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Abstract— The Lagrangian formulation of kinematic waves
provides a more accurate representation than the most com-
monly used Eulerian formulation, and is better suited to study
cooperative traffic phenomena requiring individualized rather
than aggregated flow parameters (e.g. trajectory planning,
traffic monitoring). The growing penetration of Powered Two
Wheelers (PTW) in regular traffic is typically expected to
require smart cooperative trajectory planning to maximize flow
and avoid accidents. This paper therefore presents a multi-class
Lagrangian representation for a traffic flow consisting of cars
and PTW. The capability of PTW to have higher speeds than
cars makes the existing Lagrangian discretization approaches
inadequate. We accordingly introduce a novel discretization
method for mixed cars and PTW traffic mitigating such
limitation, and also capable of reproducing a follow-the-leader
type mobility. We finally evaluate our Lagrangian discretization
against an Eulerian formulation and show its high accuracy.

I. INTRODUCTION

The integration of powered two wheelers (PTWs) to
intelligent transport systems as well as the development of
PTWs specific innovative transport solutions depends upon
the understanding of their mobility behaviors and interaction
with other road users. However, PTWs create a peculiar
traffic flow effects that cannot be reproduced by the currently
available models.

The flow of vehicles can be modeled at different granular-
ities. Macroscopic models study collective behavior whereas
microscopic representation model individual vehicle mobil-
ity. Mesoscopic models exhibit both macroscopic and mi-
croscopic behaviors, combine the aggregate level modeling
in macroscopic approach with specific individual vehicle
characteristics such as probabilistic lane changing and turn-
ing ratio. The choice of the modeling approach depends on
different factors such as the required level of detail, accuracy,
efficiency. Macroscopic modeling is an efficient and a prefer-
able approach for studying analytical flow properties, since
it allows to establish a closed form relationship between flow
variables.

Macroscopic traffic flow models most commonly apply the
kinematic wave theory developed by Lighthill, Whitham and
Richards [1], [2] (LWR). In order to integrate traffic hetero-
geneity (vehicle and driver [3]), LWR model is extended
to multi-class flow model. The variation among vehicle
class is expressed in relation to maximum speed, perception
difference to area/space occupancy, total/effective density.
Multi-class LWR models are usually solved in the Eulerian
coordinates (see [4] and the references therein). In Eulerian

1Sosina Gashaw and Jérôme Härri are with EURECOM, 06904 Sophia
Antipolis, France

2Paola Goatin is with Inria Sophia Antipolis Méditerranée, Université
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formulation, the evolution of flow properties such as density,
flow, speed, etc., are evaluated at fixed points. However,
recent studies show that Lagrangian representation, which
tracks the evolution of flow properties of vehicle/platoon of
vehicles, offers several advantages over the Eulerian repre-
sentation, with the main benefits being numerical accuracy
[5] and flexibility to easily incorporate traffic phenomena
(e.g. capacity drop [6]) and vehicle characteristics.

In Lagrangian systems, the LWR model is formulated in
(N, t) coordinate system [5]. Cumulative vehicle count (N)
is found to be more suitable for certain traffic flow analysis
[7], [8] and also makes it easier to establish a connection
between follow-the-leader and LWR models [9]. For a mixed
traffic of cars and trucks, the Lagrangian formulation is given
in [10], [11]. Nonetheless, these models are intended to
characterize mixed traffic of cars and trucks. For example
the discretization method in [11] assumes a strict slower
(trucks)/faster (cars) speed, which is not the case for PTWs
and cars. Therefore, the discretization schemes fall short
of describing correctly multi-class flows that have different
characteristics from cars and trucks mixed flow.

In this paper, we propose a Lagrangian formulation for
traffic flow consisting of cars and two-wheelers (PTWs). The
derivation follows the Eulerian multi-class LWR model in
[4], where the fundamental diagrams are defined uniquely for
each class, and are also adapted to the traffic condition. We
provide a discretization method applicable for solving any
type of multi-class LWR model, including cars and PTWs
mixed flow, i.e. there is no restriction on the speed order
of the vehicle classes. Moreover, we propose an approach
to reproduce a follow-the-leader type behavior using the
Lagrangian representation. By applying the proposed dis-
cretization scheme, we test the equivalence of the Lagrangian
and Eulerian representation.

From application standpoint, the Lagrangian representa-
tion is convenient to analyze vehicle-specific data such as
trajectories and travel times. Using the spacing and speed
data collected from probe vehicles together with the traffic
flow model formulated in Lagrangian coordinate, traffic state
can be estimated accurately [13]. Moreover, in hybrid traffic
flow models, Lagrangian model is used in conjunction with
Eulerian representations [15].

The rest of the paper is organized as follows. First,
a formulation for traffic flow consisting PTWs and cars
in Eulerian and the Lagrangian approaches is discussed.
Thereafter, a discretization technique is presented. Following
the Numerical examples and discussion, we wind up by
giving concluding remarks.
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II. LAGRANGIAN FORMULATION OF MULTI-CLASS LWR

We first introduce the Eulerian representation of the mixed
flow of cars and PTWs, and then we show the transfor-
mation to Lagrangian coordinates. Multi-class LWR models
distinguish the characteristics of each of the vehicle class.
Different methods have been applied to represent accurately
the distinctive features exhibited, depending on the involved
vehicle types. In this study, our interest is in modeling mixed
cars and PTWs flow. Thus, a model developed in [4] is used
as a reference model. The model is based on free space
distribution, wherein the difference in vehicle size, lateral
and longitudinal gap acceptance and maximum speed are
the factors that differentiate vehicle classes. The continuum
equation which holds for each class is written as

∂ρi(x, t)

∂t
+
∂qi(x, t)

∂x
= 0, i = 1, 2, (1)

where ρi and qi denote density and flow of class i, respec-
tively, over space x and time t. Class specific flow, speed
and density are related by the equation

qi(x, t) = ρi(x, t)vi(x, t), i = 1, 2. (2)

The speed vi for the individual vehicle class i is a function
of the densities of both classes and derived based on the
assumption that the flow of vehicles is dictated by available
free space [4]:

vi = Vi(ρ1, ρ2) = vfi

(∫ ∞
rci

f(l(ρ1, ρ2))) dl

)
(3)

where vfi , r
c
i and f(l(ρ1, ρ2))) stand for the maximum speed,

critical lateral gap and the probability density function of free
space distribution, respectively.

The Eulerian representation describes the evolution of the
traffic state variables at a fixed point in space (Fig. 1(a)).
Whereas, the Lagrangian view deal with the flow properties
observed along the trajectory of vehicles (Fig. 1(b)).

The mathematical form of the conservation law in La-
grangian coordinates depends on the chosen coordinate sys-
tem. Here, we take (n, t) coordinate system. Moreover, there
are two methods that are used to represent multi-class flows
in Lagrangian coordinates. In the first method, there are
separate Lagrangian coordinates for each vehicles class (N-
Lagrangian reference frames (N-LRFs)). On contrary, in the
second method (1-Lagrangian reference frames (1-LRFs))
there is one Lagrangian reference frame that moves with
one of the selected vehicle class. Thus, for the other vehicle
classes the conservation equation is derived based on this
Lagrangian reference frame. In a situations where tracking
of each vehicle is needed (e.g for class specific controls [12])
N-LRFs is suitable. Otherwise, 1-LRF is a computationally
efficient approach, for instance to investigate the impact of
PTWs on cars flow, or vice versa.

A. N-Lagrangian reference frames

Here, since we have two vehicle classes, there are two
LRFs (i.e. N=2). By taking spacing as a state variable, the

(a) Eulerian fixed frame

(b) Lagrangian moving frame

Fig. 1: A schematic of Lagrangian and Eulerian approach

conservation equation in (n, t) coordinate system is written
as [5]:

∂si(x(t), t)

∂t
+
∂vi(n, t)

∂n
= 0 i = 1, 2 (4)

s =
−∂x
∂n

, ρ =
−∂n
∂x

= 1/s (5)

where s and v denote, respectively, the average spacing
and the speed associated to a group of vehicle/s labeled
n. Vehicle groups are labeled in time order. The conversa-
tion equation applies for each vehicle class. Moreover, the
grouping of vehicle and the labeling of vehicle groups is
done separately for each vehicle class. This representation
also take an assumption that vehicles in a group neither
disband or merge with other group. Class specific speed-
spacing fundamental relation has the following form:

vi = V (s1, s2) (6)

Speed-space fundamental diagram (FD) for PTWs and
cars is given in Figure 2. As illustrated in the figure,
the fundamental diagram for each class changes with the
spacing/density of the other vehicle class.

B. 1-Lagrangian reference frame

In the above multi-class Lagrangian conservation equation,
individual vehicle class has a separate labeling (cumulative
vehicle count). [11] proposed an alternative formulation,
where the Lagrangian coordinates move with a reference
vehicle class and only vehicle of this class are counted. In
another word, the evolution of traffic state variable of the
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(a) (b)

Fig. 2: Speed-spacing fundamental diagram (a) for Cars (b)
for PTWs, V1,max = V2,max = 20m/s

carrier vehicle class and other vehicle classes being carried
inside is tracked.

The motion of the reference (carrier) class is governed by:

∂sr(x(t), t)

∂t
+
∂vr(n, t)

∂n
= 0, (7)

For the rest vehicle classes:
∂sr/so
∂t

+
∂ ((vr − vo)/so)

∂n
= 0, (8)

or equivalently it can be formulated in non conservative form

∂so
∂t

+
so
sr

∂vo
∂n
− vo − vr

sr

∂so
∂n

= 0

where the subscript r and o refers to, respectively, the
reference vehicle class and other vehicle classes.

In the conservation equation given above, the traffic state
variable are spacing (s) and speed (v). When density (ρ)
is used instead of spacing, the equation takes the following
conservation form.

∂(1/ρr)

∂t
+
∂vr
∂n

= 0 (9)

∂(ρo/ρr)

∂t
+
∂(ρo(vr − vo))

∂n
= 0 (10)

where ρr > 0 always.

III. DISCRETIZATION SCHEME

A. N-Lagrangian reference frames

We apply the following numerical scheme to find the
solution of Eq. (4) - (6). The n domain is subdivided into
∆n sized clusters of vehicles (cells). An approximation of the
average spacing s over each cluster is updated at each time
step ∆t. Applying Godunov scheme, the numerical solution
of the conservation equation is approximated by

st+∆t
i = sti −

∆t

∆n
(Vi+1/2 − Vi−1/2) (11)

where Vi+1/2 and Vi−1/2 are the fluxes (speeds) at the
boundaries of cell i.

Vi+1/2 = V (s1,i, s2,i, ...), Vi−1/2 = V (s1,i−1, s2,i−1, ...)

Therefore, Eq. (11) becomes

st+∆t
i = sti −

∆t

∆n
(V (s1,i, ...)− V (s1,i−1, ...) (12)

Fig. 3: n-t domain discretization, separate coordinate for each
vehicle class

which is similar to the direct difference approximation of the
conservation equations. To obtain a stable solution ∆t should
be restricted to Courant-Friedrichs-Lewy (CFL) condition,
i.e.

∆t ≤ ∆n

max(λ)

where λ is the wave speed. Following the definition of the
flux (speed) at the boundary, the trajectory (location) X [10]
of each cluster can be updated using

X(i, t+ ∆t) = X(i, t) + ∆t ∗ V (s1,i, s2,i, ...) (13)

For each vehicle class, clusters do not overlap each others.
However, clusters of different vehicles class may overlap or
occupy the same position. For example, in Fig. 3 the second
cluster of vehicle class 1 overlaps with two clusters (2and3)
of the other vehicle class. To compute V (s1,i, s2,i), we need
to approximate s2,i value in cluster i of vehicle class 1.

s
(1)
2,i =

∆n1s1,i∫X(i−1)

X(i)
1

s2(x)dx

where s2(x) is a function describing the average spacing s
of class 2 as a function of location x. For the general case,

s
(j)
c,i =

∆njsj,i∫X(i−1)

X(i)
1

sc(x)dx
c = 1, 2, ... (14)

where j and c denote, respectively, the vehicle class cluster
i belongs to and the other vehicle classes. For j = v, the
integration is reduced to ∆nj , thus s(j)

v,i = ∆sj,i.

B. 1-Lagrangian reference frame

In this approach, vehicles of the reference class is clustered
into ∆n sized group. Then, the average spacing s of each
vehicle class over the clusters of the reference class is
updated at each time step ∆t.

For the reference class (r) the average spacing is updated
following Eq. (11), and the trajectory is updated for accord-
ing to Eq. (13).

The average spacing of the remaining vehicle classes is
updated according to:(

sr,i
so,i

)t+∆t

=

(
sr,i
so,i

)t

− ∆t

∆n
(Vo,i+1/2 − Vo,i−1/2) (15)
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where Vo,i±1/2 are the fluxes (speeds) at the cell boundaries.
When the speed of the reference class is always higher than
the rest classes (vr > vo), the direction of the fluxes is to
the left. Thus,

Vo,i+1/2 =
vr,i − vo,i

so,i
(16a)

Vo,i−1/2 =
vr,i−1 − vo,i−1

so,i−1
(16b)

On the other hand, if (vr < vo), the direction of the fluxes is
to the right (see Fig. 4). This suggests that the fluxes should
be defined as

Vo,i+1/2 =
vr,i+1 − vo,i+1

so,i+1
(17a)

Vo,i−1/2 =
vr,i − vo,i

so,i
(17b)

However, the flux definition in Eq. (17) is restricted to the
situation where the fluxes through the edges are non-zero,
i.e. vo,i+1 > vr,i and vo,i > vr,i−1.

Fig. 4: Direction of fluxes through the edges of the cluster

(a) (b)

Fig. 5: Speed density relation for (a) free flow speed of
Cars is greater PTWs (b) free flow speed of PTWs is

greater cars, density of PTWs ρ1 = 0.2veh/m

For traffic flow consisting of PTWs and cars, if the
reference class is PTWs and PTWs have a higher free flow
speed than cars (Fig. 5(b)), the flux definition in Eq. (16)
applies. Nonetheless, if the free flow speed of car is higher
than PTWs (Fig. 5(a)), whichever class is the reference class,
we have both conditions, vr > vo and vo > vs. For this
reason, we give a general definition for the fluxes which
applies irrespective of the order of the vehicle classes speeds.

If vnr,i > vno,i,

Vo,i+1/2 =
(vr,i − vo,i)

so,i
(18a)

Vo,i−1/2 =
max(0, (vr,i−1 − vo,i−1))

(vr,i−1 − vo,i−1)

(vr,i−1 − vo,i−1)

so,i−1
(18b)

If vnr,i < vno,i,

Vo,i+1/2 =
max(0, (vo,i+1 − vr,i))

(vo,i+1 − vir))

(vr,i − vo,i+1)

so,i+1
(19a)

Vo,i−1/2 =
max(0, (vo,i − vr,i−1))

(vo,i − vr,i−1))

(vr,i−1 − vo,i)
so,i

(19b)

C. Follow-the-leader type model from Lagrangian represen-
tation

In continuum flow model, ∆n can take any positive value.
A follow-the-leader type flow is observed when ∆n = 1.
On the discretization scheme, grouping is done per vehicle
classes base, which perfectly works for traffic flows obeying
lane discipline. However, when we have two-wheelers which
do not respect such an ordered flow, a special treatment is
required. The reason is that, in the discretization, clusters of
the same vehicle class are not allowed to overlap or occupy
the same position. Consequently, the parallel movement of
two-wheelers cannot be modeled properly. Thus, we integrate
the side-by-side movement of two-wheelers by introducing
sub-lanes. Accordingly, two-wheelers in a sub-lane adhere to
the follow-the-leader principle.

Fig. 6: View of vehicle in Lagrangian framework when sub-
lane introduced (PTWs and cars)

X(i, t+ ∆t) = X(i, t) + ∆t ∗ V (20)

The location of the vehicles is updated following Eq. (20).
Since the macroscopic speed is defined as a function of the
free space between vehicles (refer [4]), the lateral and longi-
tudinal interaction between vehicle classes can be captured.
For example, the speed of a PTW depends on the number
of vehicles (cars and PTWs on the other sub-lanes) within
the space between the leader the follower PTWs and the
longitudinal spacing. likewise for cars. With this approach,
moving behavior of each vehicle class can be analyzed at
a fine-grained level. Further, additional vehicle (or vehicle
class) specific rules also can be incorporated, making it a
suitable and efficient solution for dealing with cooperative
intelligent transport system (C-ITS).

IV. NUMERICAL RESULTS AND DISCUSSION

To test the validity and accuracy of the proposed dis-
cretization scheme, we compare the numerical results ob-
tained with Eulerian approach and the two Lagrangian meth-
ods. For the simulation experiment, the parameters in Table
I are used. Lax-friedrich discretization scheme is employed
to solve the Eulerian conservation equations [4]. We assume
identical initial densities for the two vehicle classes, cars
(ρ2) and PTWs (ρ1), where ρ1 = ρ2 = 0.15veh/m, for
x ∈ [0, 1400m] and ρ1 = ρ2 = 0.3veh/m, otherwise.

The evolution of the initial density as described by Eu-
lerian and Lagrangian approach is presented in Fig. 7. For
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TABLE I: simulation settings

Maximum speed of cars 15m/s
Maximum speed of PTWs 20m/s
vehicle cluster size 7.5 vehicles
Time step 0.125 s
Space steps (Eulerian) 10m
Road length 3000m
lane width 3.5 m
Number of lanes 1
Simulation time 45s

the 1-LRF approach we consider two cases, by changing
the reference class. Lag. 1 stands for the result when PTWs
are the reference class and Lag. 2 stands for the results
when cars are the reference class. Lag. 3 represents the
result obtained from n-LRF approach. In these cases, the
fundamental diagram takes the shape in 5(b).

(a) PTW density wave

(b) Car density wave

Fig. 7: Lagrangian when PTW is the reference class ( Lag.
1) and cars is the reference class (Lag. 2) vs Eulerian

The density wave of PTWs and cars at time t = 40s are
depicted in Fig. 7(b) and 7(a), respectively. As can be seen,
the results are close to each other except the difference at
the upstream and downstream shock fronts. With this, we
can prove the validity of the proposed discretization scheme
for the case where the slower vehicle is the reference vehicle

class (shown by Lag. 2).
Furthermore, the comparison of the two Lagrangian meth-

ods is presented in Fig. 8. The density waves for cars and
PTWs shown in Figs. 8(b) and 8(a) illustrate that N-LRFs
(Lag. 3) produces a more accurate result than 1-LRF (Lag.
1 and Lag. 2) approach. Specifically, at the high density to
low density and low density to high density transition points
numerical error are observed for the case of Lag. 1 and Lag.
2.

(a) PTW density wave

(b) Car density wave

Fig. 8: Comparison between the two Lagrangian methods,
(Lag. 1, Lag.2 ) for method 2, (Lag. 3) for method 1.

We also test the proposed generic discretization scheme,
for 1-LRF. For this experiment, we consider the fundamental
digram in Fig. 5(a), and the maximum speed of cars=
20m/s and the maximum speed of PTWs= 15m/s. The
rest simulation parameters and the initial density are identical
to the the previous experiments. The evolution of cars and
PTWs density waves is shown in Fig. 9. According to the
result obtained, the evolution is correctly described by the
proposed scheme.

For the case ∆n = 1 the trajectory of the vehicles
on the space-time plane is presented in Fig. 10. To track
the interaction between vehicle classes at different traffic
situations, a traffic light is located at 400m which stays
red for the period t ∈ [0, 40s]. PTWs have two sub-
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Fig. 9: Density waves of PTWs (upper subplot) and cars
(lower subplot), the numerical scheme defined for the general
case of method 2 is applied

groups (sub-lanes) and the clustering of each sub-groups
is done separately. As can be observed from overlapping
trajectories of PTWs, by introducing sub-lanes the side by
side movement of PTWs, in the same lane, can be reproduced
(see the trajectory of vehicles departing the queue). Tracking
the trajectory of individual vehicle is one of the capabilities
of the Lagrangian representation, which is impossible with
the Eulerian representation.

Fig. 10: Trajectories of vehicles, two sub-lanes for PTWs

V. CONCLUSIONS

Lagrangian formulation gives accurate representation, per-
mits to study various traffic feature (e.g. capacity drop, traffic
delay, trajectory) and is applicable for the current traffic
state estimation schemes. Due to these benefits, Lagrangian
representation is preferred over the Eulerian one. In this
paper, we formulate the multiclass LWR model for a traffic
flow consisting of PTWs and cars in Lagrangian coordinates.

We proposed a numerical scheme taking into account the
peculiar features observed in mixed flow of cars and PTWs.

The validity of proposed method checked through simula-
tion experiments. according to the results, our discretization
scheme correctly describes the traffic flow. Moreover, the
simulation results shows that the Lagrangian representation
outperform over the Eulerian representation in terms of
accuracy. The possibility of tracking the trajectory of each
vehicles in Lagrangian representation, facilitate the investi-
gation of different traffic phenomena for C-ITS applications.
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