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ABSTRACT

Knowledge of downlink (DL) channel spatial covariance matrices at
the base station (BS) is of fundamental importance for large-scale ar-
ray systems operating in frequency division duplexing (FDD) mode.
In particular, this knowledge plays a key role in the DL channel state
information (CSI) acquisition. In the massive MIMO regime, tradi-
tional schemes based on DL pilots are severely limited by the co-
variance feedback and the DL training overhead. To overcome this
problem, many authors have proposed to obtain an estimate of the
DL spatial covariance based on uplink (UL) measurements. How-
ever, many of these approaches rely on simple channel models, and
they are difficult to extend to more complex models that take into
account important effects of propagation in 3D environments and of
non-ideal dual-polarized antenna arrays. In this study we propose a
novel technique that takes into account the aforementioned effects,
in compliance with the requirements of modern 4G and 5G system
designs. Numerical simulations show the effectiveness of our ap-
proach.

Index Terms— Massive MIMO, FDD, covariance matrix, 3D
propagation, dual-polarized arrays

1. INTRODUCTION

In this study we propose a technique to estimate the downlink (DL)
channel spatial covariance matrix Rd in realistic massive MIMO
systems operating in the frequency division duplexing (FDD) mode.
Although typical massive MIMO systems operate in time division
duplexing (TDD) mode, the extension of this technology to FDD
mode is of great practical interest [1] [2, Chapter 8.4]. The capabil-
ity of the base stations (BS) to access accurate and efficient estimates
of Rd has emerged as an enabling technology to address practical
implementation issues of FDD large-scale array systems [3, 4], as
it provides long-term information that is essential for beamforming
and for CSI acquisition [5–8].

Conventional FDD systems typically acquire Rd by using tra-
ditional DL training and uplink (UL) covariance feedback schemes.
However, in massive MIMO systems, owing to the large size of the
covariance matrices and to the large DL training overhead, tradi-
tional schemes become unfeasible. To overcome the drawbacks of
conventional systems, in [9], we propose a scheme to infer Rd from
the observed UL covariance Ru. This approach is based on projec-
tion methods and has many benefits. In particular, it eliminates the
continuous DL training and the covariance feedback loop required
by conventional direct Rd estimation techniques. Moreover, it is
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completely transparent to the user equipment (UE), hence it can be
implemented in compliance with current standards.

Related state-of-the-art techniques for UL to DL covariance ma-
trix conversion in FDD systems have been considered in [10–13].
The main limitation of [9] and of the related works [10–12] is that
they are based on simple channel models that do not meet the re-
quirements of modern wireless system designs. More precisely, the
approaches in [10–12] assume ideal uniform linear arrays (ULA) and
seem hard to generalize to arrays with arbitrary geometries and non-
isotropic antennas. Furthermore, [9–12] do not consider propagation
effects of 3D environments and, most importantly, dual-polarized an-
tenna arrays. In contrast, the technique proposed in [13] is able to
cope with these design requirements. However, it is a learning ap-
proach that relies on the acquisition of a training set, and hence it is
significantly more complex.

In this study, we propose a simple training-free approach that
takes into account the aforementioned effects. To this end, in Sect.
2 we present a realistic multipath channel model, and we derive ex-
pressions for Rd and Ru under the assumption of both narrow-band
and wide-band OFDM systems. Then, in Sect. 3, we describe the
proposed scheme that infers Rd from Ru by exploiting the proposed
covariance model. The resulting algorithm is based on the joint es-
timation of the angular power spectra for the vertical (V-APS) and
for the horizontal (H-APS) polarization (defined in Sect. 2). The
key idea behind our approach is the definition of a suitable Hilbert
space that allows us to formalize the joint V-APS and H-APS esti-
mation problem as a convex feasibility problem. This enables us to
apply the standard projection-based solutions used in [9]. Further-
more, in Sect. 4 we provide implementation details for the case of
a cross-polarized uniform planar array (UPA) at the BS. Finally, in
Sect. 5 we evaluate the proposed approach by means of numerical
simulations.

Notation: We use boldface to denote vectors and matrices. (·)T
and (·)H denote respectively the transpose and Hermitian transpose.
By defining the set I ⊂ R2, C0[I] and L2[I] denote, respectively,
the set of all continuous functions and the set of all square Lebesgue
integrable functions over I . <[·] and =[·] denote respectively the
real and the imaginary parts. We denote the imaginary unit by j.
Throughout the paper, superscripts (·)u and (·)d indicate respec-
tively UL and DL matrices, vectors, or functions when we need to
emphasize the dependency on the carrier frequency.

2. SYSTEM MODEL

We consider a MU-MIMO channel between a BS with N � 1 an-
tennas and single-antenna UEs. We denote by h the channel vector
of an arbitrary user. In the remainder of this section we describe
the underlying models that we use for designing our scheme. First,



in Sect. 2.1 we review a widely-considered narrow-band multipath
model that takes into account 3D propagation and polarization ef-
fects. Then, in Sect. 2.2 we present analytical expressions for Rd

and Ru based on the considered channel model. Finally, in Sect.
2.3 we obtain analogous expressions also for wide-band OFDM sys-
tems. Due to the space limitation, all proofs are omitted.

2.1. Realistic Directional Multi-path Model

In this section we consider an extension of classical 2D directional
multi-path channel models (e.g., the ones adopted in [14] and [15])
that take into account 3D propagation and polarization effects. With
this extension, we show later in Sect. 3 that we are able to address the
UL-DL covariance conversion problem by using projection meth-
ods in a Hilbert space different from that in [9]. In more detail,
by dropping the frequency dependent superscript for simplicity, we
model the channel vector h at an arbitrary time t = t0 according to
the 3GPP narrow-band clustered directional multi-path model [16,
Eq. (7.3-22)]. In this model, we have h =

∑Nc
c=1 hc, where

hc :=

√
αc
Np

Np∑
i=1

A(θic)

 e
jϕV V,ic

ejϕV H,ic

√
Kic

ejϕHV,ic

√
Kic

ejϕHH,ic

B(φic)
H .

The notation used here is defined as follows:
• Nc ∈ N denotes the number of clusters of scatterers, andNp ∈ N

denotes the associated number of subpaths. This terminology de-
rives from the classical geometry-based stochastic channel model
(GSCM) [17, Chapter 7].
• θic ∈ R and φic ∈ R are, respectively, either the direction of de-

parture (DoD) and of arrival (DoA) of subpath i of cluster c for the
DL case, or the DoA and DoD of subpath i of cluster c for the UL
case. The directions θic and φic are defined as tuples taking val-
ues in the set Ω := [−π, π]× [0, π], which represents the azimuth
and the zenith of a spherical coordinate system. They are drawn
independently from a continuous joint distribution fc(θ,φ), and
they are assumed to be equal for UL and DL. This DoD/DoA
statistical modeling approach, which is very popular in the litera-
ture [14,15,17], generalizes the model given by 3GPP [16], where
only the main cluster angles are random and the subpaths angles
are obtained from tables.
• A : Ω → CN×2 is the dual polarized antenna array response

of the BS. In FDD systems, Ad is different from Au. The
columns of A are denoted by [aV ,aH ] := A, and they rep-
resent the array responses for, respectively, the vertical and the
horizontal polarization. Given an element aij of A, we assume
<{aij},={aij} ∈ C0[Ω].
• αc > 0 is the average power of all the subpaths of cluster c, and

it is assumed to be equal for UL and DL, which is a reasonable
assumption for current FDD systems [18].
• B : Ω → R1×2 is the frequency independent dual polarized an-

tenna radiation pattern of the UE. The columns of B are denoted
by [bV , bH ] := B, and they represent, respectively, the radiation
patterns for the vertical and for the horizontal polarization. We
assume <{bV },={bH} ∈ C0[Ω].
• The random matrix

Mic :=

 ejϕV V,ic
1√
Ki

ejϕV H,ic

1√
Ki

ejϕHV,ic ejϕHH,ic

 ,
models the fading of the vertical and horizontal polarization,
and also of the cross-polarization terms caused by the polar-

ization changes that the electromagnetic waves undergo dur-
ing the propagation. The components of the tuple ϕic :=
{ϕV V,ic, ϕVH,ic, ϕHV,ic, ϕHH,ic} are i.i.d. random variables,
uniformly distributed in [−π, π]. The UL and DL phases are
assumed independent. The parameters Kic ∈ R, usually termed
as cross polarization power ratios (XPRs), are assumed to be i.i.d.
random variables and to be equal for UL and DL. This model is
identical to the one suggested by [17, Chapter 7], where the two
polarizations are assumed to experience independent fading.

We point out that, in contrast to [16, Eq. (7.3-22)], this model
does not take into account the time dependent phase term ej2πνict,
where t is the time and νic is the Doppler shift of subpath i of cluster
c, which models the short-term time evolution of the channel. How-
ever, as the focus of this work is on the long-term channel statistics,
we consider only a long-term time evolution model, given in a sta-
tistical sense. More precisely, we model the time evolution of the
channel as follows. The fast time-varying parameters θic, φic, Kic

and ϕic are drawn independently and kept fixed at intervals corre-
sponding to the coherence time Tc (“block-fading” assumption). The
slow time-varying parameters αc and fc are assumed constant over a
window TWSS , with TWSS � Tc. This model reflects the classical
“windowed WSS” assumption, which approximates the channel as
wide-sense stationary (WSS) for a given time window TWSS , which
is usually several order of magnitude larger than Tc [5, 14].

2.2. Expression for the Spatial Covariance Matrix

In the next proposition we present an expression for the spatial co-
variance matrices Rd and Ru. The important aspect to note is that
Rd and Ru can be represented by means of integral expressions
involving frequency dependent functions completely defined by the
BS array and unknown frequency invariant functions. This structure
is the core assumption behind the algorithms proposed in Sect. 3.

Proposition 1. By assuming the model introduced in Sect. 2.1,
the spatial covariance matrices Rd := E

[
hd(hd)H

]
and Ru :=

E
[
hu(hu)H

]
take the following forms:

Rd =

∫
Ω

ρV (θ)adV (θ)adV (θ)Hdθ +

∫
Ω

ρH(θ)adH(θ)adH(θ)Hdθ,

(1)

Ru =

∫
Ω

ρV (θ)auV (θ)auV (θ)Hdθ +

∫
Ω

ρH(θ)auH(θ)auH(θ)Hdθ,

(2)
where the functions ρV , ρH : Ω → R+, referred to, respectively, as
“vertical polarization angular power spectrum” (V-APS) and “hor-
izontal polarization angular power spectrum” (H-APS), are defined
to be

ρV (θ) :=

Nc∑
c=1

αc

∫
Ω

fc(θ,φ)

(
b2V (φ) +

1

K
b2H(φ)

)
dφ,

ρH(θ) :=

Nc∑
c=1

αc

∫
Ω

fc(θ,φ)

(
b2H(φ) +

1

K
b2V (φ)

)
dφ.

Here 1/K := E[1/Kic] is the average effect of the XPRs Kic.

By recalling the notation defined in Sect. 2.1, we highlight that
the V-APS and the H-APS do not depend on the carrier frequency.
Furthermore, we have that ρV , ρH ∈ L2[Ω].

2.3. OFDM Systems

We now show that expressions (1) and (2) (and hence the algorithms
in Sect. 3) carry over to wide-band OFDM systems by extending



the model in Sect. 2 with the approach in [16] and [17, Chapter 6]
for the “tapped delay line” model. More precisely, we consider a
wide-band channel in an under-spread environment; i.e., with delay
spread Ts � Tc. By denoting by l ∈ N the discrete time index of
the lth tap of the sampled impulse response, the channel vector h̃[k]
in the sub-carrier domain is given by [19, Chapter 3.4]:

h̃[k] =

L−1∑
l=0

h[l]e
−j

2πkl

Ns , h[l] =

Nc∑
c=1

hcδ[l − lc], (3)

where {hc}c=1,...,Nc are defined in Sect. 2.1, lc ∈ N denotes the
discrete time delay of all the subpaths belonging to cluster c, L is the
impulse response length, Ns is the chosen OFDM block length, and
k = 0, . . . , (Ns − 1) is the sub-carrier index. With this model in
hand, we derive the following expressions for the spatial covariance
matrices in the sub-carrier domain. They are equivalent to the ones
given by (1) and (2), and they do not depend on the sub-carrier index.

Proposition 2. By assuming the wide-band OFDM channel model
in (3), the spatial covariance matrices Rd

k := E
[
h̃d[k](h̃d[k])H

]
and Ru

k := E
[
h̃u[k](h̃u[k])H

]
for a given sub-carrier k satisfy

Rd
k = Rd and Ru

k = Ru, where Rd and Ru are given by (1) and
(2), and they do not depend on the sub-carrier index.

3. CHANNEL SPATIAL COVARIANCE CONVERSION

We now propose a practical FDD DL covariance estimation scheme
based on the channel model described in Sect. 2. The estimates
of the DL channel covariance matrix Rd are obtained from the UL
channel covariance matrix Ru by performing the following two-step
scheme:

1. Given Ru, we obtain an estimate (ρ̂V , ρ̂H) of (ρV , ρH) from
(2) and known properties of (ρV , ρH).

2. We compute the estimated Rd by using (1) with (ρV , ρH)
replaced by their estimates (ρ̂V , ρ̂H).

In this section, we assume perfect knowledge of Au, Ad, and Ru,
while later in Sect. 4 and 5 we assume that the BS have access only
to noisy estimates of Ru.

The core idea of the proposed scheme is that it is possible to
address the joint V-APS and H-APS estimation problem of the first
step as a convex feasibility problem, which enables us to apply so-
lutions based on projection methods. We point out that the related
approaches in [9] cannot address properly the problem considered in
this paper because they are based on a Hilbert space that is not ap-
propriate to represent the estimandum (ρV , ρH) resulting from the
channel model we consider here.

To derive the proposed approaches, we first rewrite (2) as a sys-
tem of equations of the form

rum =

∫
Ω

ρV (θ)guV,m(θ)d2θ +

∫
Ω

ρH(θ)guH,m(θ)d2θ, (4)

where rum ∈ R is themth element of ru := vec(
[
<{Ru} ={Ru}

]
),

gu(·),m : Ω → R is the corresponding mth coordinate function of
vec(

[
<{au(·)(θ)au(·)(θ)H} ={au(·)(θ)au(·)(θ)H}

]
), and m =

1, . . . ,M , with M = 2N2. Now let H := L2[Ω] × L2[Ω] be
the Hilbert space of tuples of bivariate square-integrable real func-
tions equipped with the following inner product

〈(fV , fH), (gV , gH)〉 :=

∫
Ω

fV (θ)gV (θ)dθ +

∫
Ω

fH(θ)gH(θ)dθ.

(5)
Based on the model in Sect. 2, (ρV , ρH) and (guV,m, g

u
H,m) are mem-

bers ofH, thus (4) can can be rewritten as
rum = 〈(ρV , ρH), (guV,m, g

u
H,m)〉 m = 1, . . . ,M.

By using the set-theoretic paradigm [20–23], we proposed to obtain
an estimate (ρ̂V , ρ̂H) of (ρV , ρH) by solving one of the two follow-
ing feasibility problems:

find (ρ̂V , ρ̂H) ∈ V := ∩Mm=1Vm 6= ∅, (6)
find (ρ̂V , ρ̂H) ∈ C := V ∩ Z 6= ∅, (7)

where Vm := {(hV , hH) ∈ H : 〈(hV , hH), (guV,m, g
u
H,m)〉 = rum}

are hyperplanes and Z := {(hV , hH) ∈ H : (∀θ ∈ Ω) hV (θ) ≥
0, hH(θ) ≥ 0} is the cone of tuples of non-negative functions. We
solve problem (6) by computing the projection onto the linear vari-
ety V , which has a well-known analytical expression. On the other
hand Problem (7), which takes into account also the positivity of ρV
and ρH , has no analytical solution in general, but it can be solved
by means of iterative projection algorithms. Among many possible
choices, in this work we adopt the so called extrapolated alternating
projection method (EAPM) because of its fast convergence proper-
ties. For the details about the solutions of the considered feasibility
problems, we refer to [9] and to the references therein.

The choice of solving either (6) or (7) leads to two variants of the
proposed scheme with different complexity and accuracy, and they
are referred here as Algorithm 1 and Algorithm 2. More precisely,
Algorithm 1 can be implemented as a simple matrix multiplication
of the form rd = Fru, where F depends just on the array geometry
and can be computed once for the entire system lifetime. In con-
trast, Algorithm 2 requires iteratively the evaluation of integrals of
the form

∫
Ω
x(θ)d2θ (see [9] for details).

4. IMPLEMENTATION FOR UNIFORM PLANAR ARRAY
WITH PAIRS OF CROSS-POLARIZED ANTENNAS

In this section we describe implementation aspects for a cross-
polarized uniform planar array (UPA), defined here as a rectangular
grid of identical and equispaced antenna elements, each of them
composed of a pair of two vertically polarized antennas with a po-
larization slant of ±45◦. We denote by NV and NH the number
of vertical and horizontal elements, respectively, and by d the inter-
antenna spacing. We further denote by x(u, v, 1) the antenna in
position (u, v), u = 1, . . . , NV and v = 1, . . . , NH , with +45◦ po-
larization slant, and by u(u, v, 2) the co-located antenna with −45◦

polarization slant. For this antenna array, the covariance matrix has
the following structure:

Proposition 3 (Structure of the UPA Covariance Matrix). By let-
ting h :=

[
hT1 hT2

]T
, where the channel coefficient for an-

tenna x(u, v, k) corresponds to the nth element of the vector
hk ∈ CNV NH×1, with n = (u − 1)NH + v, and by assuming
without loss of generality that NV ≥ NH , the covariance matrix
takes on the following block structure:

R =

[
B1 BH

2

B2 B3

]
∈ C2NV NH×2NV NH ,

where every macro-block Bl ∈ CNV NH×NV NH , l = 1, 2, 3, is
Hermitian and it has the following block structure:

Bl =


Bl,1

Bl,2 Bl,1

Bl,3 Bl,2 Bl,1

...
...

...
. . .

Bl,NV . . . Bl,3 Bl,2 Bl,1

 ,
where every block Bl,i ∈ CNH×NH , i = 1, . . . NV has identical
diagonal entries bli, and every block Bl,1 is Hermitian Toeplitz.



Table 1. General simulation parameters
Carrier frequency (fc) 1.8 GHz for UL, 1.9 GHz for DL

System type Narrow-band or wide-band OFDM
BS 8x4 cross-polarized UPA

d = λu/2
UE Single antenna, vertically polarized

Antennas radiation pattern 3GPP [16, Section 7.1], 3D-UMa

The proof is omitted here but we point out that it follows by
direct inspection of the matrices aV (θ)aV (θ)H and aH(θ)aH(θ)H

of (1) and (2), where the elements of the array responses aV and aH
are arranged with the same scheme adopted for h.

The structure of the UPA covariance matrix R described in Prop.
3 has the following consequences in practical implementations of the
algorithms presented in Section 3:
• R can be bijectively vectorized by using only M = 6(NH +

(NV − 1)(N2
H −NH + 1)) real numbers, compared to the M =

2(NVNH)2 elements given by the vec(·) operation in Sect. 3.

• Any estimate R̂ of the covariance matrix R (for example, ob-
tained from the sample covariance matrix) can be further im-
proved by substituting each element (i, j) with the arithmetic
average of all the elements that are assumed to be identical.

5. SIMULATION

In this section we evaluate the proposed algorithms by simulating
a communication scenario with system parameters given in Table
1. The channel coefficients are given by the narrow-band multipath
model described in Sect. 2.1, with parameters randomly drawn as
follows:
• Cluster powers αc are drawn uniformly from [0, 1] and further

normalized such that
∑Nc
c=1 αc = 1.

• The XPRs values Kic are drawn from a log-Normal distribution
with parameters (µXPR, σXPR) = (7, 3)[dB]. This is identical to
the 3GPP model [16, Sect. 7.3, Step 9], with parameters for 3D-
UMa, NLOS propagation.
• The angles θic, φic are generated from the jointly Gaussian

distribution fc(θ,φ) = fBS,c(θ)fUE,c(φ), where fBS,c ∼
N (µBS,σ

2
BSI) and fUE,c ∼ N (µUE,σ

2
UEI), and where the clus-

ters means and angular spreads
µBS := [µBS,a µBS,z], σ2

BS := [σ2
BS,a σ2

BS,z],

µUE := [µUE,a µUE,z], σ2
UE := [σ2

UE,a σ2
UE,z],

are drawn as follows:
µBTS,a, µUE,a are uniformly drawn from

[
− 2π

3
, 2π

3

]
, µBTS,z, µUE,z

from
[
π
4
, 3π

4

]
, σBTS,a from [3◦, 5◦], σUE,a from [5◦, 10◦], σBTS,z

from [1◦, 3◦], and σUE,z from [3◦, 5◦]. This choice of parameters
is inspired by experimental properties of ρV and ρH given by
[16], e.g. the elevation angular spread is usually narrower than
the azimuth one.
• To simulate different UE antenna orientation, the UE antenna ar-

ray response is given by applying a 3D rotation to the antenna
radiation pattern as described in 3GPP [16, Sect. 5.1.3], with pa-
rameters α, β, γ ∼ U

[
0, π

6

]
.

The BS is assumed to have access to the estimated UL covari-
ance matrix R̂u obtained from Ns = 1000 noisy channel esti-
mates ĥu = hu + z, z ∼ CN (0, σ2

zI) i.i.d., with noise power
defined by setting an average per-antenna SNRest to SNRest :=
tr{Ru}/(Nσ2

z) = 10 [dB], where N = 2NVNH = 64 denotes the
number of BS antennas. The estimate R̂u is computed by projecting
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Fig. 1. Empirical CDF of the squared error (SE)

the sample covariance matrix onto the space of positive semi-definite
matrix C as described in [9, Sect. 4.2], and by applying the correc-
tion procedure described in Sect. 4. Furthermore, the proposed algo-
rithms are implemented by exploiting the efficient vectorization for
UPA described in Sect. 4.

The accuracy of an estimate R̂d of Rd is evaluated in terms of
the square error SE := e2(Rd, R̂d), where e(·, ·) is a given error
metric. In particular, we consider as error metrics the normalized
Frobenius norm and the 90% Grassmanian principal subspace dis-
tance defined in [9, Sect. 5].

To evaluate the proposed algorithms we use as a baseline an es-
timate of the DL covariance matrix obtained from ĥd samples with
the same technique for the estimation of R̂u. Furthermore, we also
compare the proposed approaches with a solution that relies on a
pre-stored dictionary of covariance matrices (R̂u, R̂d) and based on
the Wiener filter, similar to the approach proposed in [13] that was
already analyzed with the preliminary results in [9, Sect. 5]. The
results are shown in Figure 1, which shows the empirical cumulative
distribution function (CDF) of the SE for the two chosen metrics,
obtained by drawing independent realizations of the quantities that
are assumed to stay fixed for TWSS (i.e. by drawing a new V-APS and
H-APS). The simulation confirms that the proposed algorithms are
able to provide an accurate DL estimate by using only UL training,
thus it can be used as an effective solution to the DL channel covari-
ance acquisition problem. With respect to Algorithm 1, Algorithm
2 is slightly more accurate, as it considers also the non-negativity
property of the V-APS and H-APS, but it pays a price in terms of
increased complexity. We point out that, as opposed to the Wiener
filter approach and to other techniques based on supervised learning
tools, the two proposed algorithms do not require any training phase.
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