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« Quadcopter UAV acts as a relay between users Learning / DO P
and a stationary transmitter \d =argmax E[2 R(t)]/ S ‘s
- Useful for dynamic network deployment and r@ _JJ

fast response to varying demand, e.g. to
sustain communications ability in disaster

situations
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« System performance mainly depends on UAV

trajectory R
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Trajectory planning must optimize link quality -

while observing constraint on flying time!

System Model

Transmitter

« UAV position with constant altitude and
constant velocity V', flying time T
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« Orthogonal point-to-point channel with

information rate for k-th user

b ) - Modelled as finite MDP (S, 4, P, R, )
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= Q" (s¢, az) is updated after carrying out
action a; and receiving reward r; for it
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= Discount factor v € |0, 1) balances
short-term/ long-term reward

= Policy « Learning rate « € [0, 1] controls to what

extend old information is overridden
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> Maximization problem over K users:
« Q-Learning finds an optimal policy for any

finite MDP

Optimal policy 7*(als) = argmax, Q™ (s, a)

W Jse Reinforcement Learning to learn optimal

strategy
Application of Q-Learning to Path Planning
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= State variables: (z,vy,t)
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= 2o = x5 and Yo = Yy
« Maximum flying time 1" = 50
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« 15 X 15 grid, two users and one 2 X 4 obstacle
causing shadowing
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« Policy: e-greedy with € exponentially

d , A d 105 Figure: Cumulative average rate over episode
ecreasing with decay constant 10~

« Negative reward for stepping out of the 15x15 References
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« Consideration of relaying function

= Random fading and complex topolo 3]
»Agent finds maximum cumulative rate point 5 P pology

= Large state and action spaces
"> Minimum shadowing trajectory is learned > P

"> Agent learns to return autonomously



