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Figure 1. Emotion awareness: crucial for vehicle interaction with passengers and road users. 

Abstract 
EVA1 is describing a new class of emotion-aware autonomous 
systems delivering intelligent personal assistant functionalities. 
EVA requires a multi-disciplinary approach, combining a number 
of critical building blocks into a cybernetics systems/software ar-
chitecture: emotion aware systems and algorithms, multimodal 
interaction design, cognitive modelling, decision making and re-
commender systems, emotion sensing as feedback for learning, 
and distributed (edge) computing delivering cognitive services. 

Affective Computing •Emotion Awareness; Sensing and Sen-
sor Fusion; Emotion Recognition/Analysis •Cognitive Systems; 
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1 Introduction 
Intelligent personal assistants (aka virtual assistants), smart 
robots and conversational bots are rapidly finding their way into 
our daily lives: they control our smart homes, they answer our 
questions, and they assist us with shopping or finding local 
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services. Future generations of these devices are expected to go 
beyond simply being a multi-use remote control activated via 
voice commands. Intelligent devices should be able to learn from 
our behavior, deduce our preferences and intentions, and based 
on this knowledge, make decisions and interact with us in a 
natural manner. Extending this functionality to the car will allow 
for an optimal driving experience, since hands-free, natural 
interaction allows for entertainment and productivity without 
compromising safe vehicle operation. 

Some of today’s cars already provide more intuitive voice in-
teraction and gesture commands, and visionary prototype trans-
portation devices display advanced capabilities to detect 
passengers’ emotions and intents during guided conversations 
[1,2]. As depicted in Figure 1, future vehicle interiors are foreseen 
to become much more spacious than today’s, making it on the one 
hand impossible to apply current control paradigms focused on 
direct haptic interaction. Quite plainly, this may not be possible 
any more, as buttons and touchscreens will not be conveniently 
reachable from a respective seating position. With higher degrees 
of automation, it may also not be necessary any more, as vehicles 
drive in fully autonomous mode. What will be of much higher 
relevance then is that the vehicle displays empathic capabilities to 
ensure passengers’ wellbeing. Also depicted in Figure 1 is the need 
for these autonomous vehicles to communicate to and interact 
with vulnerable road users outside the vehicle. Although the 
picture being an artistic interpretation of this need, it clearly 
illustrates the difficulties addressing it. As in the vehicle’s interior, 
also on the exterior a multi-modal approach will be necessary for 
interacting with other road users – just that here, the possibilities 
are much more limited, due to traffic regulations, environmental 
conditions, user’s attention spans and emission restrictions. 
Whether visual information projected from the vehicle’s exterior 
parts is preferable for this purpose remains to be investigated. 

However, before achieving truly natural, intuitive interaction, 
intelligent systems have to overcome several challenges. First, 
they have to learn to understand the different aspects and 
subtleties of human communication (non-verbal cues from 
gestures, facial expressions, tonality, gaze, etc.) and to be aware of 
the user’s current emotional state.  

The intelligent system has to be able to understand context, in 
order to react to a simple question such as “What was that?” This 
question, simple as it may seem at first glance, bears the 
contextual challenge in a nutshell. It may refer to a number of 
events or real-world entities, such as objects, sounds, movement, 
or sights. It may refer to the immediate context of the car and the 
activities within (such as unusual sounds, flashing lights, 
warnings, etc.). It may refer to its vicinity and the traffic situation 
unfolding around it (such as another car driving by, unusual 
behavior of other road users, or just the rare pothole). Or it may 
yet refer further to the greater environment such as buildings, 
billboards, or spectacular sights. To answer this question, humans 
usually intuitively infer from a very rich context.  

This context has to be extracted from relevant environmental 
information (sights and objects, sound, car sensor input, 
intonation voice and sentiment of language, direction of gaze, and 
gestures amongst others) as well as known and learnt information 

about the subject’s experience, knowledge, usage history, and 
from other intelligent devices. 

To increase relevance, the intelligent assistant needs to 
become emotionally aware und understand whether the question 
was uttered in a frightened, curious, or annoyed tonality. Beyond 
generating answers based on deduced knowledge, maintaining a 
conversational context and verbalizing actions, the interaction 
between users and assistant becomes most challenging when 
there is no verbalization or when verbalization alone just is not 
sufficient to generate an appropriate reaction. Rightly assessing a 
potential intent and making recommendations or proactively 
automating wellbeing by sensing body functions and reading 
body language beyond pure voice analysis are key functionalities. 
Hence, EVA will be of prime importance for cars driving fully 
autonomously, as they might transport passengers who do not 
hold a driving license, much less understand the least about cars’ 
technology. 

2 Challenges and Focus Areas 
Pursuing intelligent, emotion-aware systems requires an 
interdisciplinary approach, by bringing together IoT technologies 
and protocols with multi-modal user interaction, human-centric 
emotion-aware design, knowledge base modeling, machine 
learning and intelligent recommender algorithms, as well as 
innovative approaches to privacy. Emotion-aware Vehicle 
Assistants – EVA – will require to develop mechanisms sensing 
user and context in real-time to facilitate reasoning and decision-
making for proactive, emotionally aware intelligent personal 
assistants. EVA will draw specific capabilities from the in-vehicle 
situation with all its sensory input. 

 

Figure 2. Systems architecture. 

The EVA assistant approach defines a multi-layered cognitive 
systems architecture (Figure 2). Note that it focussed on the 
vehicle interior scene and interaction with users, leaving out 
aspects of interaction with exterior users for the sake of 
simplicity. At its core is the cognitive model of the car users’ 
cognitive state. This model is being fed by an array of ingestion 
sensors, each sensing aspects of the users’ emotional state, such 
as voice tonality, language sentiment, body language, facial 
expression, and gestures, among others. These individual sensor 
feeds need to be fused into a consolidated cognitive model of the 
users’ affective state. Together with contextual information about 
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vehicle state and events, a world model of the exterior scene and 
additional IoT data streams available for interpreting it, and other 
contextual data, the system will be able to fuse a cognitive model 
for the understanding of the interior scene. Based on this 
understanding the vehicle will interact with its users through all 
available modes of interaction, or proactively provide 
recommendations for the delivery of cognitive services. Affective 
state information is used also in a feedback loop for the learning 
mechanisms in the personalization model behind the 
recommendation engine.  

Natural interaction and emotion awareness need to be realized 
by leveraging sensor semantics and processing them with 
advanced machine intelligence algorithms capable of interpreting 
the sensor data in real-time combined with background 
knowledge. Machine learning technologies are required to 
monitor user behavior, discriminate relevant patterns and treating 
the learnt knowledge with appropriate privacy mechanisms. 
Privacy preserving machine learning will have to be further 
developed to accommodate the diverse set of data sources and 
usage scenarios. For sheer volume, data will have to be treated in 
a federated learning approach. Combining local per-vehicle 
onboard learning with centralized cloud-based learning both at 
the user, vehicle, or fleet level will require distributed (edge) 
processing and analytics approaches.  

Overall, the system will need to act – and interact with the 
passenger – in a way such as to provide full transparency about 
what it is doing and why it is doing it. Thereby, passengers can 
grow sufficient trust to rely on the assistant confidently. The 
situation of (multiple) passengers sharing rides in autonomous 
vehicles require particular attention. 

The research challenge EVA poses is towards emotional 
awareness in autonomous systems with particular focus on in-
vehicle applications. The ultimate vision is an autonomous car, 
complemented with an intelligent assistant that naturally 
interacts with the user. It should have affective skills for 
emotional awareness and personalized pro-active behavior. It has 
to be capable of extending autonomously, based on a rich situative 
context analysis of vehicular sensor and world information from 
any IoT- and social media data stream. This requires a highly 
interdisciplinary approach. The vehicular domain is providing 
innovative applications and non-functional requirements driving 
novel approaches such as hybrid architectures with cognitive 
edge computing. We divide this research field into the categories 
briefly described hereafter. 

2.1 Emotion in Multi-Modal Interaction Design 
EVA should provide applications that drivers/occupants will 
integrate into their everyday driving context (both for manual and 
autonomous driving). To identify factors that govern this 
integration and adoption of emotion-aware assistants, methods 
need to be enhanced to collect user opinions in early stages of the 
system and software design process, building on the existing Co-
Constructing Stories method and related methods. Models 
predicting the adoption by target users will have to be developed 
and validated through evidence-based frameworks. These models 
direct the iterative development of actual applications. 

EVA will learn from the interactions with users and adapt to 
them in real-time. It will exploit dialogue management and 
behavior generation based on reinforcement learning. Assistive 
dialogue systems have already employed such techniques. [12] 
However, in many scenarios the rapidly increasing state space 
makes a straightforward learning approach computationally 
impractical. Studies show that a permanent stream of requests 
upsets users and distracts them from their current activities. 
Hence, novel dialog system design will have to explore techniques 
for policy optimization based on deep reinforcement learning, 
taking into account user’s emotions as implicit reinforcement 
signals that help the assistant learn users' preferences and enable 
it to adapt the dialog’s content, form and modalities to the user’s 
current needs. 

Novel system design approaches are required with respect to 
active learning, which – in the context of data annotation – is to 
select from large pools of unlabeled data those instances that are 
the most informative ones for the task being modeled, and 
subsequently query a human or machine annotator for labeling. 
Previous research focused on desktop-based settings processing 
previously recorded data offline. Further work is to investigate 
how to make use of active learning in an interactive setting with 
the automotive assistant. The EVA assistant has to decide when it 
is a good time to interrupt the user and afterwards to update the 
model on the fly. Furthermore, users do not like to serve as a pure 
data provider. Hence, the EVA approach should develop 
probabilistic methods to minimize the costs for collecting data, 
visualization and explanation strategies that make the inner 
workings of the machine learning process more transparent, and 
federate machine-learning techniques that keep all training data 
on the user’s private device. 

Smart interaction techniques need to be devised that allow for 
rich, multi-modal interaction between the user and the system and 
that allow easy switching between the focus and periphery of 
attention, within the constraints imposed by the context. While 
(embodied) conversational agents have long been considered a 
promising ally for the vehicular context, from an interaction 
perspective such conversational agents raise serious concerns 
along a number of dimensions (e.g., social, ease of use, 
obtrusiveness), so that extending the concept for EVA must not 
narrowly focus on conversational agents but draw from multiple 
modalities for exchanging information. A model integrating task, 
context and user characteristics is established, predicting the 
suitability of different interaction techniques and giving direction 
to user interface design for different applications. 

2.2 Sensor Technologies and Emotion Sensing 
Sensing human body posture and activity, emotion and cognitive 
state in vehicles poses a number of complex challenges, such as 
sensor arrangement in limited space, unclear lightning conditions, 
and required separation between body and unknown distractor 
objects, noisy sensing environments, high-dynamic range of ligh-
ting conditions and restrictions on active lighting due to driver 
distraction reasons. Moreover, to effectively sense emotional con-
text and infer emotional states, one needs to observe human 
signals and sense fast human activity (such as pointing or waving 
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gestures) with a high spatial and temporal resolution. This is es-
pecially true for gestures and mimics, as very casual and transient 
signals greatly contribute to the understanding of the actual 
emotional context of a situation [8, 9].  

Here, novel event-based vision sensors provide multiple ad-
vantages over traditional camera technology for emotional state 
sensing and for high-speed human position and activity tracking 
in a driving as well as a passenger context. In particular, high tem-
poral responsiveness, drastically reduced data rates in typical car-
indoor scenes and insensitivity over large range of illumination 
display properties relevant to the challenging vehicular envi-
ronment. Combined with novel algorithms for robust tracking of 
facial features from event-based real-time data, and body and limb 
poses in the constrained car-indoor environment this will yield 
descriptions of emotional states. These novel event-based neuro-
morphic algorithms also pose new challenges to software 
architectures and the signal processing chains. 

Interactive learning approaches and non-invasive (in seating, 
in vehicle interior) monitoring will allow the EVA assistant to 
learn from positional and embodied interactions with which end-
users adapt to situations. It will learn what individuals like and 
dislike, and adapt content, form and modalities as information 
garnered from the embodied, positional and gestural information 
and address the end user’s continually changing needs and 
preferences. The situational context will take into account prior 
knowledge, purpose of use, gender preferences and will log use 
and adapt accordingly. 
Current state-of-the-art automatic emotion detection systems can 
achieve near human level of performance when predicting 
emotions. However, such systems generally rely on resource-
heavy deep learning [10, 11]. The convolutional and recurrent 
neural network topologies generally used in contemporary 
emotion detection systems can have connection numbers mea-
suring in the billions, and require sizable amounts of memory and 
energy. While there have been some research efforts into 
designing emotion detection system capable of running natively 
in smart or embedded devices [13], the vast majority of research 
into emotion detection only consider performance metrics 
relating to system accuracy. One such approach to reduce run-
time, and computational resources in emotion detection is to 
explore spiking-based neuromorphic systems, both at the sensor 
[14] and analytic [15] phases of emotion detection. Despite 
offering the potential of being faster, more robust to noise, and 
more computationally efficient when compared to conventional 
methods, neuromorphic systems have yet to be realized for 
emotion detection. 

2.3 Emotion-aware Cognitive Systems 
The impact of drivers’ emotional states on safety and joy are well 
known. What is less known is how to take information from all 
type of available sensors, such as biofeedback (e.g., HR, HRV, 
GSR), visual (e.g., facial images), and car-specific (e.g., steering 
wheel, acceleration) sensors and use them to design a precise, 
person-centric controlling system. We consider three main phases 
in the research: data collection, labeling, results assessment, and 
metric development; designing a recommendation system with 
limited data and sensors; and finally, designing a large-scale 

recommendation system using state-of-the-art machine learning 
and control algorithms. 

The customer acceptance of future automated vehicles will 
strongly depend on vehicles to drive considering drivers’ or 
passengers’ emotions. Early control mechanisms have been 
mostly studied to reach a so-called ‘string stability’ between 
Automated Cruise Controlled ACC vehicles or have been 
enhanced to accommodate long-term driver profiles [6]. The EVA 
assistant will monitor and detect the emotional state of drivers 
and passengers and accordingly need to provide appropriate 
mitigation strategies. Cooperative trajectory planning adapted to 
the identified emotional states is expected to be a major mitigation 
strategy. Integrating long-term driving profiles in ACC or 
Cooperative-ACC controllers will not be sufficient but need to be 
capable to adapt to short-term emotions in real-time. Cooperation 
between various individual EVA assistant profiles will be critical 
to resolve conflicts and design cooperative emotion-aware 
trajectories.  

Humans continuously adapt their speech production to the 
communicative context, which is one of the keys to efficient and 
fluent spoken interaction that humans excel at. Speech synthesis, 
in contrast, is remarkably static. While the output quality of 
synthetic speech has increased tremendously in the past years, 
and has reached a point where it in many cases is 
indistinguishable from a human voice, current TTS systems are 
essentially oblivious to the context in which they operate. For 
smooth and efficient spoken in-vehicle interaction, it is highly 
desirable to have a speech synthesizer that is able to adapt its 
output to the context. Research into speaking style variation in 
TTS has focused primarily on synthesis of expressive speech, 
which in most cases means a fixed set of pre-defined emotions. 
This is too restrictive for most real-world applications [4]. Hence, 
leveraging recent improvements in DNN-based synthesis, the 
EVA assistant design is to add continuous control over several 
paralinguistic parameters, such as the ones described above, also 
allowing speech output generation to be directly conditioned on 
contextual data.  Existing datasets may need to be amended with 
newly recorded data that contains the desired speaking style 
variations.  

EVA’s intelligent personal recommender system is based on 
advanced machine learning models. The models are trained using 
state of the art algorithms, which – while providing 
unprecedented performance – produce outputs that are often 
difficult to explain or interpret. Explicability and interpretability 
are important for enabling trust of users for a system. Our aim is 
to research techniques and approaches for providing insight into 
the models learnt using deep networks in the context of proactive 
recommendation. Due to the lack of intermediate information or 
decision in deep architecture, the final result comes without any 
particular explanation, which is probably fine when the system is 
accurate or when the produced output follows human intuition 
but not when an error occurred. In such case, it is important to 
know how the decision was made, in order to identify what caused 
the erroneous prediction/classification. 
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2.4 Cognitive IoT and Service Delivery  
Personal assistants aim to generate personalized experience based 
on a user profile and contextual information. For example, depen-
ding on the weather, the location, the time of day or the season in 
the year, and the user preferences – a personal assistant will 
respond differently to a simple request such as "please, make a 
reservation in a near-by restaurant." The intelligent personal 
assistant should take into account the time, user preferences, who 
the user is eating with and naturally the set of restaurants nearby 
the current location, destination or any points in the shortest 
journey of the user for answering this question. 

It is well established that edge cloud may represent a key en-
abler for low-latency-oriented applications, such as automotive 
industry and ITS. These types of service require ultra-low latency 
and reliable data analytics solutions that rely in real-time on 
heterogeneous data gathered from the ITS network and the 
vehicle environments (including environment sensors and 
emotional sensors). [5] Locating the cloud service at the network 
edge will considerably reduce the latency access to remote 
applications, like data analytics. Indeed, this may require low-
latency access to the data analytic application located in the edge 
cloud to react to any urgency, such as heart failure. EVA will rely 
on the edge cloud to guarantee low latency as well as reliability 
for ITS applications.  

EVA will devise mechanisms to deploy distributed analytic 
applications over the edge, advanced algorithms, based on multi-
criteria combinatorial optimization and machine learning to 
decide the placement of an analytical application.  Algorithms, 
which decide dynamically to duplicate an application to in-car 
fog, by predicting when the vehicle will lose connection or 
entering an area with bad connection. 

2.5 Privacy and Human Factors  
For users to accept the intelligent personal assistant provided by 
EVA, they need to be given reasonable guarantees that it will not 
pose significant threats to their privacy; i.e. that the data collected 
remain confidential and under the control of the users. While 
privacy-preserving machine learning has been studied in the past 
in the context of anonymous databases (differential privacy) or 
public database releases (privacy-preserving data mining), EVA 
offers significantly new challenges mainly because of the large 
amount of produced data, the existence of multiple data sources, 
and the necessity to use users’ data by several authorized parties. 
In EVA, we will investigate customized privacy primitives based 
on advanced cryptographic techniques such as homomorphic 
encryption or secure multi-party computation that would enable 
the processing of the data while being encrypted. In order to 
integrate practical cryptographic tools, the underlying machine 
learning algorithm may sometimes be approximated into low 
degree polynomials. Therefore, the goal is to achieve a high 
degree of privacy (thus complying with the upcoming General 
Data Protection Regulation GDPR) without sacrificing utility 
(accuracy) too much. 

While privacy may be receiving much attention as of now, it 
is essential to keep investigating human factors and ethical 
questions of any kind, since they will be crucial for the adoption 
of EVA and critically influence system design [7]. 

3 Conclusions 
In this paper we present a multi-disciplinary approach to the 
future design of emotion-aware autonomous systems. A 
combination of multi-modal user interaction design approaches, 
advanced sensing with high temporal sensitivity, elaborate 
federated machine learning, distributed edge processing, 
cognitive modelling and cybernetic system design principles 
govern that approach. A layered architecture will provide for the 
delivery of cognitive services based on personalization 
information gathered from users’ interaction with the system. 
That will allow for a pro-active mobility experience. 
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