
POROS: Proof of Data Reliability for Outsourced Storage
Dimitrios Vasilopoulos

EURECOM
Sophia Antipolis, France
vasilopo@eurecom.fr

Kaoutar Elkhiyaoui
IBM Research Zurich
Zurich, Switzerland
kao@zurich.ibm.com

Refik Molva
EURECOM

Sophia Antipolis, France
molva@eurecom.fr

Melek Önen
EURECOM

Sophia Antipolis, France
onen@eurecom.fr

ABSTRACT
We introduce POROS that is a new solution for proof of data re-
liability. In addition to the integrity of the data outsourced to a
cloud storage system, proof of data reliability assures the customers
that the cloud storage provider (CSP) has provisioned sufficient
amounts of redundant information along with original data seg-
ments to be able to guarantee the maintenance of the data in the
face of corruption. In spite of meeting a basic service requirement,
the placement of the data repair capability at the CSP raises a chal-
lenging issue with respect to the design of a proof of data reliability
scheme. Existing schemes like Proof of Data Possession (PDP) and
Proof of Retrievability (PoR) fall short of providing proof of data
reliability to customers, since those schemes are not designed to
audit the redundancy mechanisms of the CSP. Thus, in addition
to verifying the possession of the original data segments, a proof
of data reliability scheme must also assure that sufficient redun-
dancy information is kept at storage. Thanks to some combination
of PDP with time constrained operations, POROS guarantees that
a rationale CSP would not compute redundancy information on
demand upon proof of data reliability requests but instead would
store it at rest. As a result of bestowing the CSP with the repair
function, POROS allows for the automatic maintenance of data by
the storage provider without any interaction with the customers.

KEYWORDS
secure cloud storage; proofs of reliability; reliable storage; verifiable
storage

ACM Reference Format:
Dimitrios Vasilopoulos, Kaoutar Elkhiyaoui, Refik Molva, and Melek Önen.
2018. POROS: Proof of Data Reliability for Outsourced Storage. In SCC’18:
6th International Workshop on Security in Cloud Computing, June 4, 2018,
Incheon, Republic of Korea. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3201595.3201600

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCC’18, June 4, 2018, Incheon, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5759-3/18/06. . . $15.00
https://doi.org/10.1145/3201595.3201600

1 INTRODUCTION
As the core feature of cloud computing, outsourcing raises some un-
precedented security issues in the face of potentially misbehaving
or malicious service providers. In the case of cloud storage systems,
if the misbehaviour of a cloud storage provider (CSP) goes unde-
tected, nothing prevents a malicious CSP from deleting significant
amounts of data from storage in order to maximize the utilization of
the storage system. Focusing on this type of security requirements,
several research projects came up with a large body of work (e.g.
[3, 4, 17, 19]) aiming at solutions for verifiable outsourced storage.
The proposed solutions mainly consist of cryptographic protocols
that enable (potentially lightweight) clients to efficiently verify the
availability of their data in the storage system, that is, a client only
needs to download a small fraction of her data in order to verify that
the latter is stored correctly - safe for accidental errors or malicious
attacks.

Existing verifiable storage solutions like Proof of Data Possession
(PDP) and Proof of Retrievability (PoR) suffer from a major short-
coming: they do not take into account a basic feature of storage
systems that is automatic maintenance performed by the storage
provider. Since data repair functions are part of the basic storage
service, the assurance of data availability with such services must
verify not only the availability of the data outsourced by the clients
but also the effectiveness of the data repair functions. A compre-
hensive verification scheme called "proof of data reliability" should
thus verify both the availability of the clients’ data and the provi-
sion by the storage provider for sufficient means to recover from
minor data loss in storage. Even though some PDP or PoR schemes
involve some error correction function performed by the clients,
no existing PDP or PoR scheme focuses on the verification of error
recovery functions performed by the storage provider.

In addition to the integrity of the data outsourced to a cloud stor-
age system, a proof of data reliability thus assures the clients that
the CSP stores sufficient amounts of redundancy information along
with original data segments to be able to guarantee the maintenance
of the data in the face of minor corruption or loss.

Furthermore, in the adversarial setting of cloud storage systems,
the placement of the data repair capability at the CSP raises a
challenging issue with respect to the design of a proof of data
reliability scheme. Simple schemes verifying data availability alone
- PDP and PoR - fall short of achieving data reliability assurance in
that context, since those schemes cannot prevent a malicious CSP
from storing only the original data and from answering PDP or

https://doi.org/10.1145/3201595.3201600
https://doi.org/10.1145/3201595.3201600
https://doi.org/10.1145/3201595.3201600

SCC’18, June 4, 2018, Incheon, Republic of Korea D. Vasilopoulos et al.

PoR queries using the CSP’s data repair capability to compute the
redundancy information on the fly. Thus, in addition to verifying the
availability of the original data segments, a proof of data reliability
scheme must also assure that redundancy information is kept at
storage instead of being computed on the fly.

In this paper, we propose POROS, a new scheme that achieves
data reliability assurance in the context of a potentially malicious
cloud storage provider despite the challenging difficulty due to the
automatic maintenance by the storage provider. Thanks to some
combination of PDP with time constrained operations, POROS
guarantees that a rational CSP would not compute redundancy on
demand upon PDP requests but instead would store it at rest. Our
idea thus is to set a time-threshold τ such that if the CSP stores
the data together with the redundancy correctly, it will be able
to successfully answer the POROS challenges received from the
client before τ elapses; otherwise, it will fail to provide a timely
response, and thereby, its misbehavior will be detected. As a result
of bestowing the CSP with the repair function, POROS allows for
the automatic maintenance of data by the storage provider without
any interaction with the clients.

Contributions.
• We define the notion of proof of data reliability and identify
the inherent conflict between proof of reliability mechanisms
and automatic maintenance;
• We propose POROS, a data reliability scheme, that on the
one hand, enables a client to verify the correct storage of her
data and the corresponding redundancy; and on the other
hand, allows the cloud to perform automatic maintenance
operations;
• We analyze the security of POROS both theoretically and
through experiments measuring the time difference between
an honest cloud and some malicious adversaries.

2 PROBLEM STATEMENT
Data reliability is achieved by means of data redundancy and data
integrity mechanisms. In the cloud setting, the cloud provider is
responsible to integrate these mechanisms into its infrastructure.
More precisely, in an object storage application, outsourced files are
stored either in multiple copies (full replication) or in an encoded
format (ECC, erasure codes, etc.), together with additional metadata
(CRC, checksums, etc.) that allow for the detection of data corrup-
tion. The cloud provider deploys automatic maintenance processes
that periodically access the stored data in order to detect storage
errors and upon identifying such errors leverage the redundant
information to repair the damaged files.

To address the problem of large data integrity, the literature
features a number of proof of storage solutions that enable data
owners to efficiently verify that their data are stored correctly.
Notably, Proofs of Data Possession (PDP) [3] which provide data
owners with the assurance that their outsourced data has not un-
dergone any substantial modification and, Proofs of Retrievability
(PoR) [17, 19] which ensure data owners that the entirety of their
outsourced files can be recovered. Yet, PoR and PDP schemes are of
limited value when it comes to the audit of data reliability mecha-
nisms: indeed, a successful PDP/PoR verification does not indicate
whether a cloud provider has in place data maintenance, whereas an

unsuccessful one attests the irreversible damage of the outsourced
data. Detecting that an outsourced file is corrupted is of little help
for a client because the latter is no longer retrievable. Addition-
ally, even though PoR schemes rely on error-correcting codes, the
relevant redundancy information is not intended for typical data
repair operations: error-correcting codes assist in realizing the PoR
security properties by enabling the recovery of original data from
accidental errors that can go undetected from the protocol. How-
ever, neither the CSP nor the data owner can use this redundancy
in order to repair corrupted data outsourced to the CSP since, ac-
cording to the PoR model, the CSP cannot distinguish original data
from redundancy information and, the data owner lacks the means
to detect any data corruption before it grows beyond repair. As a
result, the cloud provider has to apply its data redundancy mecha-
nisms and its maintenance operations independently and on top of
any PoR processing performed by the data owner.

To remedy this, the scheme in [8] enables a client to repair stor-
age errors alongside leveraging the benefits of PoR verification on
erasure code–based distributed storage systems. Later on, authors
in [10] proposed a new repair algorithm for the scheme in [8] that
shifts the bulk of data regeneration computations on the cloud side.
Nonetheless, in both schemes, the regeneration of lost or corrupted
data segments by the cloud requires some interaction with the
client. Both schemes thus are at odds with automatic maintenance
that is a key feature of cloud storage systems.

Furthermore, in the adversarial setting of outsourced storage,
there seems to be an inherent conflict between the customers’ re-
quirement for verifying data reliability mechanisms and the auto-
matic maintenance feature of modern storage systems. On one hand,
automatic maintenance based on error-correcting codes requires
the storage of redundant information along with the original data
and, on the other hand, to guarantee the storage of the redundancy
information the CSP should not have access to the content of the
data since the redundancy information is a function of the original
data itself. Hence, the root cause of the conflict between verification
of reliability and automatic maintenance stems from the fact that
the redundant information is a function of the original data itself.
This property which is the underpinning of automatic maintenance
can be exploited by a malicious storage provider in order to save
storage space while positively meeting the data reliability verifi-
cation criteria. A malicious storage provider can indeed prove the
possession of redundancy information by simply computing the lat-
ter using its automatic maintenance capability without ever storing
any redundancy information. Even though such a storage provider
would be able to successfully respond to data reliability verification
queries, akin to a PDP/PoR scheme, the actual reliability of the data
would not necessarily be assured since the storage provider would
fail to retrieve lost or corrupted data segments without the redun-
dant information. Automatic maintenance that is a very efficient
feature of data reliability can thus become the main enabler towards
fooling data reliability verification in an adversarial setting.

3 IDEA
Our approach leverages an existing proof of data possession (PDP)
scheme to assure the integrity of the original data by the CSP
and it further extends it in order to verify the possession and the

POROS: Proof of Data Reliability for Outsourced Storage SCC’18, June 4, 2018, Incheon, Republic of Korea

Figure 1: The process of outsourcing the computation of redundancy information and the corresponding PDP-tags to CSP: (a) The client
computes the PDP-tags for the original data blocks; (b) The client outsources the data together with the PDP-tags to CSP; (c) Using G CSP
applies the systematic erasure code on both data blocks and PDP-tags yielding the redundancy blocks and its corresponding PDP-tags.

correctness of the redundancy information computed by the CSP.
Furthermore, as described in 2, a malicious CSP can take advantage
of its automatic maintenance capability to generate the redundancy
information on the fly in response to PDP queries. Hence, the last
component of our scheme consist of a time-based mechanism that
guarantees the storage at rest of redundancy information.

With respect to the integrity verification of the original data,
our scheme leverages a proof of data possession (PDP) protocol,
based on the private scheme in [19], in order to ensure the eventual
detection of any attempt by a malicious CSP to tamper with the
outsourced data. As depicted in Figure 1(a), prior to uploading their
data to the cloud storage system, users compute a set of linearly-
homomorphic MACs called tags that afterwards are used by the
CSP to prove the storage of original data.

After receiving users’ original data with the associated tags (see
Figure 1(b)), the CSP generates the redundancy information based
on the automatic maintenance mechanism. In order to facilitate
the separate handling of original data and redundancy information
we opt for a systematic linear code that allows for a clear delimita-
tion between the two: thereby, redundancy information is a linear
combination of original data and the latter remains unaltered by
the application of the erasure code hence its integrity verification
is not affected. Concerning the correct computation as well as
the integrity verification of redundancy information our scheme
also leverages the PDP protocol used for original data and hence
provides customers with both guarantees. More precisely, as with
original data, CSP applies the same systematic linear code to the
associated tags, yielding a new set of tags that are linear combi-
nations of the original data tags. Assuming a MAC scheme that is
homomorphic with respect to the systematic linear code used by
the automatic maintenance mechanism, the tags resulting from this
computation turn out to be PDP tags associated with redundancy
information. In other words, the linear combination of the tags
associated with original data can be used to verify both the correct
computation and the integrity of redundancy information that is
derived from the original data based on the same linear combina-
tion. Figure 1(c) depicts the application of the systematic erasure
code on both original data and redundancy information.

Thanks to the homomorphism of the underlying MAC scheme
at the core of the PDP protocol and to the systematic linear code,
the CSP does not need any keying material owned by the cus-
tomer in order to compute the tags for the redundancy information.
Furthermore, customers are able to perform PDP verification on
redundancy information using these new tags. Any misconduct by
the CSP regarding either the integrity of redundancy information
or its proper generation will be eventually detected by the PDP
checks as the malicious CSP cannot forge the computed tags.

The scheme described so far suffers from a limitation in that, a
malicious CSP can take advantage of its capability to independently
compute both redundancy information and the corresponding tags,
paving the way for the CSP to fool reliability verification by com-
puting in real time the responses to PDP checks on redundancy
information. The last feature of our scheme thus is a countermea-
sure to such attacks. The basic idea underlying this countermeasure
is the difference in time between simple lookup for redundancy
information at rest by a legitimate CSP and the computation in
real time of the same redundancy information by a malicious CSP.
The solution obviously consists in ensuring that the computation
of redundancy takes significantly more time than the lookup. A
straightforward approach inspired by [22] relies on timing features
of common cloud storage infrastructures. Based on this approach,
our scheme exploits the time difference between random and se-
quential disk access. In order to guarantee a clear time difference
between legitimate lookup and real time computation of redun-
dancy information, our scheme scatters the redundancy informa-
tion across several randomly chosen locations in the disk storage.
As a result, the legitimate response to PDP queries on redundancy
information only requires a few sequential disk accesses whereas a
malicious CSP would have to perform multiple random accesses
on top of the computation of the redundancy information itself.
Malicious behavior can therefore be detected based on this time
difference.

4 PROOFS OF DATA RELIABILITY
In this section we introduce the main security and functional re-
quirements that a proof of data reliability scheme has to address
and define its adversarial model.

SCC’18, June 4, 2018, Incheon, Republic of Korea D. Vasilopoulos et al.

4.1 Adversary Model
We consider the cloud storage provider (CSP) as a rational party
whose main goal is to maximize its payoff by saving storage. More
precisely, increasing its payoff with respect to storage cost is the
only casewhere the CSPmightmisbehave and for all other scenarios
the CSP is considered to be honest.

To further illustrate this point, assume that there is a proof of
data reliability scheme in which the CSP succeeds in computing the
redundancy on the fly while eluding detection. If, in order to mount
its attack, the CSP is required to dedicate more storage resources
than what is required when it complies with the protocol, then it is
fair to argue that a rational CSP will prefer to follow the original
protocol, rather than implement the attack.

4.2 Security Requirements
A scheme implementing a proof of data reliability oughts to meet
the following requirements.

Req 0 Correctness. It is crucial to ensure that an honest CSP will
always be able to generate a correct proof of data reliability. In other
words, an honest CSP should always be able to pass the verification
of data reliability.

Req1 Data possession guarantee. It is essential for any scheme
of proof of data reliability to assure that the CSP cannot tamper
with the outsourced data without being detected. We refer to the
definition of data possession guarantee introduced in [3].

Definition 4.1. A proof of data reliability scheme guarantees data
possession if for any adversaryA, the probability thatA computes a
correct proof of reliability for data blocks she did not have access to
is negligibly close to the probability that the challenger can extract
those blocks by means of a knowledge extractor.

Req 2 Soundness of redundancy computation. In this paper, we
consider that the CSP is the party that computes the redundancy
information on the outsourced data objects. Hence, it is important
to ensure that the CSP performs this computation correctly.

Definition 4.2. For any adversary A, a proof of data reliability
scheme guarantees the soundness of redundancy computation if the
only way A can generate a valid proof is by correctly computing
the redundancy information.

Hence, the soundness of redundancy computation could be as-
sured by means of verifiable computation [1, 13, 16] that allows the
client to verify that the redundancy information has been correctly
computed by an untrusted remote server.

Req 3 At rest storage of redundancy information guarantee. An
important functionality of proofs of data reliability is ensuring that
CSP stores the redundancy information, instead of computing it
on the fly every time it is audited. To this effect, we propose to
leverage a time threshold Th < τ < Tm to limit the acceptable
response time of CSP whereby Th and Tm denote the response
time of an honest CSP and a malicious one, respectively. For this
time threshold to be meaningful, we should ensure that τ ≪ Tm .
Therefore, we should make sure that the time it takes to generate
the proof is considerably shorter than the time it takes to compute
the redundancy information.

Definition 4.3. A proof of data reliability scheme guarantees the
storage at rest of redundancy information if for any adversaryA, the
probability that redundancy information can be recovered without
storing it and in time duration less than τ , is negligible.

To meet this goal, we rely on time-constrained operations: namely,
we make the memory readings that are necessary to compute the
redundancy difficult and more importantly time-consuming. In this
manner, we throttle the throughput of erasure code generation at
CSP and force the latter to store the redundancy information at
rest. The security experiment for this requirement is very similar to
the one in [22] whereby authors introduce an oracle that reflects
resource bounds on access to stored data. The resource-bounded
oracle in this case, should also be capable of reconstructing the
redundancy information.

5 POROS
In this section, we introduce a new proof of data reliability solution
named POROS.We first present its main building blocks and further
provide a complete description of the scheme.

5.1 Building Blocks
Erasure code. For the purposes of our proof of data reliability

scheme, we consider a storage system that leverages a systematic
linear (k,n)-MDS code [20, 24]. The generator matrix G of such
code is of the form [Ik | M], where Ik denotes the identity matrix of
size k ×k . Hence the encoding procedure does not alter the original
data object D. The selected code can repair up to d = n − k + 1
corrupted codewords. CSP computes the redundancy information
by first dividing the data object D into chunks and further applying
the erasure code defined byG over each data chunk d(i) comprising
k data blocks. This yields a vector of n codewords that includes the
k data blocks of chunk d(i) followed by n − k redundancy blocks.

Time-constrained proof generation at CSP. In order ensure data
owners that the CSP stores the redundancy information at rest,
we incorporate in our proof of reliability scheme a storage model
that leverages the technical characteristics of rotational hard drives
which are a common component of cloud storage infrastructure.

More precisely, our storage model assumes that all redundancy
information of a given data object D is handled as a seperate object
R. Similarly to the permutation-based scheme in [22], CSP performs
a random permutation д over the codewords that compose R and,
stores the result on a single storage node without fragmentation.
Disk access operations are done at the granularity of file system
blocks1. Hence, the resulting redundancy object R̃ is going to be
stored in n contiguous file system blocks, each comprisingm code-
words. Notice that R̃ does not prevent the CSP from performing
automatic maintenance operations since the redundancy object R
can be extracted from R̃ given the inverse permutation д−1.

A data owner can challenge the CSP to prove that it stores R̃
at rest by requesting l consecutive codewords starting from a ran-
domly chosen position in R̃. Assuming a random permutationд that
uniformly distributes the codewords in block r(i) over the blocks
in R̃, a compliant CSP has to perform one seek operation and then
access ⌈l/m⌉ file system blocks sequentially. On the contrary, a
1Typically the block size in current file systems is 4 KB.

POROS: Proof of Data Reliability for Outsourced Storage SCC’18, June 4, 2018, Incheon, Republic of Korea

malicious CSP that does not store R̃ has to perform up to l seek
operations on the storage nodes that store the original data object
D in order to access the corresponding data chunks d(i) , transmit
these chunks over its internal network and, apply the erasure code
for each of the l requested codewords.

The time threshold τ is thus defined as a function of timeTh that
an honest CSP takes to generate the proof and the response timeTm
of a malicious CSP who does not store R̃ and thus has to recompute
the redundancy. Preferably, τ should satisfy the inequality Th <
τ ≪ Tm , implying that the time required for the proof generation is
much shorter than the time needed to compute the redundancy. In
the next section we present our solution named POROS in detail.

5.2 POROS Description
POROS runs in three phases:

Initialization. The CSP and the client generate their parameters
and keying material by invoking the following algorithms:
Setup(1λ ,n,k) → param : Given security parameter λ, integers n
and k such that n > k , algorithm Setup first selects a large prime
number p (typically |p | = 160), a (k,n) generator matrix G =
[Ik | M] of a linear erasure code in Fp , a pseudo-random generator
prg : Fp × Fp → {0,1}∗ and the corresponding random seed η.
Algorithm Setup then terminates its execution by returning the
public parameters: param = (p,n,k,G,prg,η).
KeyGen(param) → (paramu ,paramv ,sk) : On input of public pa-
rameters param = (p,n,k ,G = [Ik |M],prg,η), algorithm KeyGen
first picks a pseudo-random function prf : Fp × {0,1}∗ → Fp ,
defines the upload parameters paramu = (p,n,k,prf) and the veri-
fication parameters paramv = (p,M,prg,η,prf), and finally selects
a secret key sk = (α ,β) ∈ Fp × Fp randomly.

Outsourcing. The client in this phase preprocesses and uploads
the file; the cloud server on the other hand takes the uploaded file,
processes it further by applying the agreed-upon erasure code and
stores it together with the resulting redundancy. More formally,
this phase is defined by two algorithms:
Upload(paramu ,sk,D) → (paramd ,D̃) : On input of upload pa-
rameters paramu = (p,n,k,prf), secret key sk = (α ,β) and data
object D, algorithm Upload (run by the client) first splits data ob-
ject D into chunks d(i) each composed of k blocks (d (i)1 , ...,d

(i)
k)

such that for all 1 ≤ j ≤ k , d (i)j is an element in Fp 2. There-

after, algorithm Upload computes for each block d
(i)
j a linearly

homomorphic MAC3:

σ
(i)
j = αd

(i)
j + prf (β , fid ∥ (i − 1)k + j)

Where fid is D’s unique identifier.
Finally algorithm Upload outputs the file parameters paramd =

(fid,n,k,L) wherein L is the number of chunks d(i) , and the au-
thenticated version D̃ of the original data object D whereby:

D̃ = {d(i) = (d
(i)
1 , ...,d

(i)
k);σ (i) = (σ

(i)
1 , ...,σ

(i)
k); s.t. 1 ≤ i ≤ L}

2This means that the size of d (i)
j in bits is log(p).

3By construction d (i)
j is the ((i − 1)k + j)th block in data object D.

Store(param,paramd ,D̃) → (D̃, R̃) : Given parameters param =
(p,n,k,G,η), file parameters paramd = (fid,n,k,L) and the up-
loaded file D̃ = {d(i) = (d

(i)
1 , ...,d

(i)
k);σ (i) = (σ

(i)
1 , ...,σ

(i)
k); s.t. 1 ≤

i ≤ L}, algorithm Store (run by the CSP) proceeds as follows:
(1) Erasure code computation: Algorithm Store applies the erasure

code defined by matrix G to each chunk d(i) by computing the
matrix multiplication d(i)G = d(i)[Ik | M]. This yields vector
(d(i) | r(i)) where r(i) = (r

(i)
1 , ...,r

(i)
n−k) = d(i)M defines the

redundancy blocks (i.e. the erasure code) of chunk d(i) . The set
of redundancy blocks for all chunks is defined as follows:

R = (r(1) |... | r(L)) = (r(1)1 , ...,r
(1)
n−k , ...,r

(L)
1 , ...,r

(L)
n−k)

(2) Erasure code authentication: Algorithm Store computes the vec-
tor of homomorphic MACs σ (i)G = σ (i)[Ik | M). In what fol-
lows, we denote by vectorψ (i) = (ψ

(i)
1 , ...,ψ

(i)
n−k) the result of

the matrix multiplication σ (i)M and by Ψ the vector:

(ψ (1) | ... | ψ (L)) = (ψ
(1)
1 , ...,ψ

(1)
n−k , ...,ψ

(L)
1 , ...,ψ

(L)
n−k)

4

(3) Erasure code shuffling: Using the pseudo-random generator prg,
seed η and file identifier fid algorithm Store produces a random
permutation5 д : [L]×[n−k]→ [(n−k)L] and then permute the
erasure code redundancy R and the corresponding homomor-
phic MACs Ψ. More precisely, if we denote R̃ = (r̃1, ..., r̃(n−k)L)
the redundancy vector after permutation, then redundancy
block r(i)j is mapped to redundancy block r̃д (i,j) . Similarly, if we
denote Ψ̃ = (ψ̃1, ...,ψ̃ (n−k)L) the homomorphic MACs’ vector
after permutation, then MACψ (i)

j is mapped to MAC ψ̃д (i,j) .
Algorithm Store concludes its execution by outputting D̃ and R̃ =
(R̃, Ψ̃).

Verification. In this phase, the client initiates a challenge-response
protocol with the CSP to ascertain compliance (or the lack thereof).
Accordingly, the CSP produces a proof of data reliability and the
client verifies its correctness. In accordance with previous work on
PoR and PDP, this phase consists of calling three algorithms:
Challenge(τ ,paramd) → chal : Provided with time threshold τ
and file parameters paramd = (fid,n,k ,L), algorithm Challenge
(run by the client) chooses an integer l , generates a vector ν of
l random elements νi in F∗p , generates a vector id of l random
indices corresponding to data blocks of D, picks one random index
1 ≤ ir ≤ (n − k)L − l , and accordingly sets the challenge to the
tuple: chal = (τ , fid,id ,ir ,ν).
Prove(chal) → π : On receiving challenge chal = (τ , fid,id ,ir ,ν),
algorithm Prove (run by the CSP) first retrieves the authenticated
data object D̃ and the corresponding authenticated redundancy R̃
that match identifier fid.
Thereupon, algorithm Prove processes data object D̃ as follows:

4Note that if we denoteM = [M1 | ... | Mn−k] such that eachMi is a column vector
of size k , thenψ (i)

j corresponds to the inner product σ (i) ·Mj and by construction

ψ (i)
j is the linearly-homomorphic MAC of the inner product b(i) ·Mj .

5Algorithm Store could use pseudo-random generator prg, seed η and file identifier fid
to produce a pair (δ , γ) such that gcd(δ , (n − k)L) = 1, and then shuffle the erasure
code redundancy R and the corresponding homomorphic MACs Ψ using the following
transformation for all 1 ≤ i ≤ L and 1 ≤ j ≤ (n−k):д (i, j) = δ ((i−1) (n−k)+j)+γ
mod (n − k)L.

SCC’18, June 4, 2018, Incheon, Republic of Korea D. Vasilopoulos et al.

(1) It reads the l requested blocks Without loss of generality we
denote these blocks d̃ = (d̃1, ...,d̃l).

(2) It reads the l MACs associated with blocks d̃. We denote these
MACs σ̃ = (σ̃1, ..., σ̃l).

(3) It computes the inner products

d̃ = d̃ · ν =
l∑
j=1

d̃jνj (1)

σ̃ = σ̃ · ν =
l∑
j=1

σ̃jνj (2)

In the same manner, algorithm Prove processes the redundancy R̃:
(1) It reads l consecutive redundancy blocks starting from block r̃ir .

Let r̃ denote the l consecutive redundancy blocks (r̃ir , ..., r̃ (ir+l−1)).
(2) It reads the l consecutive homomorphic MACs associated with

redundancy blocks r̃ (ir+j−1) , 1 ≤ j ≤ l . Letψ̃ = (ψ̃ir , ...,ψ̃(ir+l−1))
denote these MACs.

(3) It computes the inner products

r̃ = r̃ · ν =
l∑
j=1

r̃ (ir+j−1)νj (3)

ψ̃ = ψ̃ · ν =
l∑
j=1

ψ̃(ir+j−1)νj (4)

Finally, algorithm Prove outputs the proof π = (d̃, σ̃ , r̃ ,ψ̃).
Verify(sk,paramv ,chal,π) → accept or reject : On input of secret
key sk = (α ,β), verification parameters paramv = (p,M,prg,η,prf),
challenge chal = (τ , fid,id ,ir ,ν) and proof π = (d̃, σ̃ , r̃ ,ψ̃), algo-
rithm Verify (run by the client) performs the following checks:
– Response time verification: It first checks whether the response
time of the server was under time threshold τ . If not algorithm
Verify outputs reject; otherwise it executes the next step.

– Data possession verification: Given vector ν = (ν1, ...,νl) and
vector id = (id1, ...,idl) algorithm Verify verifies whether

σ̃ = αd̃ +
l∑
j=1

νjprf (β , fid ∥id j) (5)

If it is not the case, algorithm Verify returns reject; otherwise it
moves onto verifying the integrity of the redundancy.

– Redundancy possession verification: Algorithm Verify uses the
pseudo-random generator prg, seed η and file identifier fid to get
the shuffling function д, and then for all 1 ≤ j ≤ l it computes
the shuffling function preimage (x j ,yj) = д−1 (ir + j−1). Finally,
having matrix M = [M1 | ... | M(n−k)], algorithm Verify checks
whether the following equation holds:

ψ̃ = α r̃ +
l∑
j=1

νjMyj · prf
(x j) (6)

wherein for all 1 ≤ j ≤ l :

prf (x j) = (prf (β , fid ∥ (x j − 1)k + 1), ...,prf (β , fid ∥ x jk))

If so, algorithm Verify outputs accept; otherwise it returns reject.

6 SECURITY EVALUATION
6.1 Security Analysis

Req 0 Correctness. In order to demonstrate that POROS does not
yield false positives, we first show that Equations 5 and 6 always
hold when algorithm Prove is correctly run, then we argue that if
time threshold τ is correctly tuned then the probability of wrongly
accusing the CSP of misbehavior is close to none.

Upon invocation, algorithm Prove first reads l consecutive blocks
d̃ = (d̃1, ...,d̃l) and their corresponding MACs σ̃ = (σ̃1, ..., σ̃l),
whereby d̃1 is the ithf block in the original data object D. By the
definition of homomorphic MACs σ̃j , the following equality ensues:

σ̃j = αd̃j + prf (β , fid∥id j), ∀1 ≤ j ≤ l (7)

Moreover, algorithmProve scans l redundancy blocks r̃ = (r̃ir , ...,

r̃ (ir+l−1)) together with their corresponding MACs ψ̃ = (ψ̃ir , ...,

ψ̃(ir+l−1)). Note that for all 1 ≤ j ≤ l redundancy block r̃ir+j−1 cor-

responds to redundancy block r (x j)yj = Myj · b
(x j) and MAC ψ̃ir+j−1

corresponds toψ (x j)
yj = Myj ·σ

(x j) whereby (x j ,yj) = д−1 (ir + j−1)
and Myj is the yj th column of the linear code matrix M. Therefore,
the following equality always holds.

ψ̃ir+j−1 = Myj · (αd
(x j) + prf (x j)) = α r̃ir+j−1 +Myj · prf

(x j)

(8)

Where prf (x j) = (prf (β , fid ∥ (x j − 1)k + 1), ...,prf (β , fid ∥ x jk)).
Finally, algorithm Prove finishes its execution by computing four

inner products. These inner products are computed as follows:

d̃ = d̃ · ν ; σ̃ = σ̃ · ν ; r̃ = r̃ · ν ; ψ̃ = ψ̃ · ν

Where ν = (ν1, ...,νl) is the random vector generated by the client
and transmitted in the challenge message chal.

By plugging Equations 7 and 8 in the inner products, we derive
the following equalities:

σ̃ = αd̃ +
l∑
j=1

νjprf (β , fid ∥ id j)

ψ̃ = α r̃ +
l∑
j=1

νjMyj · prf
(x j)

We can easily see that the above equations are the same as
Equations 5 and 6. This means that if the cloud server executes
algorithm Prove correctly, then it will pass the verification so long
as its response time is smaller than time threshold τ .

Req1 Data possession guarantee. As the proposed POROS solu-
tion relies on the use of linearly-homomorphic MACs defined in
the privately verifiable PoR scheme in [19], we can directly show
that a large portion of the outsourced file is stored intact and thus
the data possession guarantee is satisfied.

Req 2 Soundness of redundancy computation. Following Theo-
rem 4.1 in [19], if the prf is secure, then no adversary will cause a
verifier to accept in a proof of data reliability instance, except by
responding withψ and σ , that are computed correctly. Indeed, be-
cause in POROS, redundancy information is computed by applying

POROS: Proof of Data Reliability for Outsourced Storage SCC’18, June 4, 2018, Incheon, Republic of Korea

Figure 2: Response times of adversaries A1 and A2 for different challenge sizes l ; data object size of 4GB (left) vs. 16GB (right).

Table 1: Response times of an honest CSP for deferent challenge sizes l .
Challenge size l 32 64 128 256 512

D (4GB) 21.315 ms 21.159 ms 21.363 ms 20.962 ms 21.825 ms
D (16GB) 26.752 ms 26.479 ms 28.117 ms 27.566 ms 29.234 ms

a linear combination over original data blocks and consequently
their MACs should derive from the MACs of the data.

Req 3 At rest storage of redundancy information guarantee. Simi-
larly to [22], Req 3 is met as long as τ ≪ Tm . Tm =min(Tm1 ,Tm2)
is the response time of a malicious CSP where Tm is defined as the
minimum of the following values:

• Tm1 : the response time of a malicious CSP who stores the
redundancy information in its original order (i.e. without
permutation). Tm1 = lTSeek + lTSeqRead (1)
• Tm2 : the response time of a malicious CSP who stores the
data objectD, only.Tm2 = lTSeek +lTSeqRead (k)+lTEncode

In the above equations, l is the number of sequential redundancy
blocks r̃ requested in a POROS challenge,TSeek is the time required
for a seek operation on the hard drive, TSeqRead (n) is the required
time to read n data blocks sequentially from the hard disk,TEncode
is the time required to apply the erasure-code defined by the gener-
ator matrix G over a data chunk and, k the number of blocks that
comprise a data chunk. Intuitively, Tm1 should be less than Tm2 .

Moreover, in order to take into account the variations in RTT,
the time threshold τ should also satisfy the following condition:
τ > RTTmax + Th , wherein RTTmax is the worst-case RTT and
Th = TSeek +TSeqRead (l) is the response time of an honest CSP.

Fortunately, by carefully tuning parameter l , we can make sure
that time-threshold τ satisfies both conditions: This is achieved
actually by picking a value for l that guarantees that RTTmax ≪

Tm −Th . This makes the scheme robust against false positives.
To conclude Req 3 is met as long as the time threshold τ (and

therewith l) is tuned such that it fulfills

TSeek +TSeqRead (l) ≤ τ < lTSeek + lTSeqRead (1)

Section 6.2 provides some hints on the order of τ through an
experimental study.

6.2 Experimental evaluation
We have performed an experimental evaluation of POROS’ Prove
algorithm in order to assess the time-constrained proof generation
at CSP. The goal is to compare the response time required for the

generation off a legitimate proof to the one required for the gener-
ation of a cheating response by a malicious CSP. We implemented
our prototype in Python 3.5 and we used the zfec6 library in order
to apply the erasure code to some test files7.

We consider two types of adversary that deviate from the proto-
col in different ways. The cloud is required to read l consecutive
redundancy codewords from the redundancy object R̃ in the order
defined by the permutation д and return them to the verifier. Adver-
saryA1, stores the original redundancy objectR in its original order.
A1 attempts to elude detection by seeking on the hard disk the
requested redundancy codewords in order to produce the response.
As regards to adversary A2, she does not store any redundancy in-
formation at rest: A2 seeks and retrieves the required data chunks
d(i) in order to compute the corresponding redundancy chunks r(i)
and then composes the response according to permutation д; For
each type of adversary, we also consider another strategy whereby
the new adversary A ′i can take advantage of the available RAM.
Hence A ′1 will load the original redundancy object R̃ within the
RAM and subsequently compose her response according to д. On
the other hand, A ′2 will load the whole data object D to the RAM
to further compute the R̃ and respond with the required codewords.
Finally, we assume that both adversaries choose the strategy that
results in the shortest response time for each challenge they receive.

The results presented in Figure 2 and Tables 1 and 2 are the
median of 20 independent measurements of the cloud response
time; before each measurement we flushed all file system caches.

Figure 2 depicts the response time for A1, A ′1, A2 and A ′1 who
are expected to store a 4GB data object (left) and a 16GB data object
(right) with 12.5% redundancy (512MB and 2GB respectively). Table
1 presents the response time of an honest CSPwhich stores the same
data objects. The redundancy is computed using a systematic linear
(256,288)-MDS code that operates over 64-bit codewords yielding
32 redundancy codewords. In order to apply the code, the 4GB data
6https://pypi.python.org/pypi/zfec
7All measurements were performed on a local machine with the following characteris-
tics: i5-3470 64-bit processor with 4 cores running at 3.20 GHz, 32GB of RAM at 1600
MHz and, a 320GB HDD at 7200 rpm with a SATA-III 6 Gbps interface. The operating
system was Ubuntu Server 14.04.5 LTS with Ext4 as file system and a file system block
size of 4 KB. We also measured the sequential throughput of our machine at 131.1 MB
per second.

SCC’18, June 4, 2018, Incheon, Republic of Korea D. Vasilopoulos et al.

Table 2: Disadvantage of adversaries A1 and A2 relative to an honest CSP.
Object Size D (4GB), R̃ (512MB) D (16GB), R̃ (2GB)

Challenge size l 32 64 128 256 512 32 64 128 256 512
TA1/Th 167.51 180.39 178.66 182.39 174.38 140.56 272.77 461.76 553.84 552.24
TA2/Th 232.19 546.88 1035.93 1459.14 1399.05 282.93 626.21 1218.56 2359.08 4145.43

object D is divided into data chunks d(i) of size 2KB each. The
redundancy object R is composed of the corresponding redundancy
chunks r(i) of 256 Bytes each. All disk access operations are done
at the granularity of file system block, whose size is 4KB, therefore
each block contains 512 codewords. At this point, the honest CSP
computes R̃ using the random permutation д, A1 stores R without
permuting it and, A2 discards the redundancy object.

We observe that the response time of an honest CSP is on the
order of milliseconds whereas the ones of all four adversaries are on
the order of seconds. Due to the size of the challenge, an honest CSP
responds by performing one seek operation and by reading from
the hard disk one or two consecutive file system blocks. On the
contrary,A1 has to perform up to l seek operations in order to read
the required redundancy chunks r(i) or load the whole redundancy
object R to RAM which can take significant more time. In the same
way, A2 has to perform up to l seek operations to retrieve the re-
quired data chunks d(i) or read the whole data object D and further
apply the erasure code in order to produce the response. Similarly
to the analysis in [22], in the case of the 4GB data object, when
the size of the challenge l is larger than 32 redundancy codewords,
it is faster for A1 to load the whole R in RAM and subsequently
compose the response. As regards to adversary A2, she reaches at
this point for a value of l larger than 256 codewords.

In Table 2 we show the ratio between the response time of a
malicious adversary and the one of a legitimate CSP. For example,
for a 4GB file and a challenge of size 128, A1 is 178 times slower
than an honest CSP.

To conclude, our experimental study confirms that by storing re-
dundancy information as a single permuted object, separately from
original data, a rational CSP would chose to conform to the actual
POROS protocol and thus it would be forced to store redundancy
information at rest. Furthermore, our study also reveals that given
the significant gap between the response time of a malicious cloud
and that of an honest one, τ can set to be quite close to the lower
bound defined by the time an honest CSP would take to compute
the POROS response for a given file.

7 RELATEDWORK
Bowers et al. [8] propose HAIL, which provides a high availability
and integrity layer for cloud storage. In order to guarantee data
retrievability among distributed storage servers, HAIL uses erasure
codes on the single and multiple server layers respectively, enabling
a user to detect and repair corruption of her data. The work in
[10] redesigns parts of [8] in order to achieve a more efficient
repair phase that shifts the bulk computations to the cloud side.
In [11], Chen et al. present a remote data checking scheme for
network-coding-based distributed storage systems that minimizes
the communication overhead of the repair component compared
to erasure coding-based approaches. The work in [18] extends the
scheme in [11] improving the repair mechanism in order to reduce

the computation cost for the client and introducing a third party
auditor. Based on the introduction of this new entity, the authors
in [21] design a network-coding-based PoR scheme in which the
repair mechanism is executed between the cloud provider and the
third party auditor without any interaction with the client. All the
above schemes however share a common system model where the
client initially encodes her data and then outsources it to the cloud.
Moreover, when corruption is detected the cloud cannot repair
autonomously because either it expects some input from another
entity or all computations are performed by the client. In POROS,
the cloud is enabled to perform automatic maintenance operations
and thus it can repair corrupted data autonomously. In addition,
even the initial encoding of the data is performed by the cloud.

In [9], Bowers et al. propose a erasure code based protocol that
enables a client to verify that her encoded data is stored at multiple
servers so it can be regenerated. Similarly to our solution, this
scheme relies on technical characteristics of rotational hard drives
in order to set a time-threshold for the cloud servers to respond
to a read request for a set of data blocks. Additionally, the scheme
also enables the outsourcing of the data encoding to the cloud
provider as well as automatic maintenance operations without any
interaction with the client. However, in contrast to POROS, the
challenge verification requires that a copy of the encoded data is
stored locally at the user.

Except for the schemes that rely on coding for the maintenance
of the data, the literature features a number of solutions that use
replication in order to provide data reliability and thus are not
directly comparable to POROS. Curtmola et al. proposed in [12]
a multi-replica PDP, which extends the PDP scheme in [3] and
enables the client to verify that the cloud provider stored at least t
replicas of her data. The authors in [5, 6] propose a multi-replica
dynamic PDP scheme that enables clients to update/insert selected
data blocks and to verify multiple replicas of their outsourced files.
In [15], Etemad et al. extend the dynamic PDP scheme in [14]
in order to transparently support replication in distributed cloud
storage systems. Likewise related work in coding based protocols,
the above schemes require that the client generates the redundancy
by constructing the replicas locally before outsourcing to the cloud.

Finally, in [2] Armknecht et. al propose a multi-replica PoR
scheme that outsources the construction of the replicas to the cloud.
Nonetheless, due to the underlying PoR scheme, clients in [2] have
to encode their data before uploading it to the cloud.

8 CONCLUSION
In this paper, we have introduced a new proof of data reliability
solution named POROS that enables a cloud customer to efficiently
verify that the cloud server stores her outsourced data correctly and
additionally that it complies with the claimed data reliability and
availability guarantees. Running POROS protocol, a client is assured
that the cloud server actually stores both the original data and the

POROS: Proof of Data Reliability for Outsourced Storage SCC’18, June 4, 2018, Incheon, Republic of Korea

corresponding redundancy information. Thanks to the combination
of PDPs with time-constrained operations, a rationale cloud server
would not compute redundancy blocks upon request but instead
would store them at rest. Contrary to existing solutions, POROS
does not prevent the cloud from performing functional operations
such as automatic repair and does not induce any interaction with
the client during such maintenance operation.

9 ACKNOWLEDGMENTS
The authors thank Hamdi Ammar, Cedric Osornio-Gleason and
Sejal Jain for implementing the POROS protocol. The authors also
thank Loukas Lazos and Li Li for helpful discussions on the topic of
data reliability. Finally, the authors would like to thank the anony-
mous reviewers for their suggestions and feedback.

REFERENCES
[1] Shweta Agrawal and Dan Boneh. 2009. Homomorphic MACs: MAC-Based In-

tegrity for Network Coding. In Proceedings of the 7th International Conference on
Applied Cryptography and Network Security (ACNS ’09). 292–305.

[2] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O.
Karame. 2016. Mirror: Enabling Proofs of Data Replication and Retrievability in
the Cloud. In 25th USENIX Security Symposium (USENIX Security 16). Austin, TX,
1051–1068.

[3] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kiss-
ner, Zachary N. J. Peterson, and Dawn Song. 2007. Provable data possession at
untrusted stores. In Proceedings of the ACM Conference on Computer and Commu-
nications Security (CCS). 598–609.

[4] M. Azraoui, K. Elkhiyaoui, R. Molva, and M. Önen. 2014. StealthGuard: Proofs
of Retrievability with Hidden Watchdogs. In Proceedings of the 19th European
Symposium on Research in Computer Security (ESORICS) . 239–256.

[5] Ayad F. Barsoum and M. Anwar Hasan. 2012. Integrity Verification of Multi-
ple Data Copies over Untrusted Cloud Servers. In Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (Ccgrid
2012) (CCGRID ’12). 829–834.

[6] Ayad F. Barsoum and M. Anwar Hasan. 2015. Provable multicopy dynamic
data possession in cloud computing systems. IEEE Transactions on Information
Forensics and Security 10, 3 (2015), 485–497.

[7] M. Blaum, J. Brady, J. Bruck, and J. Menon. 1994. EVENODD: An Optimal Scheme
for Tolerating Double Disk Failures in RAID Architectures. In Proceedings of
the 21st Annual International Symposium on Computer Architecture (ISCA ’94).
245–254.

[8] Kevin D. Bowers, Ari Juels, and Alina Oprea. 2009. HAIL: A High-availability
and Integrity Layer for Cloud Storage. In Proceedings of the 16th ACM Conference
on Computer and Communications Security (CCS). 187–198.

[9] Kevin D. Bowers, Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest.
2011. How to Tell if Your Cloud Files Are Vulnerable to Drive Crashes. In
Proceedings of the 18th ACMConference on Computer and Communications Security
(CCS ’11). 501–514.

[10] Bo Chen, Anil Kumar Ammula, and Reza Curtmola. 2015. Towards Server-side
Repair for Erasure Coding-based Distributed Storage Systems. In Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy (CODASPY
’15). 281–288.

[11] Bo Chen, Reza Curtmola, Giuseppe Ateniese, and Randal Burns. 2010. Remote
Data Checking for Network Coding-based Distributed Storage Systems. In Pro-
ceedings of the 2010 ACMWorkshop on Cloud Computing SecurityWorkshop (CCSW
’10). 31–42.

[12] Reza Curtmola, Osama Khan, Randal C. Burns, and Giuseppe Ateniese. 2008.
MR-PDP:Multiple-Replica ProvableDataPossession. In ICDCS. 411ÂŰ420.

[13] Kaoutar Elkhiyaoui, Melek Önen, Monir Azraoui, and Refik Molva. 2016. Efficient
Techniques for Publicly Verifiable Delegation of Computation. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security
(ASIA CCS ’16). 119–128.

[14] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamas-
sia. 2009. Dynamic Provable Data Possession. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS ’09). 213–222.

[15] Mohammad Etemad and Alptekin Küpçü. 2013. Transparent, Distributed, and
Replicated Dynamic Provable Data Possession. In Proceedings of the 11th Inter-
national Conference on Applied Cryptography and Network Security (ACNS’13).
1–18.

[16] Dario Fiore and Rosario Gennaro. 2012. Publicly Verifiable Delegation of Large
Polynomials and Matrix Computations, with Applications. In Proceedings of

the 2012 ACM Conference on Computer and Communications Security (CCS ’12).
501–512.

[17] Ari Juels and Burton S. Kaliski, Jr. 2007. Pors: Proofs of Retrievability for Large
Files. In Proceedings of the 14th ACMConference on Computer and Communications
Security (CCS ’07). 584–597.

[18] Anh Le and Athina Markopoulou. 2012. NC-Audit: Auditing for network coding
storage. In Proceedings of International Symposium on Network Coding. 155–160.

[19] Shacham, Hovav and Waters, Brent. 2008. Compact proofs of retrievability. In
Proceedings of the 14th International Conference on the Theory and Application
of Cryptology and Information Security: Advances in Cryptology (ASIACRYPT).
90–107.

[20] Changho Suh and K. Ramchandran. 2011. Exact-Repair MDS Code Construction
Using Interference Alignment. IEEE Trans. Inf. Theor. 57, 3 (March 2011), 1425–
1442.

[21] Tran Phuong Thao and Kazumasa Omote. 2016. ELAR: Extremely Lightweight
Auditing and Repairing for Cloud Security. In Proceedings of the 32Nd Annual
Conference on Computer Security Applications (ACSAC ’16). 40–51.

[22] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L. Rivest, Emil Stefanov, and
Nikos Triandopoulos. 2012. Hourglass Schemes: How to Prove That Cloud Files
Are Encrypted. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12). 265–280.

[23] YunnanWu and Alexandros G. Dimakis. 2009. Reducing Repair Traffic for Erasure
Coding-based Storage via Interference Alignment. In Proceedings of the 2009 IEEE
International Conference on Symposium on Information Theory - Volume 4 (ISIT’09).
2276–2280.

[24] Chaoping Xing and San Ling. 2003. Coding Theory: A First Course. Cambridge
University Press, New York, NY, USA.

A MULTIPLE-CHALLENGE POROS
In order to increase clients confidence in CSP’s good behavior, it
is desirable to make the CSP execute multiple instances of POROS.
A straightforward approach to achieve this, would be to have the
client send multiple challenges to CSP. The main caveat of such a
solution is that CSP can run several instances of algorithm Prove in
parallel, which renders less effective the function that throttles ECC-
throughput. To counter this issue, we could turn to a sequential
protocol whereby the client would wait for the server’s response to
the current challenge before transmitting the next one. to transmit
the second challenge, and so on and so forth. While this approach
forces the server to generate the proofs iteratively, it increases the
number of interactions between the client and the CSP, which in
turn comes at the expense of bandwidth and throughput.

To address these shortcomings, we propose that the client ini-
tiates the protocol by sending a single challenge termed hereafter
initialization challenge. This challenge will be generated exactly
in the same way as the challenge in the basic version of POROS
(cf. Section 5.2). Subsequent challenges however will be produced
as a function of the proofs to preceding challenges. More specif-
ically, the challenge in iteration t + 1, for instance, is computed
as a function of the proof that the cloud server generated as a re-
sponse to the challenge in iteration t . In this manner, we devise a
multiple-challenge version of POROS that (i) keeps the communi-
cation between the client and CSP minimal (i.e. there are only two
rounds of communication); (ii) and induces the server to generate
the proofs iteratively.

A.1 Description
Multiple-challenge POROS runs as following:

The Initialization and the Outsourcing phases run in the exact
same way as their counterparts in Section 5.2. Additionally, the
client chooses one pseudorandom generator prgd : {0,1}∗ → [kL]l
and sends this one to the cloud before the Verification phase starts.

SCC’18, June 4, 2018, Incheon, Republic of Korea D. Vasilopoulos et al.

The main reason to have this prgd is to reduce the size of the
challenge chal. We now describe the Verification phase.
Challenge(τ ,paramd) → chal : On input of time threshold τ and
data object parameters paramd = (fid,n,k,L), algorithmChallenge
(run by the client) first selects an integer s which specifies the
number of iterations that the server is required to go through,
then it generates a random vector ν = (ν1, ...,νl)in F∗p

l , chooses

a vector of random seeds ηd = (η
(1)
d , ...,η

(s)
d), and one random

index 1 ≤ ir1 ≤ (n − k)L − l . Finally, algorithm Challenge defines
the initialization challenge as: chal = (τ , fid,s,ηd ,ir1 ,ν).
Prove(chal) → π : Given initialization challenge chal = (τ , fid,s,ηd ,
ir1 ,ν), algorithm Prove (run by the CSP) fetches the authenticated
data object D̃ and the authenticated redundancy object R̃.
Next algorithm Prove processes authenticated data object D̃ by
executing the following operations s times. For ease of exposition,
we assume that algorithm Prove is at the t th iteration:

(1) AlgorithmProve reads l blockswhose indices result from prgd (η
(t)
d)

Henceforth, we denote these blocks d̃(t) = (d̃
(t)
1 , ...,d̃

(t)
l).

(2) It reads the l MACs associated with blocks d̃(t) . From now on
we denote these MACs σ̃ (t) = (σ̃

(t)
1 , ..., σ̃

(t)
l).

(3) It computes the inner products

d̃ (t) = d̃(t) · ν =
l∑
j=1

d̃
(t)
j νj

σ̃ (t) = σ̃ (t)
· ν =

l∑
j=1

σ̃
(t)
j νj

(4) It goes back to step 1.
Algorithm Prove processes the redundancy R̃ in the same way it
processed authenticated data object D̃. More precisely it executes
the following tasks s times.

(1) Algorithm Prove reads l consecutive redundancy blocks start-
ing from block r̃irt . Let r̃

(t) = (r̃irt , ..., r̃i (rt +l−1)) denote the l
consecutive redundancy blocks.

(2) It reads the l consecutive homomorphic MACs associated with
redundancy blocks r̃(t) . Let ψ̃ (t)

= (ψ̃irt , ...,ψ̃(irt +l−1)) denote
these MACs.

(3) It computes the inner products

r̃ (t) = r̃(t) · ν =
l∑
j=1

r̃ (irt +j−1)νj

ψ̃ (t) = ψ̃
(t)
· ν =

l∑
j=1

ψ̃(irt +j−1)νj

(4) It computes the random value Irt+1 = prg(ψ̃ (t) , r̃ (t)) and sets the
new index irt+1 for the next challenge to the first log((n−k)L−l)
bits of Irt+1 .

(5) It goes back to step 1.
Algorithm Prove terminates by returning the proof π = (d̃,σ̃ , r̃,ψ̃),
such that:

d̃ = (d̃ (1) , ...,d̃ (s)) ; σ̃ = (σ̃ (1) , ..., σ̃ (s))

r̃ = (r̃ (1) , ..., r̃ (s)) ; ψ̃ = (ψ̃ (1) , ...,ψ̃ (s))

Verify(sk,paramv ,chal,π) → accept or reject : On input of secret
key sk = (α ,β), verification parameters paramv = (p,M,prg,s,prf),
initialization challenge chal = (τ , fid,id1 ,ir1 ,ν ,s) and proof π =
(d̃,σ̃ , r̃,ψ̃), algorithm Verify (run by the client) performs the fol-
lowing operations:
– Response Time verification. It first verifies whether the response
time of the sever was under time threshold τ . If not algorithm
Verify outputs reject. Otherwise, algorithm Verify moves onto
checking the integrity of the outsourced data.

– Data possession verification. Given vectors d̃ = (d̃ (1) , ...,d̃ (s)),
and σ̃ = (σ̃ (1) , ..., σ̃ (s)), algorithm Verify executes the subse-
quent steps s times. We assume here that algorithm Verify is at
the t th iteration:

(1) Given vector ν = (ν1, ...,νl), algorithm Verify checks whether

σ̃ (t) = αd̃ (t) +
l∑
j=1

νjprf (β , fid ∥ idt + (j − 1))

If this is not the case, then algorithm Verify returns reject.
(2) Otherwise, algorithm Verify generates Idt+1 = prg(σ̃ (t) ,d̃ (t)),

sets the index idt+1 for the next iteration to the first log(kL−l)
bits of Idt+1 and goes back to step 1.

If algorithm Verify does not return reject, it proceeds with veri-
fying the integrity of the redundancy.

– Redundancy possession verification. Algorithm Verify first uses
the pseudo-random generator prg, seed η and file identifier
fid to get the shuffling function д. Then given vectors r̃ =
(r̃ (1) , ..., r̃ (s)) and ψ̃ = (ψ̃ (1) , ...,ψ̃ (s)) it performs the following
operations s times.

(1) Given index rt , algorithm Verify finds the shuffling function
preimage (x jt ,yjt) = д−1 (irt + j − 1) for all 1 ≤ j ≤ l .

(2) Given matrixM = [M1 | ... |M(n−k)], algorithm Verify checks
whether the following equality holds:

ψ̃ (t) = α r̃ (t) +
l∑
j=1

νjMyjt · prf
(x jt)

whereby for all 1 ≤ j ≤ l :

prf (x jt) = (prf (β , fid ∥ (x jt − 1)k + 1), ...,prf (β , fid ∥ x jt k))

If the equality is not satisfied, then algorithm Verify returns
reject.

(3) Otherwise, it computes Irt+1 = prg(ψ̃ (t) , r̃ (t)), defines the
new index irt+1 for the next iteration by truncating the first
log((n − k)L − l) bits of Ift+1 and goes back to step 1.

If algorithm Verify does not return reject, then it concludes its
execution by outputting accept.

B ERASURE CODES
Reliable storage systems store the original data with some degree
of redundancy in order to tolerate component failures. The simplest
way to introduce redundancy is replication where verbatim copies
of a data object are stored in multiple locations in the storage
system. Replication is conceptually simple and straightforward to
implement, yet it inflicts high storage overhead.

Erasure codes are a generalization of replication that can ensure
equivalent levels of failure tolerance with less storage overhead. A

POROS: Proof of Data Reliability for Outsourced Storage SCC’18, June 4, 2018, Incheon, Republic of Korea

class of erasure codes, called linear maximum distance separable
(MDS) codes [20, 24] are desirable in storage systems’ applications
because they deliver the greatest error-detecting and correcting
capabilities for the amount of storage space dedicated to redundancy
information. In particular, a linear (k,n)-MDS code encodes a data
object D of k data blocks into n encoded blocks, called codewords.
Input data blocks and the corresponding codewords belong to the
finite field Fp , where p is a large prime and k ≤ n ≤ p. Once some
storage failure is detected, the original data D can be recovered
from any set of k encoded blocks and any corrupted codewords
can be reconstructed. A linear (k,n)-MDS code can be computed
by employing k × n generator matrix G with the property that
any k columns are linearly independent. Reed-Solomon codes [24]
are a typical example of MDS codes, their generator matrix G can
be easily defined for any given values of (k,n) and are used by a
number of storage systems [7].

Regarding the bandwidth required to repair a corrupted code-
word, the performance of traditional erasure codes is suboptimal
since the data object D has to be reconstructed in its entirety. In
order to facilitate efficient repair of codewords, the literature fea-
tures a number of erasure code classes from regenerating codes
[23] to non-MDS codes like locally repairable codes (LRC) that are
not optimal in terms of code rate, yet they allow for regeneration
of lost codewords with less computation and/or communication
overhead.

C THE PRIVATE POR SCHEME OF SHACHAM
ANDWATERS

In what follows, we briefly describe the private scheme in [19],
which is the base for the PDP signature scheme used in POROS.
This scheme takes advantage of a pseudo-random function prf. The
data owner chooses her secret key that consists of a random number
α ∈ Zp and a key β for the function prf and then she computes a
homomorphic authentication tag for each block di of the original
data object D as follows:

σi = αdi + prf (β ,i) ∈ Zp

The data object D together with the homomorphic MACs {σi }
are then outsourced to the CSP. The audit of the outsourced data is
performed as follows. The data owner sends to the CSP a challenge
chal that comprises a random l-element set I ⊂ [1,n] and l random
coefficients vi in Zp . The CSP then computes the proof π = (σ ,d)
as:

d =
∑

(i,vi)∈chal

vidi , σ =
∑

(i,vi)∈chal

viσi

π is transmitted to the data owner who can verify the integrity
of the data by checking that

σ
?
= αd +

∑
(i,vi)∈chal

vi · prf (β ,i)

Thanks to the unforgeability of homomorphic MACs, a malicious
CSP cannot corrupt outsourced data without being detected.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Idea
	4 Proofs of Data Reliability
	4.1 Adversary Model
	4.2 Security Requirements

	5 POROS
	5.1 Building Blocks
	5.2 POROS Description

	6 Security Evaluation
	6.1 Security Analysis
	6.2 Experimental evaluation

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	A Multiple-challenge POROS
	A.1 Description

	B Erasure Codes
	C The Private PoR Scheme of Shacham and Waters

