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ABSTRACT

‘We investigate a new multichannel estimation method based on
blind MMSE ZF Equalization. The recently proposed method by
Tsatsanis et al. [4] corresponds to unbiased MMSE Equalization.
‘We interpret this approach in terms of Two-Sided Linear Predic-
tion (TSLP), also called smoothing by Tong [7]. We establish
the links between MMSE, Minimum Output Energy (MOE} and
MMSE ZF and we prove equivalence under the unbiasedness con-
straint in the noiseless case. Our analysis shows how © prop-
erly apply Capon’s principle [3] for Linearly Constrained Mini-
mum Variance (LCMV) beamforming to multichannel equaliza-
tion. Furthermore, we show that Tsatsanis’s application of Capon’s
principle becomes only cormrect, and Tong’s channel estimate be-
comes only unbiased, at high SNR. Whereas the goal is to do
MMSE ZF, it is easier to approach the problem via Unbiased MMSE
{(UMMSE) on noiscless data. Hence, the covariance matrix of the
received signal has to be “denoised” before using it in the biind
estimation method. We provide an approach without eigen de-
composition that shows excellent performance. Simulation results
are presented to support our claims.

1. INTRODUCTION

Blind single-user multichannel identification techniques exploit a
multichannel formulation corresponding to a Single Input Multi-
ple Output (SIMO) vector channe]. The channel is assumed to
have a finite delay spread NT. The multiple FIR channels can
be obtained by oversampling a single received signal, but can also
be obtained as multiple received signals from an array of antennas
(in the context of mobile digital communications [1],[2]) or from
a combination of both. For m channels the discrete-time input-
output relationship can be written as:

N-1
y(k) = Z h(i)a(k—i) + v(k) = HAn(k) +o(k) (D
where (k) = [y (K) - yE ()T, (i) = [ ) - REW]
v(k) = [vf (k) - v (R))7, H = [R(N-1) - -- h(0)], An(K) =
[a(k—N+1)¥ - -a(k)H]H and superscript ¥ denotes Hermi-

fian transpose. Let H(z) = Yo" h(i)z™" = [HI (2) - - - H()}¥

be the SIMO channel transfer‘ ﬁgnction. The channel coefficients
vectoris b =[ hH(N-1)--. ¥ (0) ]”. Consider the symbols
id.d. if required and additive independent white Ganssian circular
noise v (k) with ryp(k—i) = Ev(k)v())¥ = olln dii. As-
sume we receive M samples:

Yu(k) = Taa(h) Amyna (k) + Va(k) 2

where ¥ pr(k) = [yF (k—M+1) - y¥ (k)]” and similarly for
V (k). Ta(h) is a block Toeplitz matrix filled with the channel

coefficients. We shall simplify the notation in (2) with k = M—1
to:
Y = TA+V. ®

We assume that mM > M+ N —1 in which case the channel con-
volution matrix 7~ has more rows than columns. A channel will
be said irreducible if the H;(2), i = 1,..., m have no zeros in
common, and reducible otherwise. For obvious reasons, the col-
umn space of T is called the signal subspace and its orthogonal
complement the noise subspace.

2. CAPON’S METHOD

A well known principle in array processing applications, when
the direction of arrival and the signature of the user of interest
is known (or estimated), is the Minimum Variance Distortionless
Response (MVDR) beamformer. This beamformer suppresses the
interfering users signals without distorting the signal of the user of
interest. The Capon’s method [3] starts from the MVDR principle
to derive blind solutions (without having to know the signatures}.
Assume that we are interested in the user 1 and we have to de-
termin an FIR linear equalizer F° that provides its corresponding
transmitted signal with a possible delay of d samples. In this case
a linear estimator of the transmitted signal is given by

d1x_a = FEY (k). 4

th

Assume that N;T is the finite delay spread of the 5~ user, the

received signal can be written as

Y aelk) = Tara Ar gy -1 (R4, TaagAspe ;-1 (K)+V aa(k),

i>1
(5)
hence, the distortioneless response for the user of interest satisfies
FoTi1=[0---010---0] = e¥, ®
d

which implies that the problem is equivalent to find a linear FIR
ZF equalizer F that acts as a ZF for the Inter-Symbol Interference
(IST) of the user of interest.

- 3. BLIND UNBIASED MMSE EQUALIZATION

The method proposed by Tsatsanis ez al. [4] is an nnbiased MMSE
Equalization point of view that consists in

0
F¥Ta1eqa = F¥ [ h } =Fih =1, 0
0



This implies that under the unbiased constraint, the MMSE cri-
tetion and the MVDR cne (also known as Minimum Cutput En-
ergy (MORE)) are equlvalent In the Tsatsanis’s approach, the MOE
criterion m};‘n F¥ Ry F is sloved according to a two steps algo-

rithm.

e stepl: the optimization criterion min F¥ Ryv [ is
FiFEh=1

solved via the following Lagrange multiplier equation:

min FERyyF + MFHR -1). (8)
The solutionis given by F' = — ARy} h and A = _H_l_
h™ Ry R
Hence F' = — 1 — RyY A unbiased MMSE equalizer.
hY R A

s step2: this step coincides with the Capon’s method, in which
a max/min idea arises:

max min FERyvF
h:||h|= anh 1 )
= _max R;;h) or min R R h
R:hy=1 h:jh|=1
©
. 0 0
Sinceh =1 h | =} I | h =T h, the optimization
0 0

problem given by (9) becomes
min h
h:h=1
(10
where Vinin(A) denotes the eigenvector corresponding to
the minimum eigenvalue of A.

4. INTERPRETATION IN TERMS OF TWO-SIDED
LINEAR PREDICTION (TSLP)

Whereas in the forward linear prediction we predict linearly a given
sample from his previous samples, and in the backward linear pre-
diction the sample is linearly predicted from the samples that come
immediatly afterward; the TSLP approach predicts linearly a sam-
ple vector simnltaniously from his past and future samples.

4.1. Interpretation for step2

I o
Consider the matrix 75> defined as T, = [ 0 0 ] . T2 can be
o I

interpreted as T> = Ti": the orthogonal complement of 7} since
TFT, = Oand Pry + Pr, = I (Pr, = P§), where P{ =
I —Px =I~X(X®X)"'X¥. From the partitioned Matrix
Inversion Lemma (MIL), the matrix T{? Ry% 7\ appearing in (10)
can be written as
-1 —t
(T{H RyyTi —TH RyvTe (T';IRYYT2) TzHRYYTI)
. (i1)
Consider now ¥ = TFY — QTF Y, where the matrix @ =
(TERyyTs) (TF RyyT2) ™" is optimized to minimize Ryy
The expression given in (11) becomes
TRy T = RG}, and hence (10) = b = Vinas (Ryy) .
(12)

H (T,H R;;Tl) h= b= Vimin (T,H R;ly'ﬂ) .

where V.2 (A) denotes the eigenvector corresponding to the max-
imum eigenvalue of A.

Analysis in the Noiseless Case
In the noiseless case Y = T A, the vetors THY and T Y are

illustrated in Fig 1. We analyse the TSLP approach in two sym-
bols cases: the i.i.d. symbols case and the correlated symbols case.

-
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e iid. symbols case: in this case the estimation of THY

from 7Y is the same as the estimation of T T from
TH T.feachof the matrices [ [ 0 0 ] Tand{ 00
is full column rank then the estimation error in estimating
TET from TF T is hel (note that { I 0 0 ] 7 and
[0 0 I ]T are also talls but only of smaller dimen-
sion). Since Tt = T}, we have

TET - QTHET

=TH - (THTTHETS) (T TTHTS) T4 T
— L HT H — h H

= T TPrugs = (Phugs TT) = hel.

a3
This leads to the following equivalences

span {TH} N span {THT.J = gpan {eq}

= span {TH} = span {T* T} & span {ea} .
(14

K]

e Comelated symbols case: if eachof thematrices | ] 0 0 ]

and[ 0 0 [ )T is full column rank, the estimation of
TYY from T'Y = T3 T A is equivalent to the estima-
tion from Ag,q (illustrated in Fig. 1). Hence,

Y = hik_dlz, , = Ryy =oihh"™. (15

o2 is replaced by o2 in the uncorrelated symbols case.

As a conclusion, in the noiseless case, in any symbols context case
the channelis given by b = Vinou (Ry ).

4.2. Alternative Interpretation for stepl

o A first interpretation of stepl is deduced from the following
equalitites:

Unbiased MMSE = Unbiased MOE = max SINR.  (16)

The signal part of Y is given by Y, = hax—q (ﬁ Tea)
and the interference plus noise part Y iy = 'TA +V
(where the matrix T is the matrix 7 without &). Hence,
the outpnt Signal to Interference plus Noise Ratio (SINR)
is given by

FERy,v,F

SINR = /(17 ——"—
FHRYINYINF

an



Assuming now that the symbols are uncorrelated, equation

(17) becomes
SNR = OAFERR"F
- ¥+ H
H —l
F (Rw o2hh )F a8
~ SINR-! = 2FERRYF _
oZ|FHR|?

This leads to the following equivalences

max SINR & m}n SINR™!

2 H 19
omn Tl ByyE o FERyE 2
G%IFHhP mFPHR=1

Note that the SINR is insensitive to the phase of F, hence
one can choose the phase of F such that not only {FH hi=

1but Foh = 1.

e A second interpretation of stepl comes from the fact that
the unbiased MMSE is identical to an unbiased constrained
MOE. This is proved as follows

MSE 0‘% = E|ak._d - al2 = Elak—d - F'H-Y-l2
~ FPHERy, — RayF + FERyvF

o — 2 FER - o2 h F + FERyy F

L —

OE

= min MSE=MOEst Ffh =1,
FHR=1
)

where s.t. refers to “‘such that”.

5. BLIND MMSE ZF EQUALIZATION

In principle, The MMSE criterion (anbiased or not) gives a MMSE
ZF equalizer in the noiseless case. When noise is present, one have
to “denoise” the covariance matrix and hence derive MMSE ZF
equalizers wa MMSE with the denoised covariance matrix Ry
(superscript ¢ denotes the obtained matrix after the denoising op-
eration).

Direct Derivation

The ZF constraint is given by F¥7T = ef The MMSE ZF
equalizer is derived from the following mmszmg criterion, where
Ryy =oTTE + Ryv = 2 TTE + 421

min _F¥RyyF= mi 24 FHRyyF
F:FH !I[}m;‘ vy F:Fgl‘l]P:esr {a + v }
& min FEF
P FH T=e£f .
21

e One approach consists in considering 7+: the orthogo-
nal complement of the matrix 7 which verifies Pyo =
P—;'=. The equallizer F = [ F Fj | can be written

TF1 + TLF,. The ZF constraint is FFT =
ef = F1 HTHT implies that F; = T (‘TH‘T)_1 eaq, and

hence F = T (THT) " ea + T+ F,, where F; is uncon-
strained. Now applying the MMSE ZF criterion
-1
min _F¥F = mine} (T ‘T) eat FATYHTLE,

mFH T=eH £

=FKR=0=F= T(THT)_led

and FEF = &} (THT)

22)

Other approach cons1sts in writing the minimization crite-

rion min F RyvyF as
FiFHT=eH

min (FHR?,Y) (R?YF) 23)

H % “"% EH
FHRGy Ry T=ey

H
Let's define D £ R2, F, the minimization criterion (23)
becomes mirf DE D, hence
D:DHR, 3 T=e¥

D=RET(TERFLT) e

-4 —1 Hp-1 4= @4
= F= Ry} D =Ry T (THRyy T

Hence

-1
H H (Hp—1

F= . (25
FFPHT=e,4 F RYY €d (T RYYT) cd ( )
If Ryy = diT‘TH + o21, using the MIL leads to write
(TERZLT) ' = a',,I+a'., (THT) and hence FERyvF =
ef (THR;-;T) ea =02+ a2ell (TET) ™ eq which
is the same expression as the first approach. Now apllying
the Capon’s method leads to

mex _ min FPRyyF= max ef (THR;;T)'
hophy=1 FFRT=¢ hohy=1
(26)
In any case, the maximum is obtained when h is h. To
conclude, we have

Fuumsezr = Ryy T (7;HR LT) ™ ea

=RV T (THRGLT) ea=T(THT) e

FUMMS'E,noéaele.as = mR;?h

— H Hay—1

= :f—TEF:}TT)'rF: (TT ) Tea=T(T T) eq
@n

where superscript * denotes the Moore-Penrose pseudo-

inverse.

So the goal is to do MMSE ZF but it's easier to approach the prob-
lem via UMMSE on noiseless data. In fact, MOE and MMSE are
equivalent in the unbiased case (ZF also implies unbiazed).

6. RELATION WITH OTHER APPROACHES

In this section, we focus on the relation of our blind MMSE ZF
equalization approach with other recently proposed approaches.
In the previous section we had shown that our formulation con-
stitutes the proper application of the Capon’s principle for LCMV



beamforming to multichannel equalization whereas the Tsatsanis’s
formulation becomes only correct at high SNR. Our approach and
specifically the TSLP method cormresponds to a one-step solution
for the multi-step approach of Gesbert and Duhamel [8]. The
Least-Squares Smoothing (LSS) introduced by Tong et al. [7] gives
biased channel estimates: the method keeps only the signal sub-
space part (the noise snbspace part is removed via the SVD opera-
tion which remove the noise subspace vectors) but the contribution
of the noise eigenvalues is not removed. Our TSLP approach cor-
responds to a bias-removed version of Tong’s smoothing method,
and furthermore by using this method we avoid computing a SVD
of the covariance matrix of the received signal as Tong's method
requires. In fact, our demonstration of the presence of bias in
Tong's method shows that the deterministic point of view on which
his derivation is based is inappropriate.

7. SIMULATION RESULTS

We consider a burst length of M = 200, a complex channel H
randomly generated, of length N = 3 with m = 2 subchan-
nels. The input symbols is drawn from an iid. QPSK symbols
sequence. The SNR is defined as (|| h|[*02)/{me?3). Blind esti-

mation gives a channel estimate & with || k|| = 1, we adjust the
right scale factor a so that h% (ah) = hih, where h, is the
true channel vector (see [6]): the final estimate is b = ach. The

performance measure is the Normalized MSE (NMSE): NMSE,
averaged over 100 Monte-Carlo runs and defined as

NMSE = ||k — Ri*/||h)® (28)

In Fig 2, we compare our TSLP approach to other estimation
methods and to its blind Cramer-Rao Bound (CRB) computed with
constraint A5 = h¥ h, [6], corresponding to the way we have
previously adjusted the scale factor. We use a sample covariance
matrix Ry vy of length L = 3N. The Tsatsanis’s method [4] gives
the worst performance at low SNRs and improvement in its perfor-
mance can be noticed as the SNR increases (this supports our the-
oritical claim that says the Tsatsanis’s formulation becomes only
correct at high SNR). The Tong’s L3S method gives comparable
performance as the Tsatsanis’s method due to the bias in the chan-
nel estimate. We perform two kinds of denoising on the covariance
matrix. In the first denoising operation, we remove the noise con-
tribution estimated as the minimum eigenvalue of Ryy and we
keep its positive definite part | Ryy — Amin{Byv )|+, signif-
icant improvement in performance compared to both Tsatsanis’s
and Tong’s methods can be noticed. Whereas this improvement
supports our theoritical claims concerning the TSLP operating on
noiseless data, one can notice that we still did not reach the per-
formance of the Pseudo-Quadratic Maximum Likelihood (PQML)
[9] initialized by the Subchannel Response Matching (SRM)[5],
which was shown to be asymptotically optimal (asymptotically the
PQML estimate reachs its CRB). This is justified by the fact that
the minimum eigenvalue of Ryy underestimates the noise power
and hence the noise contribution that we remove from Ryy is
not sufficient enough to completly denoise the covariance matrix.
Hence we propose, in the second denoising operation, to estimate
the noise power by the SRM method [5]. With a finite amount
of data this method will underestimate the noise power but the es-
timte is close to the true value of the noise power (the underestima-
tion error dissapears asymptoticolly). Hence, in order to completly

denoise Ryy, we propose to replace Ryy by [ﬁyy —-aoil}s
where Eé is the SRM noise power estimate and o is a choosen
scalars.t. ar? > o2. We plot the curves corresponding to a = 1.5
and & = 2. It 15 clear that with « = 2 we reach the same perfor-
mance as the PQML method which means that Ryy is perfectly
denoised and hence the TSLP performance is optimal. Note that
eliminating the proper noise contribution from the eigenvalues in
the LSS method leads also to the same optimal performance.
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Figure 2: Performance of the different blind estimation algorithms.
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