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Abstract
Research in anti-spoofing for automatic speaker verifica-

tion has advanced considerably in the last three years. Anti-
spoofing is a particularly difficult pattern classification problem
since the characteristics of spoofed speech vary considerably
and can never be predicted with any certainty in the wild. The
design of features suited to the detection of unpredictable spoof-
ing attacks is thus a staple of current research. End-to-end ap-
proaches to spoofing detection with exploit automatic feature
learning have shown success and offer obvious appeal. This pa-
per presents our efforts to develop such a system using recurrent
neural networks and a particular algorithm known as neuroevo-
lution of augmenting topologies (NEAT). Contributions include
a new fitness function for network learning that not only results
in better generalisation than the baseline system, but which also
improves on raw performance by 22% relative when assessed
using the ASVspoof 2017 database of bona fide speech and re-
play spoofing attacks. Results also show that mini-batch train-
ing helps to improve generalisation, a technique which could
also be of benefit to other solutions to the spoofing detection
problem.

1. Introduction
Automatic speaker verification (ASV) [1, 2] offers a convenient,
reliable and cost-effective approach to person authentication.
Voice-based authentication is nowadays used in a plethora of
logical and physical access scenarios, e.g. for telephone bank-
ing or for smartphone logon [3]. Despite the success, vulner-
abilities to spoofing (also known as presentation attacks) give
reason for caution. Without adequate countermeasures, fraud-
sters can manipulate the normal operation of an authentication
system by masquerading as genuine users and hence gain unau-
thorised access to protected resources or services. Vulnerabili-
ties to presentation attacks are clearly inadmissible; in addition
to the immediate security concerns, they undermine confidence
in ASV technology.

It is known that ASV systems can be vulnerable to spoof-
ing attacks in the form of impersonation, synthetic speech, con-
verted voice and replay [4]. Impersonation (the imitation of a
target speaker by another person) requires a certain skill and
is generally considered to pose only a modest risk [5]. While
the threats posed by synthetic speech and converted voice are
potentially severe, given that their implementation requires spe-
cialist expertise, the actual risk may be relatively low. Replay
attacks arguably present the greatest threat. Replay attacks in-
volve the (surreptitious) capture and subsequent playback to
the ASV system of a speech sample captured from a genuine
speaker/user. The threat and risk posed by replay attacks is

significant: replay attacks can be mounted easily with widely
available, consumer-grade audio recording and playback de-
vices (e.g. smart phones) and can be especially difficult to dis-
tinguish from genuine, bona fide speech samples.

Efforts to develop spoofing countermeasures, also known
as presentation attack detection (PAD) systems, are now well
under way; the study of spoofing countermeasures for ASV is
today an established area of research [6]. The first competi-
tive evaluation, namely the ASV spoofing and countermeasures
(ASVspoof) challenge [7], was held in 2015. It promoted the
development of countermeasures to protect ASV from voice
conversion and speech synthesis attacks. The second edition
of ASVspoof held in 2017 switched focus to the mitigation of
replay attacks [8, 9, 10], the focus in this paper.

The many submissions to the ASVsoof 2017 challenge can
be classified into one of two different approaches. The first set
of approaches involves the combination of hand-crafted features
with generative classifiers such as Gaussian mixture models
(GMM) and i-vectors/PLDA systems, e.g. [11, 12, 13, 14, 15,
16, 17, 18]. The second of approaches explored the use of dis-
criminative classifiers such as support vector machines (SVMs)
and deep neural networks (DNNs) [13, 16, 19, 17, 20, 21, 18].

Deep learning techniques, in particular, proved to be espe-
cially successful, with five of the top ten performing systems
submitted to the ASVspoof 2017 challenge employing some
form of automatic feature learning and/or classification1. The
work in [16] used convolutional neural networks for the auto-
matic learning of features from magnitude spectrograms with a
combination of convolutional and recurrent layers in an end-to-
end solution.

End-to-end approaches to anti-spoofing have obvious ap-
peal. In more traditional fields of speech processing, such as
ASV, there is a substantial body of knowledge that has been
acquired over decades of research. This knowledge has been
exploited to design extremely effective hand-crafted features.
Even in the case of ASV, though, automatic approaches to fea-
ture learning are bringing advances in performance [22]. Re-
search in anti-spoofing is comparatively embryonic. The his-
tory of benchmarking evaluations spans only three years and
the quest for better-performing, hand-crafted features is a staple
of current research [1]. That the natural variation in spoofing
attacks is so great makes hand-crafted feature design especially
difficult. In the absence of an extensive body of background
knowledge or proven features, and with the availability of large
datasets of spoofed speech, automatic feature learning and end-
to-end solutions present an opportunity to fast track progress.

1A summary of top submissions is available at http://www.
asvspoof.org/slides_ASVspoof2017_Interspeech.
pdf

http://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
http://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
http://www.asvspoof.org/slides_ASVspoof2017_Interspeech.pdf
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Figure 1: Mutation of weight (here symbolized by connection
thickness), node adding and crossover: the three forms of net-
work evolution. Figure reproduced from [24].

Motivated by the obvious appeal, by recent work in a sim-
ilar direction [23] and by the success of the same technique for
automatic speaker recognition [24], we have explored a partic-
ular approach to automatic feature learning in a truly end-to-
end solution to anti-spoofing. It is based upon a class of algo-
rithms known as topology and weight evolving neural networks
(TWEANNs), specifically the neuroevolution of augmenting
topologies (NEAT) algorithm proposed in [25]. The novel con-
tributions in this paper are four-fold: (i) we present the first ap-
plication of neuroevolutive learning to the anti-spoofing prob-
lem; (ii) we propose a fitness function that is better adapted to
audio classification problems; (iii) we demonstrate the merit of
automatic learning and end-to-end optimisation in tackling the
so-called generalisation problem, namely solutions that do not
generalise well to test data containing spoofing attacks different
to those encountered in training and development, and (iv) we
demonstrate that the proposed approach not only improves on
generalisation, but that it also brings a significant improvement
to the ASVspoof 2017 baseline results.

The remainder of the paper is organised as follows. Sec-
tion 2 provides an overview of the NEAT algorithm and de-
scribes recent work that facilitates its application to audio clas-
sification tasks. Section 3 introduces a new fitness function tai-
lored to the anti-spoofing problem. Experimental setup and re-
sults are the focus of Sections 4 and 5. Conclusions and ideas
for future research are presented in Section 6.

2. NEAT
This section introduces the neuroevolution of augmenting
topologies (NEAT) algorithm and describes its application to
acoustic signals and their classification. Also described is a
modification to the fitness function which was found to give
better performance when NEAT was applied to audio classifi-
cation tasks. The focus of this section is on past work. New
contributions are the focus of Section 3.

2.1. Original work

The NEAT algorithm was introduced by Stanley and Miikku-
lainen in 2002 [25]. In similar fashion to other topology
and weight evolving neural network (TWEANN) approaches,
NEAT is a particularly elegant algorithm which exploits the ap-
peal of both genetic algorithms and neural networks. The NEAT
algorithm is initialised with a pool of candidate networks, all
potential solutions to a given classification task. Inputs may
be data samples or features whereas outputs are some form of
score. The pool of networks evolves iteratively over many iter-
ations, with the pool of networks within one iteration forming a
generation of solutions. At each iteration, networks can mutate
through the addition of new nodes or connections, the modifi-
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Figure 2: A NEAT genotype is a direct and self-contained tex-
tual representation of an unique network, which contains (as
in nature) more information than that which can be observed
in the resulting structure. Figure reproduced with permission
from [25].

cation of connection weights or upon a crossing over of a pair
of different networks (see Fig. 1).

In order to avoid confusion, it is stressed that TWEANNs
make no use of backpropagation or gradient descent algo-
rithms during training. Networks evolve only as a result of
mutation according to the processes illustrated in Fig. 1. A
measure of performance is required to control network se-
lection and evolution. Performance is gauged according to
the fitness function.

Since NEAT operates on a set of minimal initial structures
and augments complexity gradually at each generation in or-
der to solve the problem in hand, even fully evolved networks
tend to be considerably less complex than typical deep neural
network solutions. The relatively simple structure of NEAT net-
works means that they are well suited to embedded applications.

Network characteristics are described in the form of a geno-
type with direct encoding. The genotype is a compact rep-
resentation of the structure (units and connections) and asso-
ciated parameters (weights). The information encoded within
identifies a unique individual (see Fig. 2). The chronological
sequence of structural changes that occur between generations
are recorded in the form of historical markings. In resolving
the so-called structure permutation problem [26] they provide
an elegant means of representing gene alignment which dictates
which networks among a population are compatible for cross-
over.

Evolution is controlled according to the concept of so-
called fitness. The fitness function is used to determine which
networks within a current generation will contribute to form the
next generation of networks (see Fig. 3). Fitness is evaluated
according to the similarity between classification results with
the labels from suitable quantities of training data. The NEAT
algorithm is hence a form of supervised learning.

Structural innovation is fuelled by protecting a proportion
of networks within a population that may not have the high-
est fitness. These networks may nonetheless have potential to
produce better performing networks in later generations. This
is achieved by clustering the population of networks into sets
of species according to a measure of compatibility encoded in
the genotype. At every iteration, all networks within the new
population are assigned to the species with which they are most
compatible. In the event that one or more networks are incom-
patible with the current set of species, then a new species is
created. The best individuals belonging to each species are then
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Figure 3: An illustration of one iteration of evolution: the per-
formance of each network in a population is assessed by the
means of a fitness function and the best individuals are se-
lected to form a new generation of networks. Figure reproduced
from [24].

selected, meaning networks compete for the best fitness within
a niche. This concept of speciation serves to protect novelty and
diversity within the population which hence has greater poten-
tial as a whole to solve the problem in hand.

NEAT has been applied successfully to a multitude of tasks
such as bipedal locomotion [27], automated computer game
playing [28], as an approach to general acoustic classifica-
tion [29], audio effect generation [30] and sound event detec-
tion [31]. The work in [29] was the first to apply NEAT to the
classification of raw audio.

2.2. Application to raw audio

A high-level overview of the framework proposed in [29] by
which NEAT can be applied to the processing and classifica-
tion of raw audio signals is illustrated in Fig. 4. Inputs con-
sist of a bias unit (set to unity) and an input unit which is fed
sample-by-sample by a raw audio signal. The latter is prop-
agated through the network at one activation step per sample.
There are two output units, a gate unit yr and a score unit yd,
each of which produce one output sample per input sample. The
network topology between inputs and outputs is of the form il-
lustrated in Fig. 1. It is naturally recurrent in nature; there is
no notion of hierarchical layers and no restrictions on links be-
tween units. With the exception of score and gate output units
which have identity and binary step activation functions respec-
tively, all units have rectified linear activation functions.

Connections can be made freely between any pair of units.
As a result, evolved networks may contain cyclical unit con-
nections (e.g. units connected to themselves or to other units
which influence their input). This classifies NEAT struc-
tures as recurrent neural networks.

The product of the gate and score output units is averaged
over K samples2, thereby producing a weighted score yw:

yw[i] =

∑K−1
j=0 yd[i− j]× yr[i− j]∑K−1

j=0 yr[i− j]
(1)

where i is the sample index and where the gate output yr is
the weight. As proposed in [29], the weighting produced by

2The work in [29] proposed a flexible streaming/segmental or file-
based approach were the value of K is adjusted accordingly. All work
reported in this paper relates to a file-based processing approach where
K is set to the number of samples in a file.

the gate can be continuous, or may be constrained to a binary
weighting {0,1}. While the behaviour of the gate is learned
automatically, it will act naturally as a form of attention mech-
anism [32, 33], i.e. to emphasise the most salient output scores.

2.2.1. Fitness estimation

As in the original work, network performance is measured
through a fitness function. The fitness function is key since it is
used as a factor in the control of the evolutionary process. The
work in [29] used a generic squared-error-based fitness function
defined according to:

F = 1/

[
1 +

N−1∑
i=0

(g[i]− yw[i])2
]

(2)

where g is a ground truth signal of classification labels, e.g. 0
and 1. The summation over N reflects the difference between
labels and averaged scores, i.e. the inverted error gives a mea-
sure of reliability, or fitness.

Our own investigations using the NEAT algorithm for an
automatic speaker recognition task [24] showed that the fitness
function in Eq. 2 is not sufficiently informative as a means of
guiding evolution. Eq. 2 reflects the average proximity of net-
work scores to ground truth labels, rather than classification
reliability. The latter is often measured with the application-
neutral equal error rate (EER). Use of the EER was also found
to be sub-optimal; it reflects the reliability of a classifier at a
single operating point, i.e., a fixed threshold.

Being independent to a specific operating point, the receiver
operating characteristic (ROC) profile is a more informative
measure of classifier reliability. ROC profiles may be reduced to
a single scalar by measuring the so-called area under the ROC
(AUROC) [34]. The AUROC is well tailored to classification as
it is proportional to the ability of a classifier to attribute higher
scores to positive trials than to negative trials. The work in [24]
reports the replacement of Eq. 2 with an AUROC function cal-
culated using the trapezoid rule [35].

2.2.2. Mini-batching

Mini-batch training can be used [24] to manage computational
effort and to avoid over-fitting. Mini-batching is employed in
a similar manner as with the stochastic gradient descent algo-
rithm [36] whereby each iteration of training is performed with
different batches of data, each a subset of the training partition.
The learning of each generation with a different subset of train-
ing data promotes network novelty, reduces computation and
encourages the evolution of networks that will have better po-
tential to generalise well to unseen data.

The work in [24] defines a pair of mini-batch parameters
Mt and Mi. They represent the fraction of available target and
impostor data used for each step for the mini-batch training of
an automatic speaker verification system. As an example, the
setting of both parameters Mt=Mi=100% is equivalent to no
mini-batching, with every generation being fed with the full par-
tition of training data. In contrast, the setting of Mt=Mi=50%
implies two mini-batches each comprising half of the available
target and impostor training data. In this case, the composition
of the mini-batches is reset and re-partitioned at random for ev-
ery other generation.

Given the focus of this paper upon anti-spoofing rather than
automatic speaker verification, notations Mt and Mi are re-
placed with Mb (bona fide speech) and Ms (spoofed speech).
This notation is adopted throughout the remainder of this paper.
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Figure 4: End-to-end setup and propagation scheme for audio classification. Figure reproduced from [24].

3. End-to-end anti-spoofing
This section describes the adaptation of the NEAT approach to
the anti-spoofing problem. It encompasses the novel contribu-
tions claimed in this paper. These comprise a new fitness func-
tion which was found to give improved performance in the case
of anti-spoofing, in addition to training and optimisation (net-
work selection) procedures.

3.1. Ease of classification3

Experiments to evaluate the performance of NEAT for anti-
spoofing using the previously reported fitness functions [29, 24]
showed a tendency to oscillate around local optima, namely net-
works in subsequent generations that correct previous classifi-
cation errors while introducing new ones. Such oscillations can
be avoided by using an enhanced fitness function which rewards
progress rather than raw performance. Progress infers better
networks which correct previous classification errors without
introducing new ones.

An expression for fitness which rewards progress requires
the definition of a measure of segment (file) classification ease.
Intuitively, this is proportional to how high or how low is the
score for segment s compared to the average impostor (spoofed)
or target (bona fide) scores respectively; For every network n
and bona fide segment s with score θs, the classification ease is
given by:

ls,n ← 1− #{spoofed segments with score > θs}
#{spoofed segments} (3)

where the right-most term is akin to the false acceptance rate
for the given threshold. Conversely, for every spoofed segment
with score θs, the classification ease is given by is given by:

ls,n ← 1− #{bona fide segments with score < θs}
#{bona fide segments} (4)

where the right-most term is now akin to the false rejection rate
for the given threshold. A pooled measure of the classification

3The EOC fitness function was developed in collaboration with
Adrien Daniel while he was employed at NXP Semiconductors.

ease may then be obtained by averaging the classification ease
over the number G of networks in the population:

ps ←
∑

n ls,n

G
(5)

where ls,n is set according to Eqs. 3 or 4 depending on whether
segment s is a bona fide or spoofed respectively. A measure of
network fitness F is then estimated across all segments accord-
ingly to:

F =

∑
s ls,n(1− ps)∑

s(1− ps)
(6)

where (1 − ps) acts to weight the contribution of the classifi-
cation ease for segment s, and network n. This approach to
fitness estimation is from here on in referred to as the ease of
classification (EOC).

According to Eq. 6, the correct classification of segments
that were already correctly classified by networks in an earlier
generation thus contributes little to the estimation of fitness for
networks in the subsequent generation; there is little reward for
learning what was already known by an earlier generation. The
EOC approach to fitness estimation steers evolution to classify
correctly a diminishing number of difficult segments.

3.2. Training

The size of each population is fixed across generations and set
to 150 networks. The algorithm is initialised (generation zero)
with 150 minimal perceptron-like networks, all of which share
the common setup described in Section 2.2. All input signals
are normalised to within a range of [-1,1]. The choice of recti-
fied linear unit activation functions results in faster processing,
but also increases the chances of saturation. The random initial-
isation of weights within a [−4, 4] range was found to manage
the risk of saturation.

Experiments were conducted with both AUROC (Sec-
tion 2.2) and EOC (Section 3.1) fitness functions, with and with-
out mini-batching. Audio signals containing either bona fide or
spoofed speech are fed to each network segment-by-segment
(file-by-file) and the network is trained in order to distinguish
between the two. The AUROC fitness function is evaluated with
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Figure 5: An illustration of fitness evolution for the fittest net-
work of each generation when using AUROC (top) and EOC
(bottom) fitness functions. The dashed red profiles illustrates the
fitness evolution with mini-batch training whereas the mostly-
monotonic blue profiles shows the fitness without mini-batch
training.

K in Eq. 1 set to the number of samples in each file. All net-
works are reset after the processing of each file.

At each iteration (generation), a subset of the fittest (best
performing) networks among each species is determined and
used to evolve the next generation of networks according to the
procedure outlined in Section 2.1. Evolution proceeds either
until the fitness converges or until a pre-determined maximum
number of generations is reached.

Fig. 5 depicts the improvement in network fitness (verti-
cal axis) over 200 generations (horizontal axis). Illustrated is
the evolution in fitness for four different configurations: the
two fitness metrics AUROC and EOC, both with and without
mini-batch training (Mb = 25% and Ms = 33%). Each
point on each profile shows the fitness of the single, fittest net-
work among the 150 in the population. In both graphs the
dashed red curves relate to mini-batch training. Neither profile
is monotonic since the data changes at each generation. Con-
versely, solid blue curves show fitness without mini-batch train-
ing (Mb =Ms = 100%), hence the largely monotonic profiles
(the fitness of EOC optimised networks is not strictly monotonic
on account of the different weights applied to each segment dur-
ing fitness estimation, as described in Section 3.1).

Profiles in Fig. 5 show that mini-batching is of more benefit
when used with the EOC fitness function. Changes in training
data can be interpreted as optimisation towards a moving target.
This fuels novelty instead of over-fitting to a fixed training set.
These observations would suggest a potential for better gener-
alised spoofing detection. It should be noted, however, that the
final objective is not higher fitness for training data, but the clas-
sification reliability assessed using test data.

3.3. Testing

Networks with high measures of fitness may not necessarily be
those which give the best performance in terms of the spoofing
detection EER. This is especially true when using mini-batch
since one random subset of training data could be fortuitously
easier than another subset (or indeed the full set). In addi-

tion, measures of fitness derived using the EOC fitness function
may not be especially well correlated with classification perfor-
mance; increases in EOC reflect the learning of new information
rather than raw performance.

As a result, the fittest network identified from training may
not be that which gives the lower EER. In order to observe the
evolution in classification performance, the 10 best networks of
each generation identified using the fitness function are evalu-
ated using development data and with an EER metric.

The single network with the lowest EER within each group
of 10 is named the generation champion and the overall lowest
EER network among the set of generation champions is denoted
the grand champion. The latter is selected for testing/evaluation
where it is used without further modification.

4. Experimental setup
This section describes the database, protocol and metric used
for all experiments reported in this paper. Also described is
the baseline system and specific configuration details for the
proposed end-to-end approach to anti-spoofing.

4.1. Database, protocol and metric

Experiments were performed using Version 2.04 of the
ASVspoof 2017 database [37]. The database originates from
the RedDots database5 which was collected by volunteers from
across the globe using mobile devices, in the form of smart-
phones and tablet computers. While the RedDots database
was collected to support research in text-dependent automatic
speaker verification, the ASVspoof 2017 database was adapted
from it in order to support research in anti-spoofing. It contains
sets of bona fide (genuine) and replayed speech [38, 39, 9]. In
order to simulate replay spoofing attacks, the bona fide partition
of the ASVspoof 2017 database was replayed and then recap-
tured using a variety of different loudspeakers and recording
devices in heterogeneous acoustic environments.

The standard protocol relates to a partition of the database
into training, development and evaluation subsets, details of
which are presented in Table 1. The three subsets are mutu-
ally disjoint in terms of speakers and of data collection sites.
Experiments reported in this paper were performed with the ex-
tended protocol whereby both training and development were
performed with pooled training and development partitions
(train+dev). The evaluation subset contains data collected us-
ing 57 replay configurations, 49 of which differ to those used
in the collection of the training and development subsets. Dif-
ferences in replay detection performance between the train-
ing/development and evaluation subsets serve to gauge the gen-
eralisation of spoofing countermeasure solutions.

The ASVspoof 2017 evaluations assessed the performance
of spoofing countermeasures in isolation to automatic speaker
verification. The standard metric is the application-independent
equal error rate (EER). It is used for all assessments reported in
this paper.

4.2. Baseline

The ASVspoof 2017 Version 2.0 database was released in or-
der to correct data anomalies detected subsequent to the offi-
cial evaluation. Being released in 2018, the only published re-

4http://dx.doi.org/10.7488/ds/2301
5https://sites.google.com/site/

thereddotsproject/

http://dx.doi.org/10.7488/ds/2301
https://sites.google.com/site/thereddotsproject/
https://sites.google.com/site/thereddotsproject/


Table 1: Statistics of the ASVspoof 2017 database version 2.

Subset
# # replay # replay # utterances

spk sessions configs bona fide replay
Training 10 6 3 1507 1507
Devel. 8 10 10 760 950
Eval. 24 161 57 1298 12008
Total 42 177 61 3566 14466

sults relating to Version 2.0 are those for the official ASVspoof
2017 baseline system6. It uses a constant Q cepstral coefficient
(CQCC) [40, 41] frontend and a traditional Gaussian mixture
model (GMM) back-end [42, 43]. Classifier scores are com-
puted as the log-likelihood ratio for the test utterance given bona
fide and replayed speech models. This paper considers only the
extended protocol baseline for which training and development
are performed using pooled training and development dataset
(train+dev). Baseline results for the extended protocol are pre-
sented to the top of Table 2.

4.3. End-to-end anti-spoofing

The end-to-end algorithm described in this paper was applied
to distinguish between bona fide and spoofed speech. All net-
works are configured according to the common setup described
in Section 2.2 and as depicted in Fig. 4. Experiments were con-
ducted with four different configurations comprising AUROC
(Section 2.2.1) and EOC (Section 3.1) fitness functions with and
without mini-batch training (Section 2.2.2). Configurations in
which mini-batch is adopted are labeled with m (see Table 2).
Each configuration was run for 500 generations.

When applied, mini-batch training is performed with bona
fide speech partitioned into four mini-batches (Mb=25%) of
approximately 17 minutes each. Spoofed data is partitioned
into three mini-batches (Ms=33%), approximately 21 minutes
each. The discrepancy between bona fide and spoofed speech
is due to the greater variation in spoofed speech, the reliable
modelling of which requires greater quantities of data in each
batch.

Once the training of a generation is completed, the perfor-
mance of networks for that generation is assessed according to
the procedure described in Section 3.3. This assessment is per-
formance using pooled training and development partition data
(see Section 4.1).

5. Experimental results
This section describes experimental results, starting with an il-
lustration of the evolutionary behaviour of the end-to-end ap-
proach to spoofing detection and then an assessment of perfor-
mance in terms of the EER. Also discussed here is the behaviour
of the gate.

5.1. Evolutionary behaviour

An illustration of the evolutionary behaviour of the end-to-end
approach to spoofing detection is illustrated in Fig. 6. Two
profiles show the evolution in EOCm (top blue profile) and
the number of network node connections (green profile) of the
EOC-fittest. The lower magenta profile shows the EER for the

6http://www.asvspoof.org/data2017/baseline_
CM.zip

Table 2: End-to-end spoofing detection performance for the
ASVspoof 2017 database version 2 and extended protocol.

Train+Dev Eval

Baseline 0.14% 23.4%
AUROC 20.9% 28.2%

AUROCm 27.4% 24.2%
EOC 20.3% 19.2%

EOCm 18.7% 18.2%

champion of each generation (the generation champions) esti-
mated using training/development The single network selected
for the testing/evaluation is that which produces the lowest EER
for the training/development data (orange dot). This network is
designated as the grand champion network.

The fitness is seen to increase gradually as the end-to-end
approach to anti-spoofing learns to discriminate between bona
fide and spoofed speech, gradually increasing network com-
plexity as it proceeds. Improvements in fitness are largely ac-
companied by decreases in EER. After approximately 350 it-
erations, the EER seems to converge, with the best performing
network being that from the 484th generation and having 198
connections.

5.2. Spoofing detection performance

Results are presented in Table 2 for the baseline systems and the
for the end-to-end system with AUROC and EOC fitness func-
tions, with and without mini-batching (denoted by subscript
m). Results for the EOC fitness function are either similar to
or better than those for the AUROC fitness function. Mini-
batching appears to offer inconsistent results for the AUROC
fitness function; performance degrades for train+dev. but im-
proves for evaluation. For the EOC fitness function, improve-
ments are consistent across the two sets.

Of particular interest is the stability or generalisation
achieved by the end-to-end system. Performance for the base-
line system is seen to degrade substantially between the two sets
(train+dev and evaluation). In contrast, the best results achieved
with the end-to-end approach using the EOC fitness function
and mini-batch training is not only substantially better, but also
consistent across the two disjoint data sets (18%).

5.3. Gate operation

The gate acts to identify salient information in the network out-
put. This is a form of an attention mechanism. As such, it is
of interest to investigate its behaviour. Even so, the gate oper-
ates on the output stream rather than the input stream. Coupled
with the recurrent nature of the network which maps inputs to
outputs, this impedes a straightforward interpretation of its be-
haviour; it is difficult to interpret gate behaviour at the output
with respect to the acoustic stream at the input.

Our investigations thus far show that the gate generates a
somewhat periodic signal during both speech and non-speech
intervals. This would indicate that information during both are
of use to the detection of replay spoofing attacks. Further ana-
lysis would involve a deeper examination of how to link gate
behaviour at the output to information at the input. This study
is left for future work.

http://www.asvspoof.org/data2017/baseline_CM.zip
http://www.asvspoof.org/data2017/baseline_CM.zip
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Figure 6: Evolution of 500 generations with an EOC fitness function with mini-batch training. The upper blue profile shows the EOC-
derived fitness of the fittest network in each generation. The highest fitness is obtained in generation 490. The green profile is the
complexity (number of connections) in each network. The lower magenta profile is the EER of generation champions estimated using
pooled training and development data. It reaches a minimum value in generation 484 (marked by an orange dot). This is the grand
champion network that is chosen for testing on the evaluation set.

6. Conclusions and future work
This paper reports a truly end-to-end approach to the problem
of spoofing detection. End-to-end techniques that avoid a re-
liance upon hand-crafted features are assumed to offer better
potential for spoofing detection, and especially generalisation
when the cues indicative of spoofing can vary considerably and
are largely unpredictable in practice. The paper show how the
neuroevolution of augmenting topologies can be applied suc-
cessfully to this task. Critical to performance is the proposed
progress-rewarding fitness function which steers the evolution-
ary process progressively towards the reliable classification of
a diminishing number of difficult trials. Coupled with a mini-
batch training procedure, this particular quality of the proposed
solution preserves generalisation.

Results for the ASVspoof 2017 Version 2.0 database show
improvements to both generalisation and raw performance.
Equal error rates for the end-to-end approach represent a 22%
relative reduction compared to the baseline system. A particu-
larly appealing feature of the end-to-end approach is the gate,
which acts as a form of in-built attention mechanism which
serves to distinguish the most reliable information in the net-
work output. This aspect of the end-to-end solution requires
further investigation in order to interpret its behaviour with re-
spect to information present in the acoustic input. The findings
of such a study, while left for further work, will help to de-
termine precisely what information helps most to differentiate
between bona fide and replayed speech.
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