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Abstract—Optimal linear transmitter beamformers in multi-
antenna multi-user systems are of the Minimum Mean Squared
Error (MMSE) type (dual uplink MMSE receivers). MMSE
designs make an optimal compromise between noise enhancement
and interference suppression and reduce to matched filters
at low SNR and zero-forcing at high SNR. We consider a
realistic scenario of user channels of varying attenuation and
constrain the beamformers to either zero-force or ignore each
interference term. This leads to a reduced-order zero-forcing
(RO-ZF) design in which the number of interference sources
being zero-forced increases with SNR. We apply a simple large
systems analysis (applicable to Massive MIMO) to determine
the asymptotic performance of RO-ZF designs, determine the
optimal ZF orders, and compare to optimal and ZF linear
and Dirty Paper Coding (DPC) designs. RO-ZF designs lead
to variable reductions of computational complexity and channel
state information (CSI) requirements (esp. in future multi-cell
extensions), both important considerations in Massive MIMO
systems.

Keywords— Zero-forcing beamforming (ZF BF), massive
MIMO, Dirty Paper Coding (DPC), large system analysis,
complexity reduction.

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/ transmis-
sion and Rx may denote receive/receiver/reception. Massive
MIMO [1] which utilizes large number of antennas at the base
station (BS) offers immense possibilities for increased system
capacity. Multi-user MIMO (MU-MIMO) systems requires the
global knowledge of the CSI at the Tx (CSIT) which is more
difficult to acquire than CSI at the Rx. However, this leads to
increased computational complexity owing to the large number
of antennas. Recently, a number of research works have
proposed to exploit the channel hardening in Massive MIMO
(MaMIMO) to reduce global instantaneous CSIT requirements
to local instantaneous CSIT plus global statistical CSIT [2].
Channel hardening occurs when the number of antennas at the
BS are very high such that a fading channel behaves as if the
effect of the randomness in the channel to spectral efficiency
will be negligible. Extensive work on BF designs for BC
(broadcast channel) or IBC (Interfering BC) with perfect or
partial CSIT can be found in [3]–[7].

A significant contribution for large system analysis in
MaMIMO systems appeared in [8]. It allows to compute deter-
ministic (instead of fast fading channel dependent) expressions
for various scalar quantities, facilitating the analysis and

design of wireless systems. E.g. it may allow to conduct the
performance analysis without computing explicit beamform-
ers. Through large system analysis, [8] compute the optimal
regularization factor in Regularized ZF (R-ZF) BF, both with
perfect and partial CSIT. A little known extension appeared
in [9] for weighted Sum MSE (WSMSE) based optimal
beamformers, but only for the perfect CSIT MISO (Multiple-
Input Single-Output) BC case. Some other extensions appeared
recently in [10] where MISO IBC is considered with perfect
CSIT and weighted R-ZF BF, with two optimized weight
levels, for intracell or intercell interference. [11] considers
the large system analysis of the MIMO IBC with optimized
BF under partial CSIT. [12] studied the energy consumption
dynamics in a MISO BC with users moving around according
to a random walk model.

A. Contributions of this paper
In this paper:
• We introduce the concept of reduced-order ZF BF and

propose a greedy approach to optimize the reduced ZF
orders.

• We propose a large system analysis for optimal BF and
DPC with omnidirectional but differently attenuated user
channels.

• We consider a novel simple large system analysis for
ZF BF or DPC transmitters with omnidirectional channel
covariances.

• We illustrate with numerical evaluations the complexity-
performance tradeoff that RO-ZF permits.

Notation: In the following, boldface lower-case and upper-
case characters denote vectors and matrices respectively. the
operators E(·), tr(·) , (·)H , (·)T represents expectation, trace,
conjugate transpose and transpose respectively. A circularly
complex Gaussian random vector with mean µ and covariance
matrix Θ is distributed as x ∼ CN (µ,Θ). IN represents the
N ×N identity matrix.

II. MULTI-USER MIMO SYSTEM MODEL

Consider a transmitter (BS) equipped with M antennas
communicating with K single antenna users (MISO BC).
Furthermore, under narrowband transmission, the received
signal at user k can be written as,

yk = hHk x + nk, k = 1, 2, ..., K, (1)



where hk ∈ CM is the downlink channel between user k
and BS, x ∈ CM is the transmit vector and the noise terms
nk ∈ CN (0, σ2) are independent. The channel covariance
matrix is defined as Θk and thus correlated channel model
can be written as, hk =

√
MΘ

1/2
k zk, where zk has i.i.d

complex entries of zero mean and variance 1/M and Θ
1/2
k

is any Hermitian square root of Θk. The correlation matrix
Θk is non-negative Hermitian and of uniformly bounded
spectral norm w.r.t. M . The transmit signal x can be written

as, x =

K∑
i=1

gisi, where gk ∈ CM represents the transmit

precoder matrix for user k and si is the ith user symbol, with
si ∼ CN (0, 1). The transmit power constraint can be written

as, E(xHx) = tr(
K∑
i=1

gig
H
i ) ≤ P . Under optimal single user

decoding, the user rate can be defined as, Rk = log(1 + γk),
where the signal to interference plus noise ratio (SINR), γk is
defined as,

γk =
|hHk gk|2

K∑
i=1,i6=k

|hHk gi|2 + σ2

.
(2)

The transmit SNR is defined as ρ = P
σ2 and β = K

M . In the
large system limit, we assume that M,K →∞ at a fixed ratio
β < 1. Further we assume that the channel covariance matrices
are represented by multiple of identity, Θk = θk

M I, with
different user channel covariance matrices differentiated by the
varying attenuation factor θk. Multiple of identity covariance
structure reflects the fact that the user subspaces are randomly
oriented even though we don’t assume the knowledge of
subspaces. Further it helps to analytically evaluate the RO-
ZF BF and compare it to optimal BF. Moreover, we define the
ordering of the multiple of identity for the covariance matrices
as, θ1 ≥ θ2 ≥, ....,≥ θK , which means user 1 represents the
strongest user and K is the weakest user.

III. LARGE SYSTEM ANALYSIS OF OPTIMAL BF-WSMSE

In this section, we refer to the iterative algorithm in [13] for
the optimal linear transmit BF and superscript (j) refers to the
iteration stage j. We simplify the large system analysis results
of the optimal BF in [9] for the case of multiple of identity
covariance matrices for the user channels and the result is
stated below. In the following sections, we denote (x2)(j) =
(x(j))2.

Theorem 1. Let γ(j) opt−WSMSE
k be the SINR of user k

(2) under optimal linear precoding, i.e., at the end of iter-
ation j, g

(j)
k =

√
P
ψ(j)

(
HD(j)HH + α(j)I

)−1
hka

(j)
k w

(j)
k ,

ak is the MMSE Rx filter, wk is the MSE weight for
user k, ψ(j) being the normalization constant and α(j) =
tr(D(j))

ρ with the (k, k)th element of the diagonal matrix

D(j), d
(j)
k = (a2

k)(j)w
(j)
k . H represents the channel matrix

of all users, H = [h1, ...,hK ]. Then γ
(j) opt−WSMSE
k −

γ
(j) opt−WSMSE
k

M→∞−−−−→ 0, almost surely, where,

γ
(j) opt−WSMSE
k =

θ2kw
(j)
k (e2)(j)

Υ
(j)
k +

σ2d
(j)
k
ψ(j)

P (1+d
(j)
k θke(j))2

, (3)

where w(j)
k , d

(j)

k , ψ
(j)

represent the deterministic equivalents
for w(j)

k , d
(j)
k , ψ(j) respectively, the expressions of which are

given below. Further we can show that, since the logarithm
is a continuous function, by applying the continuous mapping
theorem [14], it follows from the almost sure convergence of
γ

(j) opt−WSMSE
k that, R(j)

k − R
(j)

k
M→∞−−−−→
a.s

0, where R(j)
k is

the rate of user k, with R
(j)

k = ln(1 + γ
(j) opt−WSMSE
k ).

Normalization term: A deterministic equivalent ψ
(j)

such
that ψ(j) − ψ(j) M→∞−−−−→ 0, almost surely, is given by

ψ
(j)

= 1
M

K∑
k=1

w
(j)
k

d
(j)

k θke
(j)′

(1 + d
(j)

k θke(j))2
, (4)

Using theorem 1 [8], e(j)is given as the unique positive
solution of the following equation,

e(j) = (

K∑
i=1

d
(j)

i θi

1 + d
(j)

i θie(j)
+ α(j))−1. (5)

e(j) ′, the derivative of e(j) w.r.t −α(j), is obtained as,

e(j)′ = (e2)(j)

1−(e2)(j)

K∑
i=1

(d
2

i )
(j)θ2

i

(1 + d
(j)

i θie(j))2

.
(6)

Signal Power: A deterministic equivalent for the square root

of the signal power,
√
P

(j)

S,k gets simplified as,√
P

(j)

S,k =
√

P

ψ
(j)

d
(j)
k θke

(j)

a
(j)
k (1+d

(j)
k θke(j))

. (7)

Interference Power: Following [8], [9], the deterministic
equivalent for the interference power can be obtained as,

K∑
i=1,6=k

hHk g
(j)
i g

(j)H
i hk =

P

d
(j)

k ψ
(j)

Υ
(j)
k

(1 + d
(j)

k θke(j))2
,

where, Υ
(j)
k = 1

M

K∑
i=1,i6=k

w
(j)
i

d
(j)

i θie
(j)′

(1 + d
(j)

i θie(j))2
.

(8)

Substituting the signal and interference powers, the deter-
ministic equivalent of the SINR leads to (3).The determin-
istic equivalents for the a

(j)
k , w

(j)
k , d

(j)
k are given by [9],

a
(j)
k = σ√

P
(j−1)
S,k

γ
(j−1)
k

1+γ
(j−1)
k

, w(j)
k = uk(1 + γ

(j−1)
k ), and d

(j)

k =

(a2
k)(j)w

(j)
k .

IV. LARGE SYSTEM ANALYSIS OF OPTIMAL DPC

The received signal at user k with DPC [15] (which achieves
the capacity region of MIMO BC) at the BS is



yk = hHk gk sk︸ ︷︷ ︸
signal

+

K∑
i=k+1

hHk gi si︸ ︷︷ ︸
interf. from weaker users

+nk.
(9)

In optimal DPC, users are ordered in decreasing strength, as
in RO-ZF. The interference that a user will cause to weaker
users gets canceled non-linearly at the Tx (in other words, in
the Rx SINR it does not need to be considered), and the BF
handles only interference to stronger users. As usual, optimal
BF does something in between ZF and matched filter (MF).
So there will be residual interference at the stronger users.

Let γDPCk be the SINR of user k under optimal DPC, i.e.,
at the end of iteration j, γ(j)DPC

k − γ
(j)DPC
k

M→∞−−−−→ 0,
almost surely, where, the expression for γ(j)DPC

k is same
as (3). However, the expressions for each of the scalars got

modified as, e(j) = (

K∑
i=k

d
(j)

i θi

1 + d
(j)

i θie(j)
+ α(j))−1, Υ

(j)
k =

1
M

K∑
i=k+1

w
(j)
i

d
(j)

i θie
(j)′

(1 + d
(j)

i θie(j))2
. Note that the only change

compared to the optimal WSMSE BF is that each summation
term get replaced from k to K or k + 1 to K.

V. REDUCED ORDER ZF

In this section, we consider the BF to be a reduced order ZF
(RO-ZF). This can be interpreted as the number of interfering
channels to be zero-forced for a user k is much less than

K. The RO-ZF BF gk can be written as, gk =
P⊥HIk

hk

||P⊥HIk
hk||

.

Here, PH = H(HHH)#HH represent the projection onto
the column space of H, P⊥H = I−PH is the projection onto
its orthogonal complement (# represents the Moore-Penrose
pseudo-inverse). For the convenience of analysis, we define
the following: Kk represents the strongest interfering channel
zero-forced by the BF of user k and Ik denotes the set of user
indices for which the ZF is done. HIk represents the matrix of
all the user channels in Ik. Complexity in the RO-ZF case will
be about half of that of full ZF (multiplying the M ×K H by
a triangular K×K instead of a full K×K, computation of the
K × K inverse or triangular factor takes O(K3) operations,
with a smaller factor if only a triangular factor is needed and
not a full inverse).

VI. LARGE SYSTEM ANALYSIS FOR RO-ZF, FULL ORDER
ZF AND ZF-DPC

In this section we consider the large system analysis for the
RO-ZF scheme proposed in this paper and also the full order
ZF (full order means |Ik| = K − 1,∀k). In this section, we
split gk =

√
pkg
′
k, where pk is the power allocated to user k.

γRO−ZFk =
PS,k

PI,k+σ2
k

=
pk|hHk g′k|

2

K∑
i=1,i6=k

pi|hHk g′i|2 + σ2
k

,

g′k =
P⊥HIk

hk

||P⊥HIk
hk||

=⇒ hHk g′k =
∥∥∥P⊥HIk

hk

∥∥∥ .
(10)

Further, by the law of large numbers, PS,k − PS,k
M→∞−−−−→
a.s

0,
where,

PS,k = E(|hHk g′k|2) = EHIk
Ehk tr(P⊥HIk

hkh
H
k )

= θk
M tr(IM −HIk(HH

Ik
HIk)#HH

Ik
) = θk(1− |Ik|M ),

(11)

where we use the property of the projection matrices that
P⊥HIk

P⊥HIk
= P⊥HIk

. Next, we consider the terms in PI,k,

|hHk g′i|2 =
|hHk P⊥HIi

hi|2∥∥∥∥P⊥HIihi
∥∥∥∥2 . (12)

If k ∈ Ii, then |hHk g′i|2 = 0, else, E(|hHk P⊥HIi
hi|2) =

E(tr(P⊥HIi
hih

H
i P⊥HIi

hkh
H
k )) = θkθi

M2 tr(P⊥HIi
) = θkθi

M2 tr(IM −
HIi(H

H
Ii

HIi)
#HH

Ii
) = θkθi

M (1 − |Ii|
M ), Finally we obtain

E(|hHk g′i|2) =
θkθi
M (1− |Ii|M )

θi(1−
|Ii|
M )

= θk
M . Further, we get the de-

terministic equivalent of the SINR in the large system limit
as,

γRO−ZFk = pkθk

1
M θk

K∑
i=1,k 6∈Ii

pi + σ2

(
1− |Ik|M

)
.

(13)

For the full order ZF, the interference power vanishes from
the SINR terms,

γZFk =
pkθk
σ2

(
1− K − 1

M

)
. (14)

ZF-DPC combines zero-forcing and DPC technique. While
DPC cancels the interference for users i < k, the interference
of users i > k are eliminated by designing the BF gi such
that hHk gi = 0.The large system analysis for the ZF-DPC
(|Ik| = k−1) is as follows : We define Jk = {1, 2, ..., k−1}.

γZF−DPCk =
PS,k

PI,k+σ2
k

=
pk|hHk g′k|

2

σ2
k

, since, PI,k = 0,

g′k =
P⊥HJk

hk

||P⊥HJk
hk||

, =⇒ hHk g′k =
∥∥∥P⊥HJk

hk

∥∥∥ ,
PS,k = E(|hHk g′k|2) = EHJk

Ehk tr(P⊥HJk
hkh

H
k )

= θk
M tr(IM −HJk(HJkH

H
Jk

)#HJk) = θk(1− k−1
M ).

(15)
Therefore, the deterministic equivalent of the SINR becomes,

γZF−DPCk =
pkθk
σ2

(
1− k − 1

M

)
. (16)

A. Optimization of user powers pk
We consider here the approximation of the WSR according

to the difference of convex (DC) functions approach as in [16].
Solving DC, we get the Lagrangian for the WSR,

WSR(g, λ) = λP +

K∑
k=1

uk ln det(1 + gHk Bkgk)

−gHk (Ak + λI)gk, where, Bk = hkr
−1

k
hHk ,

Ak =

K∑
i 6=k,i 6∈Ik

uihi(r
−1

i
− r−1

i )hHi ,

rk =

K∑
i=1,i6=k,k 6∈Ii

|hHk gi|2 + σ2, rk = rk + |hHk gk|2.

(17)



Here g represents the set of BFs gk. Let σ(1)
k = g′Hk Bkg

′
k

and σ
(2)
k = g′Hk Akg

′
k. For full order ZF, Ak = 0, thus

σ
(2)
k = 0 and (17) reduces to standard waterfilling. The

advantage of formulation (17) is that it allows straightforward
power adaptation: introducing stream powers pk ≥ 0 and
substituting gk = g′k

√
pk in (17) yields

WSR(P, λ) = λP+
K∑
k=1

[uk ln(1 + pkσ
(1)
k )− tr(pk(σ

(2)
k + λ))],

(18)

where P represents the set of powers pk. Since this is
a concave function w.r.t pk, taking the derivative leads to
the following interference leakage aware water filling (WF)
(jointly for the pk and λ)

pk =
(
uk(σ

(2)
k + λ)−1 − σ−(1)

k

)+

,
∑
k

pk = P, (19)

where the Lagrange multiplier is adjusted to satisfy the power
constraints. This can be done by bisection.

VII. OPTIMIZATION OF THE ZF ORDER

In this section, we consider an alternating optimization
algorithm (Algorithm 1) which computes the reduced ZF
order for each user (Ik,Kk). In Algorithm 1, the text “if

Algorithm 1 Reduced Zero-Forcing Order Determination
Given: K,M, σ2, θi,∀i, with ordering θ1 ≥ θ2 ≥ ... ≥ θK .
Initialization: Start with Kk = k + 1,∀k = 1, ...,K − 1 and
for user K, |IK | = 0.

for k = 1 : K
K ′k = Kk.
while (K ′k > 1)

K ′k = K ′k − 1.
if(K ′k 6= k)

if ukRk + uK′kRK′k is increased
Kk = K ′k, else exit while loop

else end if
end while
K ′k = Kk.
while (K ′k < K)

K ′k = K ′k + 1.
if(K ′k 6= k)

if ukRk + uK′kRK′k is increased
Kk = K ′k, else exit while loop

else end if
end while

end for
Continue until convergence of Ik,∀k.

ukRk +uK′kRK′k is increased” is meant to be understood “by
adding the ZF from k to K ′k”. In Algorithm 1, we consider
the ordering for the case of, Ik = {Kk,Kk + 1, ...,Kk +
|Ik| − 1} if k < Kk, else Ik = {Kk,Kk + 1, ...,Kk + |Ik|}.
|Ik| represents the cardinality of the set Ik. Also, HIk =
[hKk , ...,hKk+|Ik|−1] or HIk = [hKk , ...,hKk+|Ik|]. Note that
at finite dimension MIMO, not only the channel strengths
but also the relative orientation of the channel vectors count.
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Fig. 1. Sum rate comparison for M = 64,K = 30.

However, in MaMIMO with multiple of identity covariances,
there is no orientation issue, only the channel strengths count.
So the user ordering is simple.

VIII. SIMULATION RESULTS

In this section we illustrate the simulation results to validate
our theoretical results. We compare the sum rate performance
of RO-ZF BF scheme (which has the least complexity) to
the optimal BF-WSMSE [13], optimal DPC and to the large
system approximations of optimal BF-WSMSE, full order ZF
and the ZF DPC. For the SNR ranges of interest, it can be seen
that RO-ZF performs close to the optimal schemes with much
lower complexity. Figure 2 illustrates the sum rate difference
of the various BF designs from the optimal DPC.
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IX. CONCLUSION

In this paper, we investigate the performance-complexity
tradeoffs for the reduced order ZF BF. We propose the large
system analysis for the RO-ZF BF, optimal BF, optimal DPC,
ZF-DPC and full order ZF for the case of omnidirectional
but differently attenuated user channels. Simulation results
indicate that our RO-ZF BF scheme has a performance very
close to the optimal BFs such as WSMSE and DPC, but with
much lesser complexity compared to the full order ZF. We also
propose an alternating optimization algorithm which computes
the optimal ZF order for each user.
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