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ABSTRACT
By allowing a large number of users to behave as readers or writers,

Multi-User Searchable Encryption (MUSE) raises new security and

performance challenges beyond the typical requirements of Sym-

metric Searchable Encryption (SSE). In this paper we identify two

core mandatory requirements of MUSE protocols being privacy

in face of users colluding with the CSP and low complexity for

the users, pointing that no existing MUSE protocol satis�es these

two requirements at the same time. We then come up with the

�rst MUSE protocol that satis�es both of them. The design of the

protocol also includes new constructions for a secure variant of

Bloom Filters (BFs) and multi-query Oblivious Transfer (OT).

CCS CONCEPTS
• Security andprivacy→Public key (asymmetric) techniques;
Privacy-preserving protocols; Authorization; Management
and querying of encrypted data; • Theory of computation
→ Cryptographic protocols;
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1 INTRODUCTION
Cloud computing allows users to outsource the hosting of data

and the execution of programs to a third party with much greater

resources called Cloud Service Provider (CSP). Despite its great

bene�t to users, cloud computing raises problems in terms of se-

curity and privacy when the user is not willing to trust the CSP.

Traditional encryption methods can guarantee the privacy of the

data against an evil or compromised CSP, but it also prevents the

CSP from searching the data on behalf of the user. Searchable En-

cryption (SE) protocols allow both uploading data to a CSP and

searching it while preserving the privacy of the data. Additionally,

most SE protocols also assure the privacy of both the queries and
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their result. SE has been an active research topic [6–8, 11, 15, 19]

and recent schemes allow, for only a small cost overhead, to per-

form complex search operations over very large datasets with only

a very limited leakage of information to the CSP. However in many

cases a large dataset consists of a large number of small datasets,

each having a di�erent legitimate owner. This typically is the case

in the example of a hospital managing the medical records of all

its patients, a scenario that is frequently cited in the literature on

SE. In such a case, using a model with a single user owning the

whole dataset requires that every legitimate owner of a segment of

this dataset gives up any control on their data. In particular if this

single SE user –the hospital in our example– gets compromised, the

data of every legitimate owner is exposed. As a result the problem

that was solved by SE, where users can outsource their data to a

third party without trusting it, is raised again between the multiple

owners of data segments and the entity that manages them. Hence,

Single-user SE (SSE, also called Symmetric SE in the literature) is

not suited for datasets that consist of several segments owned by

di�erent parties.

Multi-User Searchable Encryption (MUSE) protocols typically

address the privacy requirements of this scenario. MUSE considers

a large number of users that can be divided into two categories, the

readers and the writers; writers can upload data to the CSP and each

writer can choose which readers should be authorized to search her

data. While several MUSE systems have already been suggested,

the majority of them [1, 2, 13, 16, 20, 25–27], were shown in [22]

to be subject to very serious attacks unless all users are completely

trustworthy; as to the only solution [21] that is not a�ected by this

kind of attacks, the high level of privacy in that solution comes

with a cost per user that is prohibitive in a large-scale multi-user

setting. We thus still lack a solution that is satisfying regarding

security and scalability at the same time.

In this paper we motivate a threat model that takes into account

user-CSP collusions, and we study the extent to which privacy

can be compatible with e�ciency. As a result we come up with a

set of objectives for the design of MUSE protocols that we think

represent among the best trade-o� we can achieve between security

and e�ciency in MUSE. We then present the �rst MUSE protocol

that satis�es these properties. Our solution is partly based on some

existing techniques but it also introduces new concepts such as the

notion of response unlinkability and new constructions for secure

hashing structures and Oblivious Transfer (OT) techniques that

are required for the building of our protocol and whose properties

were not achieved by any existing construction.

The contributions of the paper can be listed as follows:

• We de�ne and motivate a threat model for MUSE that is

stronger than what most existing papers in the literature

have been using, and in which the large majority of existing

solutions provide very little privacy;
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• we discuss how the privacy level of a MUSE scheme limits it

maximum e�ciency and highlight a privacy level that seems

interesting and has been under-studied;

• we de�ne a new notion named response unlinkability that

proves very helpful in the design of a MUSE protocol satis-

fying the newly identi�ed privacy level;

• we present three new constructions that address response

unlinkability: Two of them, Zero-Sum Garbled Bloom Fil-

ters (ZGBFs) and In-line Zero-Sum Garbled Bloom Filters

(IZGBFs), are secure hashing structures derived from Bloom

Filters (BF), and the last one is a new technique for multi-

query OT;

• we present a new MUSE protocol that makes use of these

new building blocks and is the �rst to ensure a high level of

privacy in presence of users colluding with the CSP, while

being scalable thanks to a very low user workload and a

moderate server workload;

• we show the security properties of the new building blocks

and prove the security of theMUSE protocol using a standard

and rigorous proof method.

The rest of the paper is organized as follows: in Section 2 we

detail the ideas behind the design of our solution; in Section 3 we

de�ne most of the concepts we will use in the technical parts of

the paper; in Section 3 we formally de�ne the problem of MUSE; in

Section 4 we describe the building blocks used in our protocol, some

of them being new constructions; in Section 5 we describe a new

MUSE protocol that makes use of the building blocks we described

and is the �rst solution to the MUSE problem as we de�ned it; in

Section 6 we describe various improvements that can be applied on

the protocol; in Section 7 we analyze both the complexity and the

security of the MUSE protocol we present; in Section 8 we compare

our solution to the already existing MUSE protocols; �nally in

Section 9 we conclude the paper and suggest directions for future

work.

2 IDEA
We present a MUSE protocol that solves the main shortcomings

of the current protocols in the state of the art, in that it provides

privacy even in presence of user-CSP collusion while the workload

for the users allow the protocol to scale to large datasets. This pro-

tocol is based on some already existing design principles, among

which the use of two non-colluding entities to implement the CSP

and the combination of Oblivious Transfer (OT) with some hashing

structure to implement privacy-preserving keyword search. We

also introduce new elements such as the notion of “response un-

linkability” and new techniques for OT and GBF that are required

for the speci�c needs of our protocol. In the rest of this section

we give an overview of the main ideas behind the design of the

presented protocol.

Handlingmultiple queriesThemain challenge raised byMUSE

is that a reader is willing to search a large number of indexes, but

each of these indexes is encrypted with the secret key of a di�erent

writer. Because having the reader handle the transformation of its

own query would result in a protocol that does not scale well, the

majority of papers in the literature on MUSE chosed to heva this

transformation done by the server that is hosting the encrypted

indexes [1, 2, 13, 16, 25–27], ; however it seems very di�cult with

this approach to prevent the CSP from learning a large amount of

information, as all MUSE schemes following this approach were

shown to have a signi�cant leakage pro�le and to be subject to

powerful attacks in presence of colluding users [22].

We suggest another approach whereby a third party called Query

Multiplexer (QM) is in charge of multiplexing the reader’s query

whereas the other third party called Data Host (DH) performs the

lookup based on the resulting multiplexed queries. Together, QM

and DH implement the role of the CSP as de�ned by MUSE. Privacy

is then easier to achieve than with a single server since each of

QM and DH only have a part of the information that would be

held by a single CSP; it is then easier to assure privacy against

these weaker adversaries. This separation of knowledge requires

however that DH and QM do not collude together. While it is a

challenge to prevent such collusion in practice, we claim that this

assumption is much more realistic than assuming that some CSP

will not collude with any user, both because of the large number

of users and because entities such as DH and QM can be audited

while users cannot. Moreover this technique seems to be the only

known way so far to ensure privacy against user-CSP collusions.

Query privacy Additionally to the non-collusion of DH and

QM, mechanisms are necessary to ensure that QM can transform

queries, send them to DH and �lter the responses it receives with-

out this separation of knowledge to be undermined. Fortunately,

protecting the privacy of the queries can be achieved using already

existing techniques: Privacy-preserving trapdoor transformation

can be done using bilinear pairings with the technique used by [20]

and [21]; and privacy-preserving keyword search can be done by

combining OT with some hash structure as �rst suggested by Chor

et al. in [9] and further used in several other papers [3, 14] .

Response unlinkability The technical problem that remains

to be solved is how to let QM �lter out negative responses without

learning more than the number of positive and negative responses.

One way would be to have QM be unable to distinguish a positive

(resp. negative) response from another one. We call this require-

ment response unlinkability, which will be a crucial notion in the

rest of the paper. A �rst step towards response unlinkability con-

sists in encrypting the index ids attached to the responses sent to

QM and to send the responses in random order. However it is also

necessary to ensure that the OT responses will not allow QM to

�nd back which index corresponds to which response. Dong et al.

[12] present a variant of BFs called Garbled Bloom Filters (GBFs)

which addresses this problem: With a GBF, one retrieves secret

shares instead of bits, so that nothing can be learned beyond the

presence or absence of the searched element. Unfortunately, this

solution requires that QM remembers the element searched for

when processing the response, which contradicts response unlinka-

bility. We thus present a new construction called Zero-Sum Garbled

Bloom Filters (ZGBFs) that has the same properties as GBF but with

which one can process a response without having to remember the

element that was searched. We also solve another challenge raised

by the use of (some variant of) BFs being that for each index that

must be searched, QM has to send several OT queries. Because of

the cost of OT queries this is a serious performance bottleneck in

our protocol, and as with the previous problem, solutions exist but

are not compatible with response unlinkability. We then present a



simple technique to e�ciently group several OT queries into one

that is compatible with response unlinkability.

The resulting protocol can be summarized as follows: readers

send trapdoors to QM which, thanks to bilinear pairings, is able to

transform them without seeing their content; QM is able to apply

the transformed trapdoors to the index hosted at DH without DH

learning anything thanks to the use of OT; �nally, QM is able to

�lter out negative responses while only learning the result length

thanks to the use of ZGBF and several other new techniques that

ensure response unlinkability.

3 MULTI-USER SEARCHABLE ENCRYPTION
We formally describe amulti-writer-multi-reader SE (MUSE) scheme

in which the “documents” being searched, named indexes, are sets
of bit strings called keywords, as it is the case in most SE schemes

(see for instance [8, 15, 23]); in practice these indexes will likely rep-

resent more complex documents that are not managed by the MUSE

system. Also while we describe a system with static indexes for

simplicity, our system would allow in practice to add new keywords

to indexes at any time. A search query allows to �nd which indexes

contain a given keyword, as in most SE protocols in the multi-user

setting (in the single-user setting however, modern schemes tend

to allow a greater query expressiveness).

A MUSE system consists of a CSP and two types of users, namely

the readers and the writers. We note R andW the sets of all readers

and writers, respectively. Each writerw ∈W owns an index that

is a set Iw ⊂ {0, 1}
∗
of keywords. Each writer can authorize an

arbitrary set of readers to search her index and we represent the

authorizations with the function Auth such that for each reader

r ∈ R, Auth(r ) ⊂ W is the set of writers that authorized r . We

consider Auth as public, that is, computable by anyone. A reader r
can create a query for a keyword q ∈ {0, 1}∗ to �nd which index,

among the ones she was authorized to search, contains q. We note a
(for “answer”) the result of a search query. With qr,s the s-th query

of reader r and ar,s the corresponding result, the protocol is correct
if:

ar,s = {w ∈ Auth(r ) | qr,s ∈ Iw }

We will use the notation q to represent all the reader queries by

writing qr,s as q[r ][s], and we will sometimes use “∀qr,s ∈ q” as
a synonym of “∀(r , s) | (r ∈ R ∧ 1 < s < |q[r ]|)” . Similarly we

sometimes write Iw as I [w].

3.1 Privacy of a MUSE scheme
We de�ne the privacy of a MUSE scheme using the simulation par-

adigm, following [8, 11], that is based on the notions of history,
leakage and view. We de�ne the history of a MUSE instance, noted

H , as (I ,q,Auth,R′,W ′) where the sets R′ ⊂ R andW ′ ⊂ W are

called the corrupted readers and corrupted writers, respectively. The
view V(H) of an adversary denotes the transcript of the messages

this adversary sees during the execution of the protocol; the view

depends on the MUSE protocol used, on which adversary is con-

sidered and on the corrupted readers and writers. For L a function

of the history, we say that a MUSE scheme has leakage pro�le L

against the adversary having view V if there exists an e�cient

algorithm S, called simulator, such that for all valid history H ,

S(L(H)) is indistinguishable fromV(H).

In order to characterize the leakage (sometimes called trace) of
various MUSE schemes, we de�ne the following notions:

• the access pattern represents the information of “which index

matched which query” and is de�ned as:

AP(H) := ({w ∈ Auth(r )|qr,s ∈ Iw } ∀qr,s ∈ q)
• the result length represents the number of index matching

each query and is de�ned as:

RL(H) := (|{w ∈ Auth(r )|qr,s ∈ Iw }| ∀qr,s ∈ q)
• the search pattern represents the information of “which queries

are similar” and is de�ned as:

SP(H) := (qr,s = qr ′,s ′ ∀(r , s, r ′, s ′))
• [22] de�ne the notion of keyword-access pattern which is

equivalent to seeing the similarity of queries that match

a common index (recall that because of the authorization

mechanism a query will not be evaluated against all indexes).

We de�ne it as:

KWAP(H) :=
(qr,s = qr ′,s ′

∧
(∃w ∈ Auth(r ) ∩Auth(r ′) | qr,s ∈ Iw )

∀(r , s, r ′, s ′))
• �nally the following is considered as “benign leakage” and

is leaked by the majority of SSE and MUSE schemes:

– the length of indexes (|Iw | ∀w ∈W ) ;
– the number of queries of each reader (|q[r ]| ∀r ∈ R) ;
– (for MUSE schemes) the authorizations Auth .

Following the discussion of Section ??, we present a MUSE pro-

tocol that leaks no more than the benign leakage and the result

length while all other MUSE schemes leak at least the keyword-

access pattern, exposing them to the powerful attacks presented in

[22], with the exception of [21] that leaks no more than the benign

leakage and as a consequence is too ine�cient on the user side to

be practical.

Note that [22] calls for the construction of a scheme leaking no

more than the access pattern; such a scheme would have a privacy

level stricly lower than the one of the scheme we present (the result

length can be derived from the access pattern), but given the nu-

merous recent attacks on SSE protocols that use the access pattern,

we think that it is important to have a scheme that is immune to

this kind of attack, hence our “more conservative” objective.

3.2 Typical Structure of a MUSE protocol
A MUSE protocol typically consists in the following:

• a writer w generates her secret writer key γw by running

algorithm Writer.KeyGen and uses this key to encrypt her

index by running algorithm Writer.Encrypt. The resulting
encrypted index, noted Iw , is sent to the CSP.

• a reader r generates her public and private reader keys

ρpr iv,r and ρpub,r using algorithm Reader.KeyGen;
• for a writer w to authorize a reader r , w runs algorithm

Writer.Delegate with input her secret writer key and the

secret reader key of r ; the resulting authorization, noted

∆r,w or ∆[r ][s], is sent to the CSP.



• reader r uses her private reader key to encrypt a query qr,s
using algorithm Reader.Trapdoor; the result, called a trap-
door, is noted tr,s and is sent to the CSP.

• when the CSP receives a trapdoor tr,s , it applies it on the en-

crypted indexes this user is allowed to search using the algo-

rithm CSP.Search with input the trapdoor, the indexes and

the corresponding authorizations. The resulting response,

noted pr,s , is sent back to the querying reader.

• Finally the reader opens the response using algorithmReader.Open
to get the result ar,s of the query.

Our MUSE protocol follows this structure and implements the

CSP entity with two non-colluding servers, QM and DH, that im-

plement the CSP.Search algorithm by executing some protocol

we call the Search Protocol (described in Section 5).

4 BUILDING BLOCKS
Before we describe the construction of the building blocks we use

in our protocol, we have to explain what they will be used for. The

main task of QM is to transform trapdoors sent by readers into

what we call “transformed trapdoors” that can be used to search

the indexes hosted at DH for the queried keyword.

A reader trapdoor is essentially the queried keyword encrypted

with the key of the querying reader, and trapdoor transformation

consists in re-encrypting this trapdoor so that it is encrypted under

the key of the targeted index. In our protocol this is performed

using bilinear pairings, in a similar fashion as in [20] and [21]. This

step resembles what is known as “proxy re-encryption” where a

third party called “proxy” re-encrypts a ciphertext without ever

seeing the underlying plaintext; the main di�erence with our case

is that we do not need a trapdoor to be decrypted.

Encrypted indexes are just lists of encrypted keywords, each

index belonging to a di�erent writer holding a separate key, and

testing if the queried keyword is in an index only consists in testing

if the corresponding transformed trapdoor is in the encrypted index.

What makes this operation di�cult is that it must be done in

a privacy-preserving manner, and in particular it must satisfy re-

sponse unlinkability. As we already explained, this implies that

response processing cannot depend on any value generated during

query creation; this restriction will raise many challenges during

the design of our building blocks.

In the remaining of this section we describe bilinear pairings, a

novel construction we call Zero-Sum Garbled Bloom Filters (ZGBF),

and an existing OT protocol that is compatible with response unlink-

ability. Another primitive used in our protocol is a IND-CPA-secure

cipher which description and possible constructions are considered

well-known.

4.1 Bilinear pairings
Let G1, G2 and GT be three groups of prime order ζ and д1, д2
generators of G1 and G2, respectively. e : G1 × G2 → GT is a

bilinear map if e is:

• e�ciently computable;

• non-degenerate: if x1 generatesG1 and x2 generatesG2 then
e(x1,x2) generates GT ;

• bilinear: e(дa
1
,дb

2
) = e(д1,д2)

ab ∀(a,b) ∈ Z2ζ

We note
˜h a function that hashes any bit string into G1, modeled

as a random oracle.

4.2 In-line Zero-Sum Garbled Bloom Filters
We present a new hashing structure named Zero-Sum Garbled

Bloom Filter (ZGBF) that is a variant of Bloom Filter (BF) compat-

ible with response unlinkability and is adapted from the existing

construction of Garbled Bloom Filter (GBF).

A BF encodes a set S of at most n elements in an array BFS
of length m and allows set membership tests, i.e. allows testing

whether a particular element c is in S , with a small probability of

false positive (where c appears to be in S while it is not) and no

possible false negative. A BF uses η independent hash functions

h1, . . . ,hη and is initialized as a zero-�lled array; inserting an ele-

ment c in BFS consists in setting BFS [hi (c)] to 1 for every i , and
testing the presence of c is done by checking that BFS [hi (c)] is set
to 1 for every i . Using a BF instead of a simple hash map (that is,

a BF with η = 1) provides a very low probability of false positive

with a low memory footprint, as it is explained in [5]. We de�ne

the following algorithms provided by BF and all further variants of

BF:

• BF.Build(S) → B: creates a BF representing the set S .
• BF.Map(x) → {i1, . . . , iη }: outputs the positions in the BF

corresponding to the element x .
• BF.Check(x1,x2, . . . ) → 1 or 0: with input the BF compo-

nents x1,x2, . . . , outputs 1 to indicate that the corresponding
element is present in the BF or 0 to indicate that it is absent.

The intuition of our protocol is the following: DH represents

the set S with a BF and QM tests the presence of some element

c in S by retrieving (BFS [hi (c)])i=1...η using OT. Nevertheless

such an implementation would let QM learn information about

S − {c}, which would break response unlinkability. Indeed if c < S ,
the content of the components of BFS that were retrieved reveal

information about the other elements of S (such as the simple fact

that S does contain other elements, for instance).

This problem was solved by Dong et al. in [12] by introducing

GBF where one inserts c in GBFS by �lling (GBFS [hi (c)])i=1...η
with XOR-secret shares of c , that is,

⊕
i GBFS [hi (c)] = c . The

presence of c in S is tested by testing the preceding equality. We

note λ the bit-length of the shares. When inserting a new element

c in a GBF, if a slot GBFS [hi (c)] has already been �lled by the

insertion of a previous element, this component is left unchanged

and is “reused” as a share of c . As [12] remark, as long as one of the

slots, say GBFS [hj (c)], is empty, one can build a correct GBF by

setting GBFS [hj (c)] ← c ⊕
⊕

i,j GBFS [hi (c)]. Finally, slots that

are still empty after all elements have been inserted are �lled with

random values. Let S and C be two sets, and GBFS and BFC have

the same number of components and use the same hash functions;

then, Dong et al. [12] de�ne their intersection the following way:

every component of GBFS that corresponds to a zero in BFC is

overwritten with some random value. The result, which we note
1

GBFS ∩BFC , is a correct GBF encoding the set S∩C . Theorem 4 in

[12] shows that GBFS ∩BFC is computationally indistinguishable

from a GBF created from S ∩C only. The proof given by Dong et al.

can be summarized this way: First, the probability that one element

1
[12] denotes it as GBFS∩C , which we think is confusing



from S−C had none of its shares overwritten is negligible; second, if

an element from S −C had at least one of its shares overwritten, all

information about its value was lost. Thanks to this property, GBF

are well-suited for the implementation of a Private Set Membership

Test: a client that retrieves (GBFS [hi (c)])i=1...η learns nothing

beyond the presence or absence of c in S , said di�erently, it learns

nothing about S − {c}. Nevertheless, GBFs are not compatible with

our speci�c requirement for response unlinkability. Indeed in our

protocol when QM receives some components of a GBF and must

decide the presence or absence of some element, it has lost the

information as to what this element was. It is then unable to test

the equality

⊕
i GBFS [hi (c)] = c because it does not know c . This

problem appears much more clearly in Section 5 where the full

protocol is formally described.

We therefore present a new variant of GBF that we call Zero-Sum

Garbled Bloom Filters (ZGBF). A ZGBF is a GBF where one creates

shares of 0 instead of shares of the inserted element. Testing the

presence of an element consists then in testing if the correspond-

ing components sum to zero, and ZGBF are thus compatible with

response unlinkability. We give the formal listing of algorithms

ZGBF.Build, ZGBF.Map and ZGBF.Check.

Algorithm: ZGBF.Build
Input: S,m, (hi )i=1...η , λ
Output: B
Initialize B as an empty array of lengthm ;

for x ∈ S do
if ∃j | (B[hj (x)] is empty) then

for i , j do
if B[hi (x)] is empty then

B[hi (x)]
$

←− {0, 1}λ ;

set B[hj (x)] ←
⊕

i,j B[hi (x)] ;

else
Abort. ;

Algorithm: ZGBF.Map
Input: x , (hi )i=1...η
return (hi (x) for i = 1 . . .η) ;

Algorithm: ZGBF.Check
Input: (xi for i = 1 . . .η)
return true if

⊕
i xi = 0 else false ;

Surprisingly, a ZGBF enjoys the same security property as a GBF.

Intuitively this is because the proof only uses the security of the

XOR secret sharing scheme regardless of what the secret shares

sum to; We elaborate on that in Appendix C.

4.3 Oblivious Transfer
In this Section we present an existing OT protocol compatible with

response unlinkability. Let B be an array of size m hosted at a

server. An OT protocol allows a client to retrieve B[i] in a privacy

preserving manner with the following algorithms where κOT is

some security parameter:

• OT.KeyGen(1κOT ) → KOT
• OT.Query(KOT , i,m) → Q
• OT.Apply(Q,B) → R
• OT.Open(KOT ,R) → x

The protocol is correct if x = B[i], and secure if Q reveals no

information and R reveals nothing beyond B[i].
Lipmaa describes in Section 4 of [17] how to modify Stern’s Pri-

vate Information Retrieval (PIR) protocol [24] into an OT protocol

secure in the honest-but-curious model. The general idea of Stern’s

PIR protocol is to use an Additively Homomorphic cipher AH and

to build Q as:

Q[j] ←

{
AH.Enc(1) if i = j

AH.Enc(0) otherwise

OT.Apply consists then in performing R ← B ×Q where multipli-

cation of a ciphertext by a scalar is seen as repeated addition (see

Section 2.1 of [18]):

a ×AH.Enc(b) =
a∑
i=0

AH.Enc(b) = AH.Enc(ab)

As a result, R decrypts to

1 × B[i] +
∑
j,i

0 × B[j] = B[i]

This protocol is not an OT protocol because it only provides

privacy against the server and not against the client. Lipmaa shows

that it can be transformed in an OT protocol secure against honest-

but-curious parties simply by adding fresh encryptions of zero to

the results of homomorphic computations. This requires that the

cipher AH is a public-key scheme (typical ciphers for AH would

be Paillier encryption or LWE-based ciphers).

This OT protocol, unlike others, is compatible with response

unlinkability because a response is simply a public-key ciphertext

so the client (QM in our case) is able to open it without having to

remember which query it corresponds to.

5 OUR MUSE PROTOCOL
Our protocol follows the usual structure of a MUSE protocol de-

scribed in Section 3 and implements the CSP entity with two non

colluding servers QM and DH such that:

• Writers send encrypted indexes to DH and authorizations to

QM, and readers send trapdoors to QM;

• Reader.KeyGen has an extra output value in our protocol,

a symmetric key that we note kr or k[r ] and that is sent to

DH, and Reader.Trapdoor has an extra output value that

we note ξr,s and note the blinding factor and that is sent to

DH as well;

• When QM receives a trapdoor tr,s from reader r with query

number s , QM and DH run the following protocol called

Search Protocol:



– QM transforms the trapdoor into one speci�c trapdoor

for each index to search by running QM.Transform with

input the trapdoor and the authorizations of the reader

∆[r ]; The output, called transformed trapdoors and noted

t ′r,s , is sent to DH together with values r and s .
– DH applies the transformed trapdoors on the correspond-

ing indexes using algorithm DH.Process, the correspond-
ing blinding factor and the symetric key kr of the querying
reader. The output, noted p′r,s , is sent back to QM;

– QM �lters out the negative responses with algorithm

QM.Filter and the output pr,s is sent to the reader

Algorithm: Writer.KeyGen
Input: 1

κ

γw
$

←− ZQ ;

Algorithm: QM.KeyGen
Input: 1

κ

KOT ← OT.KeyGen(1κOT );

Algorithm: Reader.KeyGen
Input: 1

κ

ρpr iv,r
$

←− ZQ ;

ρpub,r ← д
1/ρpr iv,r
2

;

kr ← CPA.KeyGen(1κ );

Algorithm: Writer.Encrypt
Input: (Iw ,γw )
Iw ← {e( ˜h(x),д

γw
2
) ∀x ∈ Iw };

6 IMPROVEMENTS
We describe some modi�cations to the protocol that signi�cantly

improve its performance in practice.

These modi�cations naturally preserve the security and cor-

rectness of the constructions they apply on; However they make

the scheme more complex, so that �nding optimal parameters is

even more di�cult. We leave such optimization as future work and

consider these improvements as arguments that the scheme can

be made much more e�cient than how it is formally described in

Section 5.

Algorithm: Writer.Delegate
Input: (ρpub,r ,γw )
∆r,w ← (ρpub,r )

γw
;

Algorithm: Reader.Trapdoor
Input: (qr,s , ρpr iv,r )

ξr,s
$

←− ZQ ;

tr,s ← ˜h(qr,s )
ξr ,s ρpr iv,r

;

Algorithm: QM.Transform
Input: (tr,s , r ,∆,KOT )
Output: t ′r,s
Initialize t ′r,s as an empty sequence;

for w ∈ Auth(r ) do
∆r,w ← ∆[r ][w];

// apply the authorization

cr,s,w ← e(tr,s ,∆r,w );

// compute positions to retrieve

zr,s,w ← ZGBF.Map(cr,s,w );
// query to retrieve components

Q ← OT.Query(KOT , zr,s,w ,η);
Append (w,Q) to t ′r,s ;

Algorithm: DH.Process
Input: (t ′r,s , r , I ,k, ξr,s )
Output: p′r,s
Initialize p′r,s as an empty sequence;

for (w,Q) ∈ t ′r,s do
// apply randomization factor

I
(ξr ,s )
w ← {xξr ,s ∀x ∈ I [w]};
// build ZGBF for query application

Br,s,w ← ZGBF.Build(I (ξr ,s )w );

// apply query from QM

p′′r,s,w ← OT.Apply(Q,Br,s,w );
// encrypt index id for unlinkability

w ← CPA.Encrypt(w,k[r ]);
Append (w,p′′r,s,w ) to p

′
r,s ;

// for response unlinkability

Randomly reorder p′r,s ;

Algorithm: QM.Filter
Input: (p′r,s ,KOT )
Output: pr,s
Initialize pr,s as an empty sequence;

for (w,p′′) ∈ p′r,s do
shares← OT.Open(KOT ,p′′);
if ZGBF.Check(shares) = 1 then

Appendw to pr,s ;



Algorithm: Reader.Open
Input: pr,s ,kr
ar,s ← {CPA.Dec(w,kr ) ∀w ∈ pr,s };

6.1 Pre-computation
Pairing precomputation: Multiple executions of the function

x 7→ e(x ,y) for some �xed y can be made signi�cantly faster using

pairing pre-computation (see [10]).

O�-line index preparation: In algorithm DH.Process, the cre-
ation of I

(ξr ,s )
w and Br,s,w can be done o�-line before the reader

sends her query, provided that DH knows ξr,s in advance. This can

be done either by having the reader generate and send the blinding

factors in advance, but a better approach would be to generate them

using a Pseudo-Random Number Generator and to send the seed

to DH. O�-line index preparation does not reduce the workload of

DH but makes the search protocol signi�cantly faster.

6.2 Recursive OT
The PIR-based OT protocol we use is rather ine�cient as it is

presented in Section 4.3 since the size of the query is linear in

the size of the database; Recursive OT is a well-known technique

that greatly diminishes the communication complexity by sending

several small queries instead of a single large one. Readers can

refere to [18] for a description of this technique, but we give the

intuition of it here:

Degree-2 recursivity consists in considering the size-m database

B as a matrix of size

√
m ×
√
m; Component B[i] is now B[i ′][j ′]

with i ′ = b i√
m
c and j ′ = i mod

√
m. The client sends a �rst OT

query Q1 that retrieves the i ′-th element in a size-

√
m database,

which is applied on each line of B to obtain a list of

√
m responses

that are considered as a “temporary database” B′. A second query

is then sent that retrieves the j ′-th element of B′ and the result,

sent back to the client, is a double encryption of the desired cell. As

a result the client sent a total of 2

√
m ciphertexts instead ofm.

6.3 Multi-Query OT and In-line ZGBF
In the search protocol run between QM and DH, for each index

to search, QM must retrieve η components of some ZGBF. With

the OT protocol we use, each of these components is transported

in a di�erent ciphertext. For a large message, the ratio between

the size of the ciphertext and the size of the plaintext is called the

expansion factor, noted F ; for instance in [18] the authors report

F ≈ 5 for the encryption scheme they use in their implementation

of Stern’s PIR. However for a small message the ciphertext size

stops being related to the message size as it reaches a lower bound

due to security requirements. We are de�nitely in this case, with a

component being λ-bit long and [12] recommending λ = 128; there

is a lot of “unused space” in a ciphertext transporting a single share.

One way to make the search protocol much more e�cient is thus

to use a single query to retrieve several components B[i1],B[i2], . . . .

This can be done easily by generating Q[ik ] as AH.Enc(2(k−1)λ)
so that the response R will decrypt to

∑
k 2
(k−1)λB[ik ]. We call this

technique OT encoding. The problem with OT encoding is that it

does not combine well with OT recursiveness. The solution is, again,

quite simple: If all the components to retrieve are in the same “row”

of B (as we de�ned it in OT recursiveness), then the two techniques

can be used together without problems: the �rst sub-query uses

OT encoding to retrieve all the wanted components and the second

sub-query selects the (single) proper row. As a result we should be

able to retrieve all the wanted components of B in a single OT query
while still bene�ting from the e�ciency of recursive OT.

Modifying the ZGBF construction to guarantee that all the com-

ponents corresponding to an element are in the same row can be

done by building B as

√
m successive ZGBF, each being a “row” of B,

and deciding which row an element x should be inserted or looked

up in by hashing x in the range [
√
m]. We call the resulting data

structure In-Line ZGBF.

7 EVALUATION OF THE PROTOCOL
In this section we study the complexity of the protocol, its secu-

rity against an honest-but-curious QM with colluding users, how

bilinear pairings provide security against some malicious behavior

of QM that does not appear in the honest-but-curious model, and

�nally we discuss security against an honest-but-curious DH with

colluding users. The correctness of the protocol simply follows

from the correctness of each of the building blocks (pairings, ZGBF,

and OT).

7.1 Complexity
The presented scheme is clearly e�cient for the users which was

the �rst objective regarding scalability, and this su�ces to make it

more suitable than the scheme of [21] or than using several parallel

SSE systems.

The workload for the servers however is quite substantial, and

the protocol is quite complex to implement, especially the OT com-

ponent with our modi�cations. It would be very interesting as

future work to use the work of [18] that presents an e�cient im-

plementation of Stern’s PIR to implement the OT protocol in order

to obtain practical measurements.

We thus give some �gures on the theoretical complexity of the

presented scheme on the server side.

7.1.1 Storage and communication during upload. We assume

a system with N writers each uploading an index containing M
keywords.

• DHmust storeNM elements ofGT for the encrypted indexes

and one symmetric key for each reader. With o�-line index

preparation it must also store a few prepared indexes B for

each index for each reader authorized to search this index.

The size of a prepared index is linear withM .

• QM must store one element of G2 for each authorization.

7.1.2 Computation and Communication during Search. We as-

sume a querying reader being authorized to search N indexes each

containingM keywords:

• QM must perform N (precomputed) pairings, ηN hashing

and create N OT queries (one query per index thanks to

OT encoding). The on-line execution time of query creation

can be quite fast if encryptions of zero and of 2
(k−1)λ

(see

Section 6) are created in advanced and just “put together” to

create an OT query. Data sent from QM to DH consists in



N ×2
√
|B | ciphertexts from encryption scheme AH; The size

|B | of the prepared index would depend on how parameters

of the In-Line ZGBF are optimized, which was left as future

work, but in any case |B | is linear inM .

• the cost for DH to apply the queries on the prepared indexes

is N (|B | × FMA) + F
√
|B | × FMA where FMA is the cost

of the “Fused Multiply and Add” operation described in [18].

The amount of data sent from DH to QM is NF 2ηλ bits.

• Finally the cost of �ltering should be negligible with regard

to the rest of the search protocol.

7.2 Privacy Against an honest-but-curious QM
We prove that an honest-but-curious QM colluding with some users

cannot learn more information on non-revealed indexes and queries

than the result length of each query. Below we only give a sketch

of the proof. The full proof is in Appendix A.

The proof follows the “simulation technique”: we show that one

can simulate a view of QM that is computationally indistinguishable

from the real view of QM given only the information we allow

QM to learn, that is, the content of revealed queries and indexes

and the result length of each non-revealed query. To simulate a

response to a non-revealed query, the simulator uses its knowledge

of the number of positive responses to send the proper number of

positive (resp. negative) responses. The properties of ZGBF and the

OT protocol we use prevent QM from distinguishing a simulated

response from a legitimate one, and from associating a response

with a particular index. Finally trapdoors associated to non-revealed

queries are simulated with random values, and the e�ect of the

blinding factor guarantees that this simulation cannot be detected

either. As a result the simulated view is indistinguishable from the

real one and the protocol achieves its security goal.

7.3 Security from bilinear pairings
Bilinear pairings ensure that QM can transform a user trapdoor

tr,s for some index Iw only if the ownerw of the index created the

corresponding authorization ∆r,w . The bene�t of pairings is not
noticeable in the semi-honest model because a semi-honest QM

cannot send the resulting “forged” transformed trapdoors. However

such property seems desirable in the real world, and consequently

we keep the use of pairings in our protocol.

From the proof of [20], it is easy to show that QM cannot create

cr,s,w without knowing ∆r,w : The ability of QM to “forge” c vari-
ables in our scheme would contradict the proof in [20] that their

scheme satis�es the “token hiding” property they de�ne.

7.4 Privacy against an honest-but-curious DH
The proof of privacy against DH is similar to the one against QM

and is given in Appendix B.

8 RELATEDWORK
In this paper “multi-user” has the meaning of “multi-reader and

multi-writer” as used in [6]. As a consequence, we do not consider

“Public-Key Encryption with Keyword Search” (PEKS) protocol

(among which [4]), where anyone can write but a single user can

search, as part of MUSE protocols. Similarly schemes with a single

writer and multiple reader (sometimes called “Delegated Word

Search” protocols) are considered out of scope, and so is Symmetric

Searchable Encryption (SSE).

All existingMUSE schemes but one [1, 2, 13, 16, 20, 25–27], follow

a common algorithmic structure named “iterative testing” by [22]

that expose them to a very powerful attack when a user colludes

with the CSP. Intuitively, the attack described by [22] works the

following way: Because of iterative testing the CSP sees indexes as

a list of encrypted keywords, and during the processing of a query

it sees which encrypted keywords match the query. As a result,

the CSP notices identical keywords across di�erent indexes when

they match the same query, and identical queries sent by di�erent

readers when they match identical keywords, resulting in a leakage

of what [22] call keyword-access pattern and that we de�ned in

Section 3. If the CSP gets to know the keyword corresponding to

some queries or some encrypted keywords, for instance through a

collusion with a user, keyword-access pattern leakage allows it to

recover other queries and other keywords across the system. With

this attack a CSP colluding with even a very small number of users

can recover a great amount of queries and keywords as shown in

[22]. Our MUSE protocol on the other hand has a much smaller

leakage pro�le that should give strong privacy guarantees against

both DH and QM, no matter how many users collude with either

DH or QM; it is thus the �rst user-side e�cient MUSE scheme to

be truly secure against user collusions.

Note that, unlike recent SSE schemes, all existing MUSE schemes

have low query expressiveness and their search time is linear with

respect to the total number of search indexes. Their search time is

also linear with respect to the number of keywords in each index

because of the iterative testing structure that requires to test every

encrypted keyword until one, if any, matches. As a result the pre-

sented scheme as an e�ciency that is asymptotically similar to the

state of the art in MUSE. Comparing the e�ciency of single-user

SE protocols with MUSE ones makes little sense because the prob-

lem of MUSE is a more general one that is not addressed by SSE

protocol.

As to the scheme of [21], while it has a privacy level slightly

higher than the one of our protocol (it does not leak the result

length), it does not scale properly: as we already explained, in this

scheme a reader must process one response for every index that

was searched which is not feasible for a low-powered user when the

number of searched indexes is large. By adding a privacy-preserving

�ltering mechanism to [21], our scheme has a cost for the reader

that only depends on the number of matching indexes at the cost

of a very limited sacri�ce regarding the leakage pro�le.

9 CONCLUSION
We highlighted the importance for security models in MUSE to

consider user-CSP collusions and the lack of existing solutions for

MUSE achieving a satisfactory level of privacy in the security model

as de�ned in this paper as well as e�ciency at a large scale. Apart

from a new security model for MUSE, we introduced a new notion

of response unlinkability and new constructions for secure BFs and

multi-query OT and used them to design the �rst MUSE protocol

that satis�es both security in face of collusions and scalability. Fi-

nally we proved the security of the protocol using rigorous standard



techniques and analyzed its complexity, showing that our protocol

can be used in practice.

In this work, we had recourse to a new party in the system in

order to meet the security and performance objectives of MUSE;

Although we believe the scheme including the new party is sound,

searching for solutions meeting the same requirements without

this new third party seems to be an interesting research direction.
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A FULL PROOF OF PRIVACY AGAINST A
HONEST-BUT-CURIOUS QM

We prove that an honest-but-curious QM colluding with some users

cannot learn more information on non-revealed indexes and queries

than the result length of each query by showing that one can e�-

ciently produce an output that is computationally indistinguishable

fromV(H), (we use the symbol

c

≡ to denote computational indis-

tinguishability), using onlyL(H) as input, whereV(H) andL(H)

are de�ned below.

Definition 1. (View of QM) The view V(H) of QM consists
of all readers public keys (ρpub,r ∀r ∈ R), all created authoriza-
tions (∆r,w ∀r ∈ R ∀w ∈ Auth(r )), protocol messages sent to QM
((tr,s ,p

′
r,s ) ∀qr,s ∈ q), the keys of colluding users (ρpr iv,r ∀r ∈ R′)

and (γw ∀w ∈W ′), the revealed indexes and queries (Iw ∀w ∈W ′′)
and (qr ∀r ∈ R′).

Definition 2. (Leakage to QM) The leakage to QML(H) consists
of the result lengthRL(H), the revealed indexes and queries (Iw ∀w ∈
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W ′′) and (qr ∀r ∈ R′), and the benign leakage (|Iw | ∀w ∈ W ),
(|qr | ∀r ∈ R), and Auth.

For the sake of readability, our proof makes use of several in-

cremental steps. In each step i we de�ne a simulator Si that takes

H as input. S0 outputs V(H) and for i = 1 . . . 5 we show that

Si (H)
c

≡ Si−1(H). Thus by transitivity we have S5(H)
c

≡ V(H).

Finally we show that one can build an algorithm that has the same

exact output distribution as S5 while having L(H) as input instead
ofH , and this ends the proof. The common structure for all simula-

tors is given in Algorithm Si . Since S0 must outputV(H) it calls

the algorithms from the real protocol de�ned in Section 5, that is,

Reader.Trapdoor
0
= Reader.Trapdoor etc. For each subsequent

simulator we only list the algorithms that di�er from the ones in

the previous simulator, and we highlight di�erences in red. Note

that a variable that is computed in some algorithm in the simulator

is accessible inside subsequent algorithms called by the simulator.

For instance in S1, variables zr,s,w are used in DH.Process1 while
they are computed in QM.Transform

1
.

Algorithm: Si
Input: (I ,q,Auth,R′,W ′)
Output: The view of QM

Create all keys, all deltas;

forw ∈W do
I [w] ←Writer.Encrypti (I [w],γw );

for qr,s in q do
(tr,s , ξr,s ) ← Reader.Trapdoori (qr,s , ρpr iv,r );
t ′r,s ← QM.Transformi (tr,s , r ,∆);

p′r,s ← DH.Processi (t ′r,s , r , I ,k, ξr,s );

A.0.1 Simulators. In S1, algorithm DH.Process1 does not call
OT.Apply, and instead creates p′′r,s,w by directly encrypting the

components of Br,s,w that the OT query Qr,s,w was supposed to

retrieve, using the OT.Forge algorithm. The p′′r,s,w variables are

the only variables of the simulator output to be a�ected by these

changes, and each fabricated p′′r,s,w is indistinguishable from a real

one thanks to ciphertext sanitization in the OT protocol; �nally a

straightforward application of the hybrid argument shows that the

output of S1 is indistinguishable from the one of S0.

Algorithm: DH.Process1
Initialize p′r,s as an empty sequence;

for (w,Q) ∈ t ′r,s do
I
(ξr ,s )
w ← {xξr ,s ∀x ∈ I [w]};
Br,s,w ← ZGBF.Build(I (ξr ,s )w );

sharesr,s,w ← (Br,s,w [j] ∀j ∈ zr,s,w );
p′′r,s,w ← OT.Forge(sharesr,s,w );
w ← CPA.Encrypt(w,k[r ]);
Append (w,p′′r,s,w ) to p

′
r,s ;

Randomly reorder p′r,s ;

In S2 DH.Process2 does not use the content of non-revealed
indexes; Instead the query result ar,s is used, which is computed by

S2 beforehand fromH : Ifw ∈ ar,s , p
′′
r,s,w is created as a forged OT

response containing shares of zero, and is thus a positive response;

otherwise it is created as a forged OT response containing random

values, and is thus a negative response. This procedure is equivalent

to building Br,s,w as a regular ZGBF from the set I
(ξr ,s )
w ∪ {cr,s,w },

while the corresponding procedure ofDH.Process1 is equivalent to
a intersection between an ZGBF built from I

(ξr ,s )
w and a BF built from

{cr,s,w }. Thus from the security property of ZGBF, ap′′r,s,w variable

built by S2 is indistinguishable from the same p′′r,s,w variable built

by S1. Again, one can then show using the hybrid argument that

the output of S2 is indistinguishable from the output of S1.

Algorithm: DH.Process2
Initialize p′r,s as an empty sequence;

for (w,Q) ∈ t ′r,s do
sharesr,s,w ← η random values;

if w ∈ ar,s then
sharesr,s,w [1] ←

⊕
j,1 sharesr,s,w [j];

p′′r,s,w ← OT.Forge(sharesr,s,w );
w ← CPA.Encrypt(w,k[r ]);
Append (w,p′′r,s,w ) to p

′
r,s ;

Randomly reorder p′r,s ;

In S3, DH.Process3 sends random values instead of w . The

output of S3 is indistinguishable from the output of S2 thanks to

the IND-CPA security of the CPA cipher and the hybrid argument.

Algorithm: DH.Process3
Input: (t ′r,s , r , I ,k, ξr,s )
Output: p′r,s
Initialize p′r,s as an empty sequence;

for (w,Q) ∈ t ′r,s do
sharesr,s,w ← η random values;

if w ∈ ar,s then
sharesr,s,w [1] ←

⊕
j,1 sharesr,s,w [j];

p′′r,s,w ← OT.Forge(sharesr,s,w );
Randomw ;

Append (w,p′′r,s,w ) to p
′
r,s ;

Randomly reorder p′r,s ;

S4 does not use the query results but only their result length.

For each query, S4 just creates the proper number of positive and

negative responses. All positive (respectively negative) responses

were already created the same way as in S3, and their order is being

randomized at the end of DH.Process, so the output of S4 has the

same exact distribution as the one of S3.

S5 does not use non-revealed queries. User trapdoors tr,s are
just random values; as to p′r,s variables, they are not a�ected by the
change: Indeed thanks to the changes introduced in the previous

simulators, algorithm DH.Process5 does not use any variable that



Algorithm: DH.Process4
Input: (t ′r,s , r , I ,k, ξr,s )
Output: p′r,s
Initialize p′r,s as an empty sequence;

for k = 1 . . . |Auth(r )| do
sharesr,s,w ← η random values;

if k ≤ |ar,s,w | then
sharesr,s,w [1] ←

⊕
j,1 sharesr,s,w [j];

p′′r,s,w ← OT.Forge(sharesr,s,w );
Randomw ;

Append (w,p′′r,s,w ) to p
′
r,s ;

Randomly reorder p′r,s ;

depends on tr,s . Thanks to the blinding factors ξr,s and the hybrid

argument, the output of S5 is indistinguishable from the output of

S4.

Algorithm: Reader.Trapdoor
5

Input: (qr,s , ρpr iv,r )
Output: (ξr,s , tr,s )

ξr,s
$

←− ZQ ;

tr,s
$

←− GT ;

Finally it is trivial to build an algorithm that has the same exact

output distribution as S5 while only having L(H) as input. �

B FULL PROOF OF PRIVACY AGAINST A
HONEST-BUT-CURIOUS DH

The proof of privacy against DH is similar to the one against QM

yet much simpler. The view of DH V ′(H) consists of the public

values, the symmetric key of each reader kr ∀r ∈ R, the encrypted
indexes Iw ∀w ∈W , the transformed trapdoors t ′r,s ∀qr,s ∈ q, and
the informations from users colluding with DH: (ρpr iv,r ∀r ∈ R′),
(γw ∀w ∈ W ′), (Iw ∀w ∈ W ′′), (qr ∀r ∈ R′), and (pr,s ∀r ∈
R ∀qr,s ∈ qr ).

We could de�ne leakage the same way as against QM, but we

can actually prove a leakage even smaller against DH because DH

does not learn the result length. The leakage L′(H) is then de�ned

as (Iw ∀w ∈W ′′), (qr ∀r ∈ R′), (|Iw | ∀w ∈W ), (|qr | ∀r ∈ R), and
Auth.

We de�ne three simulators S′
0
to S′

2
which structure is described

in algorithm S′i . Again, S
′
0
outputs the real viewV ′(H) of DH and

thus calls the real algorithms, meaning that Reader.Trapdoor′
0
=

Reader.Trapdoor etc.
In S′

1
, Reader.Trapdoor′

1
outputs random values. The only af-

fected values in the view are the t ′r,s values because DH only receive

the pr,s values corresponding to corrupted readers. The indistin-

guishability of the output of S′
1
and the one of S′

0
follows simply

from the sender privacy of OT and the hybrid argument.

In S′
2
, Writer.Encrypt′

2
outputs random values. Recall that the

function
˜h used in Writer.Encrypt is modeled as a random oracle;

because each index is encrypted using a di�erent independent

Algorithm: S′i
Input: (I ,q,Auth,R′,W ′)
Output: The view of QM

Create all keys, all deltas;

forw ∈W do
I [w] ←Writer.Encrypt′i (I [w],γw );

for qr,s in q do
(tr,s , ξr,s ) ← Reader.Trapdoor′i (qr,s , ρpr iv,r );
t ′r,s ← QM.Transform′i (tr,s , r ,∆);
p′r,s ← DH.Process′i (t

′
r,s , r , I ,k, ξr,s );

pr,s ← QM.Filter′i (p
′
r,s );

key, we can use a di�erent random oracle for each index. The

indistinguishability of the output of S′
2
and the one of S′

1
is then

straightforward.

Finally it is trivial to build a simulator which on input the leakage

L′(H) has the same output distribution as S′
2
. �

C SECURITY OF ZERO-SUM GARBLED
BLOOM FILTERS

We show that the proof of Theorem 4 of [12] on the security of

GBF applies to ZGBFs as well. We �rst reproduce Theorem 4 of [12]

with our notation:

Theorem 1. Let C and S be two sets, and GBF-BF intersection be
as de�ned in Section 4.2, then:

GBFS ∩ BFC
c
≡ GBFS∩C

In our protocol C will always be some singleton {c}. We show

that the proof of this theorem given by Dong et al. in [12] applies

to ZGBF as well. In their proof, Dong et al. consider two cases:

The �rst case is when some element of S − {c} had none of its

shares overwritten during the GBF-BF intersection operation. This

corresponds to

∃x ∈ S − {c}, GBF.Map(x) = BF.Map(c)
Dong et al. remark that this event correspond to a BF false positive,

which has a negligible probability due to how the parameters of GBF

are picked; This remains true for ZGBFs. The second case is when

each element of S − {c} had at least one of its shares overwritten by

a random value. Dong et al. show that thanks to the distribution of

XOR secret shares, the distribution of GBFS ∩BFC is the same as

the distribution of GBFS∩C ; this ends their proof. Because shares

have the same distribution in a ZGBF than in a GBF (XOR random

shares of some determined value), this step applies as well to ZGBF.

As a result the proof of Dong et al. applies to ZGBF. �
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