010.

P. Kinney, A. Crofts, W. Lee, and K. Gavigan, “Vehicle infor-
mation service specification,” W3C, Candidate Recommen-
dation, Feb. 2018, https://www.w3.0org/TR/2018/CR-vehicle-
information-service-20180213/.

