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Abstract

This paper studies the problem of deriving fast and accurate classification algo-
rithms with uncertainty quantification. Gaussian process classification provides a
principled approach, but the corresponding computational burden is hardly sustain-
able in large-scale problems and devising efficient alternatives is a challenge. In
this work, we investigate if and how Gaussian process regression directly applied
to classification labels can be used to tackle this question. While in this case
training is remarkably faster, predictions need to be calibrated for classification
and uncertainty estimation. To this aim, we propose a novel regression approach
where the labels are obtained through the interpretation of classification labels
as the coefficients of a degenerate Dirichlet distribution. Extensive experimental
results show that the proposed approach provides essentially the same accuracy
and uncertainty quantification as Gaussian process classification while requiring
only a fraction of computational resources.

1 Introduction

Classification is a classic machine learning task. While the most basic performance measure is
classification accuracy, in practice assigning a calibrated confidence to the predictions is often crucial
[5]. For example in image classification, providing class predictions with a calibrated score is
important to avoid making over-confident decisions [6, 12, 15]. Several classification algorithms that
output a continuous score are not necessarily calibrated (e.g., support vector machines (SVMs) [24]).
Popular ways to calibrate classifiers use a validation set to learn a transformation of their output score
that recovers calibration; these include Platt scaling [24] and isotonic regression [39]. Calibration can
also be achieved if a sensible loss function is employed [13], for example the logistic/cross-entropy
loss, and it is known to be positively impacted if the classifier is well regularized [6].

Bayesian approaches provide a natural framework to tackle these kinds of questions, since quantifi-
cation of uncertainty is of primary interest. In particular, Gaussian Processes Classification (GPC)

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



[8, 25, 36] combines the flexibility of Gaussian Processes (GPs) [25] and the regularization stem-
ming from their probabilistic nature, with the use of the correct likelihood for classification, that is
Bernoulli or multinomial for binary or multi-class classication, respectively. While we are not aware
of empirical studies on the calibration properties of GPC, our results confirm the intuition that GPC is
actually calibrated. The most severe drawback of GPC, however, is its computational burden, making
it unattractive for large-scale problems.

In this paper, we study the question of whether GPs can be made efficient to find accurate and
well-calibrated classification rules. A simple idea is to use GP regression directly on classification
labels. This idea is quite common in non-probabilistic approaches [27, 34] and can be grounded from
a decision theoretic point of view. Indeed, the Bayes’ rule minimizing the expected least-squares
is the expected conditional probability, which in classification is directly related to the conditional
probabilities of each class (see e.g. [3, 31]). Performing regression directly on the labels leads to fast
training and excellent classification accuracies [11, 17, 29]. However, the corresponding predictions
are not calibrated for uncertainty quantification. The question is then if calibration can be achieved
while retaining speed.

The main contribution of our work is the proposal of a transformation of the classification labels,
which turns the original problem into a regression problem without compromising on calibration. For
GPs, this has the enormous advantage of bypassing the need for expensive posterior approximations,
leading to a method that is as fast as a simple regression carried out on the original labels. The
proposed method is based on the interpretation of the labels as the output of a Dirichlet distribution,
so we name it Dirichlet-based GP classification (GPD). Through an extensive experimental validation,
including large-scale classification tasks, we demonstrate that GPD is calibrated and competitive in
performance with state-of-the-art GPC.

2 Related work

Calibration of classifiers: Platt scaling [24] is a popular method to calibrate the output score of
classifiers, as well as isotonic regression [39]. More recently, Beta calibration [13] and temperature
scaling [6] have been proposed to extend the class of possible transformations and reduce the
parameterization of the transformation, respectively. It is established that binary classifiers are
calibrated when they employ the logistic loss; this is a direct consequence of the fact that the
appropriate model for Bernoulli distributed variables is the one associated with this loss [13]. The
extension to multi-class problems yields the so-called cross-entropy loss, which corresponds to the
multinomial likelihood. Not necessarily, however, the right loss makes classifiers well calibrated;
recent works on calibration of convolutional neural networks for image classification show that depth
negatively impacts calibration due to the introduction of a large number of parameters to optimize,
and that regularization is important to recover calibration [6].

Kernel-based classification: Performing regression on classification labels is also known as least-
squares classification [27, 34]. We are not aware of works that study GP-based least-squares clas-
sification in depth; we could only find a few comments on it in [25] (Sec. 6.5). GPC is usually
approached assuming a latent process, which is given a GP prior, that is transformed into a probability
of class labels through a suitable squashing function [25]. Due to the non-conjugacy between the
GP prior and the non-Gaussian likelihood, applying standard Bayesian inference techniques in GPC
leads to analytical intractabilities, and it is necessary to resort to approximations. Standard ways to
approximate computations include the Laplace Approximation [36] and Expectation Propagation
(EP, [19]); see, e.g., [16, 21] for a detailed review of these methods. More recently, there have been
advancements in works that extend “sparse” GP approximations [35] to classification [9] in order to
deal with the issues of scalability with the number of observations through the use of mini-batch-based
optimization.

3 Background

Consider a multi-class classification problem. Given a set of N training inputs X = {x1, . . . ,xN}
and their corresponding labels Y = {y1, . . . ,yN}, with one-hot encoded classes denoted by the
vectors yi, a classifier produces a predicted label f(x∗) as function of any new input x∗.
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In the literature, calibration is assessed through the Expected Calibration Error (ECE) [6], which is
the average of the absolute difference between accuracy and confidence:

ECE =

M∑
m=1

|Xm|
|X∗|

|acc(f(Xm), Ym)− conf(f , Xm)| , (1)

where the test set X∗ is divided into disjoint subsets {X1, . . . , XM}, each corresponding to a
given level of confidence conf(f , Xm) predicted by the classifier f , while acc(f(Xm), Ym) is the
classification accuracy of f measured on the m-th subset. Other metrics used in this work to
characterize the quality of a classifier are the error rate on the test set, and the mean negative
log-likelihood (MNLL) of the test set under the classification model:

MNLL = − 1

|X∗|
∑

x∗,y∗∈X∗,Y∗

log p(y∗ | X,Y,x∗) (2)

All metrics are defined so that lower values are better.

3.1 Kernel methods for classification

GP classification (GPC) GP-based classification is defined by the following abstract steps:

1. A GP prior, which is characterized by mean function µ(x) and covariance function k(x,x′),
is placed over a latent function f(x). The GP prior is transformed by a sigmoid function so
that the sample functions produce proper probability values. In the multi-class case, we con-
sider C independent priors over the vector of functions f = [f1, . . . , fC ]>; transformation
to proper probabilities is achieved by applying the softmax function σ(f) 1.

2. The observed labels y are associated with a categorical likelihood with probability compo-
nents p(yc | f) = σ(f(x))c, for any c ∈ {1, . . . , C}.

3. The latent posterior is obtained by means of Bayes’ theorem.
4. The latent posterior is transformed via σ(f), to obtain a distribution over class probabilities.

Throughout this work, we consider µ(x) = 0 and covariance k(x,x′) = a2 exp
(
− (x−x′)2

2l2

)
, which

is also known as the RBF kernel, and it is characterized by the a2 and l hyper-parameters, interpreted
as the GP marginal variance and length-scale, respectively. The hyper-parameters are commonly
selected my maximizing the marginal likelihood of the model.

The major computational challenge of GPC can be identified in Step 3 described above. The categorical
likelihood implies that the posterior over the stochastic process is not Gaussian and it cannot be
calculated analytically. Therefore, different approaches resort to different approximations of the
posterior, for which we have p(f | X,Y ) ∝ p(f | X) p(y | f). For example in EP [19], local
likelihoods are approximated by Gaussian terms so that the posterior has the following form:

p(f | X,Y ) ≈ q(f | X,Y ) ∝ p(f | X)N (µ̃, Σ̃) (3)

where µ̃ and Σ̃ are determined by the site parameters learned through an iterative process. In varia-
tional classification approaches [9, 23], the approximating distribution q(f) is directly parametrized
by a set of variational parameters. Despite being successful, such approaches contribute significantly
to the computational cost of GP classification, as they introduce a large number of parameters that
need to be optimized. In this work, we explore a more straightforward Gaussian approximation to the
likelihood that requires no significant computational overhead.

GP regression (GPR) on classification labels A simple way to bypass the problem induced by
categorical likelihoods is to perform least-squares regression on the labels by ignoring their discrete
nature. This implies considering a Gaussian likelihood p(y | f) = N (f , σ2

nI), where σ2
n is the

observation noise variance. It is well-known that if the observed labels are 0 and 1, then the function
f that minimizes the mean squared error converges to the true class probabilities in the limit of
infinite data [26]. Nevertheless, by not squashing f through a softmax function, we can no longer
guarantee that the resulting distribution of functions will lie within 0 and 1. For this reason, additional
calibration steps are required (i.e. Platt scaling).

1Softmax function σ(f) s.t. σ(f)j = exp(fj)/
∑C

c=1 exp(fc) for j = 1, ...C
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Figure 1: Convergence of classifiers with different loss functions and regularization properties. Left:
summary of the mean squared error (MSE) from the true function fp for 1000 randomly sampled
training sets of different size; the Bayesian CE-based classifier is characterized by smaller variance
even when the number of training inputs is small. Right: demonstration of how the averaged classifiers
approximate the true function for different training sizes.

Kernel Ridge Regression (KRR) for classification The idea of performing regression directly on
the labels is quite common when GP estimators are applied within a frequentist context [27]. Here
they are typically derived from a non-probabilistic perspective based on empirical risk minimization,
and the corresponding approach is dubbed Kernel Ridge Regression [7]. Taking this perspective,
we make two observations. The first is that the noise and covariance parameters are viewed as
regularization parameters that need to be tuned, typically by cross-validation. In our experiments,
we compare this method with a canonical GPR approach. The second observation is that carrying
out regression on the labels with least-squares can be justified from a decision-theoretic point of
view. The Bayes’ rule minimizing the expected least-squares is the regression function (the expected
conditional probability), which in binary classification is proportional to the conditional probability
of one of the two classes [3] (similar reasoning applies to multi-class classification [2, 20]). From this
perspective, one could expect a least-squares estimator to be self-calibrated, however this is typically
not the case in practice, a feature imputed to the limited number of points and the choice of function
models. Post-hoc calibration has to be applied to both GPR- and KRR-based learning pipelines.

Platt scaling Platt scaling [24] is an effective approach to perform post-hoc calibration for different
types of classifiers, such as SVMs [22] and neural networks [6]. Given a decision function f , which is
the result of a trained binary classifier, the class probabilities are given by the sigmoid transformation
π(x) = σ(af(x)+ b), where a and b are optimised over a separate validation set, so that the resulting
model best explains the data. Although this parametric form may seem restrictive, Platt scaling has
been shown to be effective for a wide range of classifiers [22].

3.2 A note on calibration properties

We advocate that two components are critical for well-calibrated classifiers: regularization and the
cross-entropy loss. Previous work indicates that regularization has a positive effect on calibration [6].
Also, classifiers that rely on the cross-entropy loss are reported to be well-calibrated [22]. This form
of loss function is equivalent to the negative Bernoulli log-likelihood (or categorical in the multi-class
case), which is the proper interpretation of classification outcomes.

In Figure 1, we demonstrate the effects of regularization and cross-entropy empirically: we summarize
classification results on four synthetic datasets of increasing size. We assume that each class label is
sampled from a Bernoulli distribution with probability given by the unknown function fp : R→ [0, 1].
For a classifier to be well-calibrated, it is sufficient that it accurately approximates fp. We fit three
kinds of classifiers: a maximum likelihood (ML) classifier that relies on cross entropy loss (CE), a
Bayesian classifier with MSE loss (i.e. GPR classification), and finally a Bayesian classifier that relies
on CE (i.e. GPC). We report the averages over 1000 iterations and the average standard deviations.
The Bayesian classifiers that rely on the cross entropy loss converge to the true solution at a faster
rate, and they are characterized by smaller variance.

Although performing GPR on the labels induces regularization through the prior, the likelihood model
is not appropriate. One possible solution is to employ meticulous likelihood approximations such as
EP or variational GP classification [9], alas at an often prohibitive computational cost, especially for
considerably large datasets. In the section that follows, we introduce a methodology that combines
the best of both worlds. We propose to perform GP regression on labels transformed in such a way
that a less crude approximation of the categorical likelihood is achieved.
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4 GP regression on transformed Dirichlet variables

There is an obvious defect in GP-based least-squares classification: each point is associated with a
Gaussian likelihood, which is not the appropriate noise model for Bernoulli-distributed variables.
Instead of approximating the true non-Gaussian likelihood, we propose to transform the labels in a
latent space where a Gaussian approximation to the likelihood is more sensible.

For a given input, the goal of a Bayesian classifier is to estimate the distribution over its class
probability vector; such a distribution is naturally represented by a Dirichlet-distributed random
variable. More formally, in a C-class classification problem each observation y is a sample from a
categorical distribution Cat(π). The objective is to infer the class probabilities π = [π1, . . . , πC ]>,
for which we use a Dirichlet model: π ∼ Dir(α). In order to fully describe the distribution of
class probabilities, we have to estimate the concentration parameters α = [α1, . . . , αC ]>. Given
an observation y such that yk = 1, our best guess for the values of α will be: αk = 1 + αε and
αi = αε,∀i 6= k. Note that it is necessary to add a small quantity 0 < αε � 1, so as to have valid
parameters for the Dirichlet distribution. Intuitively, we implicitly induce a Dirichlet prior so that
before observing a data point we have the probability mass shared equally across C classes; we know
that we should observe exactly one count for a particular class, but we do not know which one. Most
of the mass is concentrated on the corresponding class when y is observed. This practice can be
thought of as the categorical/Bernoulli analogue of the noisy observations in GP regression. The
likelihood model is:

p(y | α) = Cat(π), where π ∼ Dir(α). (4)
It is well-known that a Dirichlet sample can be generated by sampling from C independent Gamma-
distributed random variables with shape parameters αi and rate λ = 1; realizations of the class
probabilities can be generated as follows:

πi =
xi∑C
c=1 xc

, where xi ∼ Gamma(αi, 1) (5)

Therefore, the noisy Dirichlet likelihood assumed for each observation translates to C independent
Gamma likelihoods with shape parameters either αi = 1 + αε, if yi = 1, or αi = αε otherwise.

In order to construct a Gaussian likelihood in the log-space, we approximate each Gamma-distributed
xi with x̃i ∼ Lognormal(ỹi, σ̃

2
i ) through moment matching (mean and variance):

E[xi] = E[x̃i]⇔ αi = exp(ỹi + σ̃2
i /2)

Var[xi] = Var[x̃i]⇔ αi =
(
exp(σ̃2

i )− 1
)

exp(2ỹi + σ̃2
i )

Thus, for the parameters of the normally distributed logarithm we have:

ỹi = logαi − σ̃2
i /2, σ̃2

i = log(1/αi + 1) (6)

Note that this is the first approximation to the likelihood that we have employed so far. One could
argue that a log-Normal approximation to a Gamma-distributed variable is reasonable, although it is
not accurate for small values of the shape parameter αi. However, the most important implication
is that we can now consider a Gaussian likelihood in the log-space. Assuming a vector of latent
processes f = [f1, . . . , fC ]>, we have:

p(ỹi | f) = N (fi, σ̃
2
i ), (7)

where class labels in the transformed logarithmic space are now denoted by ỹi. We note that each
observation is associated with a different noise parameter σ̃2

i , yielding a heteroskedastic regression
model. In fact, the σ̃2

i values (as well as ỹi) solely depend on the Dirichlet pseudo-count assumed in the
prior, which has only two possible values. Given this likelihood approximation, it is straightforward to
place a GP prior over f and evaluate the posterior over the C latent processes exactly. The multivariate
GP prior does not assume any prior covariance across classes, meaning that they are assumed to be
independent a priori. It is possible to make kernel parameters independent across processes, or shared
so that they are informed by all classes.

Remark: In the binary classification case, we still have to perform regression on two latent processes.
The use of heteroskedastic noise model implies that one latent process is not a mirrored version of
the other (see Figure 2), contrary to GPC.
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Figure 2: Example of Dirichlet regression for a one-dimensional binary classification problem. Left:
the latent GP posterior for class “0” (top) and class “1” (bottom). Right: the transformed posterior
through softmax for class “0” (top) and class “1” (bottom).

4.1 From GP posterior to Dirichlet variables

The obtained GP posterior emulates the logarithm of a stochastic process with Gamma marginals
that gives rise to the Dirichlet posterior over class labels. It is straightforward to sample from the
posterior log-Normal marginals, which should behave approximately as Gamma-distributed samples
to generate posterior Dirichlet samples as in Equation (5), which corresponds to a simple application
of the softmax function on the samples from the GP posterior. The expectation of class probabilities
is:

E[πi,∗ | X,Y,x∗] =

∫
exp(fi,∗)∑
j exp(fj,∗)

p(fi,∗ | X,Y,x∗) df∗ , (8)

which can be approximated by sampling from the Gaussian posterior p(fi,∗ | X,Y,x∗).

Figure 2 shows an example of Dirichlet regression for a one-dimensional binary classification problem.
The left panels demonstrate how the GP posterior approximates the transformed data; the error bars
represent the standard deviation for each data-point. Notice that the posterior for class “0” (top)
is not a mirror image of class “1” (bottom), because of the different noise terms assumed for each
latent process. The right panels show results in the original output space, after applying softmax
transformation; as expected in the binary case, one posterior process is a mirror image of the other.

4.2 Optimizing the Dirichlet prior αε

The performance of Dirichlet-based classification is affected by the choice of αε, in addition to the
usual GP hyper-parameters. As αε approaches zero, αi converges to either 1 or 0. It is easy to see
that for the transformed “1” labels we have σ̃2

i = log(2) and ỹi = log(1/
√

2) in the limit. The
transformed “0” labels, however, converge to infinity, and so do their variances. The role of αε is to
make the transformed labels finite, so that it is possible to perform regression. The smaller αε is, the
further the transformed labels will be apart, but at the same time, the variance for the “0” label will
be larger.

By increasing αε, the transformed labels of different classes tend to be closer. The marginal log-
likelihood tends to be larger, as it is easier for a zero-mean GP prior to fit the data. However,
this behavior is not desirable for classification purposes. For this reason, the Gaussian marginal
log-likelihood in the transformed space is not appropriate to determine the optimal value for αε.

Figure 3 demonstrates the effect of αε on classification accuracy, as reflected by the MNLL metric.
Each subfigure corresponds to a different dataset; MNLL is reported for different choices of αε
between 0.1 and 0.001. As a general remark, it appears that there is no globally optimal αε parameter
across datasets. However, the reported training and test MNLL curves appear to be in agreement
regarding the optimal choice for αε. We therefore propose to select the αε value that minimizes the
MNLL on the training data.

5 Experiments

We experimentally evaluate the methodologies discussed on the datasets outlined in Table 1. For
the implementation of GP-based models, we use and extend the algorithms available in the GPflow
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Figure 3: Exploration of αε for 4 different datasets with respect to the MNLL metric.

Table 1: Datasets used for evaluation, available from the UCI repository [1].
Dataset Classes Training instances Test instances Dimensionality Inducing points

EEG 2 10980 4000 14 200
HTRU2 2 12898 5000 8 200
MAGIC 2 14020 5000 10 200
MINIBOO 2 120064 10000 50 400
COVERBIN 2 522910 58102 54 500
SUSY 2 4000000 1000000 18 200
LETTER 26 15000 5000 16 200
DRIVE 11 48509 10000 48 500
MOCAP 5 68095 10000 37 500

library [18]. More specifically, for GPC we make use of variational sparse GP [8], while for GPR we
employ sparse variational GP regression [35]. The latter is also the basis for our GPD implementation:
we apply adjustments so that heteroskedastic noise is admitted, as dictated by the Dirichlet mapping.
Concerning KRR, in order to scale it up to large-scale problems we use a subsampling-based variant
named Nyström KRR (NKRR) [33, 37]. Nyström-based approaches have been shown to achieve
state-of-the-art accuracy on large-scale learning problems [4, 14, 28, 30, 32]. The number of inducing
(subsampled) points used for each dataset is reported in Table 1.

The experiments have been repeated for 10 random training/test splits. For each iteration, inducing
points are chosen by applying k-means clustering on the training inputs. Exceptions are COVERBIN
and SUSY, for which we used 5 splits and inducing points chosen uniformly at random. For GPR we
further split each training dataset: 80% of which is used to train the model and the remaining 20% is
used for calibration with Platt scaling. NKRR uses an 80-20% split for k-fold cross-validation and
Platt scaling calibration, respectively. For each of the datasets, the αε parameter of GPD was selected
according to the training MNLL: we have 0.1 for COVERBIN, 0.001 for LETTER, DRIVE and MOCAP,
and 0.01 for the remaining datasets.

In all experiments, we consider an isotropic RBF kernel; the kernel hyper-parameters are selected by
maximizing the marginal likelihood for the GP-based approaches, and by k-fold cross validation for
NKRR (with k = 10 for all datasets except from SUSY, for which k = 5). In the case of GPD, kernel
parameters are shared across classes so they are informed by all classes. In the case of GPR, we also
optimize the noise variance jointly with all kernel parameters.

The performance of GPD, GPC, GPR and NKRR is compared in terms of various error metrics, including
error rate, MNLL and ECE for a collection of datasets. The obtained error rate, MNLL and ECE values
are summarized in Figure 4. The GPC method tends to outperform GPR in most cases. Regarding the
GPD approach, its performance tends to lie between GPC and GPR; in some instances classification
performance is better than GPC and NKRR. Most importantly, this performance is obtained at a
fraction of the computational time required by the GPC method. Figure 5 summarizes the speed-
up achieved during hyper-parameter optimization by GPD in comparison with the variational GP
classification approach. In the context of sparse variational regression, these computational gains
are a consequence of closed-form results for the optimal variational distribution [35], which are not
available for non-Gaussian likelihoods. We note that hyper-parameter and variational optimization
have been performed using the ScipyOptimizer class of GPflow, which applies early stopping if
convergence is detected. Convergence for GPD is faster simply because optimization involves fewer
parameters. A more detailed exposition can be found in the supplementary material.
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Figure 5: Left: Speed-up obtained by using GPD as opposed to GPC. Right: Error vs training time for
GPD as the number of inducing points is increased for three datasets. The dashed line represents the
error obtained by GPC using the same number of inducing points as the fastest GPD listed.

This dramatic difference in computational efficiency has some interesting implications regarding
the applicability of GP-based classification methods on large datasets. GP-based machine learning
approaches are known to be computationally expensive; their practical application on large datasets
demands the use of scalable methods to perform approximate inference. The approximation quality
of sparse approaches depends on the number (and the selection) of inducing points. In the case of
classification, the speed-up obtained by GPD implies that the saved computational budget can be spent
on a more fine-grained sparse GP approximation. In Figure 5, we explore the effect of increasing
the number of inducing points Nu for three datasets: LETTER with Nu ∈ {500, 800, 1000, 1600},
MINIBOO with Nu ∈ {400, 500, 600, 800} and MOCAP with Nu ∈ {500, 800, 1000, 1600}. Regard-
ing GPC, we fix the computational budget to the smallest Nu in each case. We see that the error rate
for GPD drops significantly as the budget is increased; however, the latter remains a fraction of the
original GPC computational effort.

Finally, we acknowledge that the computational cost of variational GPC can be reduced by means
of mini-batches-based training [8, 10, 38]. In the supplementary material, we perform a detailed
comparison between GPD and variational GPC with mini-batches [8]. The efficiency of GPC with
a carefully selected mini-batch size is significantly improved, although stochastic optimization is
characterized by slower convergence compared to full-batch-based optimization. As a result, GPD
convergence remains faster for most datasets. This advantage becomes more obvious in scenarios
where hyper-parameters are either known or reused, since no optimization step is required for a
regression-based method.
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6 Conclusions

Most GP-based approaches to classification in the literature are characterized by a meticulous
approximation of the likelihood. In this work, we experimentally show that such GP classifiers
tend to be well-calibrated, meaning that they correctly estimate classification uncertainty, as this is
expressed through class probabilities. Despite this desirable property, their applicability is limited to
small/moderate size of datasets, due to the high computational complexity of approximating the true
posterior distribution.

Least-squares classification, which may be implemented either as GPR or KRR, is an established
practice for more scalable classification. However, the crude approximation of a non-Gaussian
likelihood with a Gaussian one has a negative impact on classification quality, especially as this is
reflected by the calibration properties of the classifier.

Considering the strengths and practical limitations of GPs, we proposed a classification approach that
is essentially an heteroskedastic GP regression on a latent space induced by a transformation of the
labels, which are viewed as Dirichlet-distributed random variables. This allowed us to convert C-class
classification to a problem of regression involving C latent processes with Gamma likelihoods. We
then proposed to approximate the Gamma-distributed variables with log-Normal ones, and thus we
achieved a sensible Gaussian approximation in the logarithmic space. Crucially, this can be seen as a
pre-processing step, that does not have to be learned, unlike in GPC, where an accurate transformation
is sought iteratively. Our experimental analysis shows that Dirichlet-based GP classification produces
well-calibrated classifiers without the need for post-hoc calibration steps. The performance of our
approach in terms of classification accuracy tends to lie between properly-approximated GPC and
least-squares classification, but most importantly it is orders of magnitude faster than GPC.

As a final remark, we note that the predictive distribution of the GPD approach is different from that
obtained by GPC, as can be seen in the extended results in the supplementary material. An extended
characterization of the predictive distribution for GPD is subject of future work.
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