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ABSTRACT

Gains from Massive MIMO are crucially dependent on the avail-
ability of channel state information at the transmitter which is far
too costly if it has to estimated directly. Hence, for a time division
duplexing system, this is derived from the uplink channel estimates
using the concept of channel reciprocity. However, while the propa-
gation channel is reciprocal, the overall digital channel in the down-
link also involves the radio frequency chain which is non-reciprocal.
This calls for calibration of the uplink channel with reciprocity cali-
bration parameters to derive the downlink channel estimates. Initial
approaches towards estimation of the reciprocity calibration param-
eters [1, 2] were all based on least squares. An ML estimator and a
CRB for the estimators was introduced in [3]. This paper presents a
more elegant and accurate CRB expression for a general reciprocity
calibration framework. An optimal algorithm based on Variational
Bayes is presented and it is compared with existing algorithms.

Index Terms— Masive MIMO, Reciprocity Calibration, CRB
1. INTRODUCTION

Massive MIMO (Multiple Input Multiple Output) requires CSIT
(Channel state information at Tx) CSIT acquired using channel reci-
procity for a TDD (Time Division Duplexing) system. However,
Radio Frequency (RF) components are not reciprocal and we need
to calibrate to compensate for this. This calibration is typically
achieved by a simple complex scalar multiplication at each transmit
antenna.Initial approaches to calibration relied on explicit channel
feedback from a user equipment (UE) during the calibration phase
to estimate the calibration parameters. This is typically referred
to as UE aided calibration. However, what is popular today is to
perform the calibration across the antennas of the base station (BS)
only and is referred to as internal calibration. [1] gave the first ex-
perimental evaluation for a Massive MIMO system with a simple
algorithm for internal calibration. Though simple, the performance
of this algorithm was limited by the requirement for a strategically
placed reference antenna at the BS side. Hence, this estimation
algorithm was quickly improved upon by making better use of all
the available information in a least squares fashion in [2]. This was
further generalized to a weighted least squares minimization in [4].
A faster calibration algorithm was introduced in [5]. Recently, in [3],
the authors proposed a Cramer-Rao bound (CRB) and a penalized
maximum likelihood estimation approach that performs close to the
CRB. In [6], the authors propose a generalized approach towards
reciprocity calibration of which the existing estimation techniques
are special cases. An important innovation in this paper is the ability

EURECOM’s research is partially supported by its industrial members:
ORANGE, BMW, ST Microelectronics, Symantec, SAP, Monaco Telecom,
iABG, and by the projects HIGHTS (EU H2020), DUPLEX (French ANR)
and MASS-START (French FUI).

RA

CA→B

CB→A

RB

TB

A B

HA→B

HB→A

TA

Fig. 1. Reciprocity Model
to transmit from a group of multiple antennas at every channel use.
First, an elegant and concise CRB derivation is presented. Then,
to compare with the derivation in [3], an alternative and more con-
ventional CRB derivation is provided for the special case of single
antenna groups and is observed to concur with the derivation in [6].
More details may be found in [6, 7].

2. SYSTEM MODEL

Consider a system as in Fig. 1, where A represents a BS and B rep-
resents a UE, each containing MA and MB antennas, respectively.
The channel as observed in the digital domain, HA→B and HB→A
can be represented by,

HA→B = RBCA→BTA, HB→A = RACB→ATB , (1)

where matrices TA, RA, TB , RB model the response of the trans-
mit and receive RF front-ends, while CA→B and CB→A model the
propagation channels, respectively from A to B and from B to A. The
dimension of TA and RA are MA ×MA, whereas that of TB and
RB are MB ×MB . The diagonal elements in these matrices repre-
sent the linear effects attributable to the impairments in the transmit-
ter and receiver parts of the RF front-ends respectively, whereas the
off-diagonal elements correspond to RF crosstalk and antenna mu-
tual coupling. It is worth noting that although transmitting and re-
ceiving antenna mutual coupling is not generally reciprocal [8], the-
oretical modeling [9] and experimental results [1, 3, 10] both show
that, in practice, RF crosstalk and antenna mutual coupling can be
ignored for the purpose of reciprocity calibration, which implies that
TA, RA, TB , RB can safely be assumed to be diagonal.

Assuming the system is operating in TDD mode, the channel
responses enjoy reciprocity within the channel coherence time, i.e.,
CA→B = CT

B→A. Therefore, we obtain the following relationship
between the channels measured in both directions:

HA→B = RBT
−T
B︸ ︷︷ ︸

F−T
B

HT
B→AR−TA TA︸ ︷︷ ︸

FA

= F−TB HT
B→AFA.

(2)

Note that the studies in [11, 12] pointed out that in a practical multi-
user MIMO system, it is mainly the calibration at the BS side which
restores the hardware asymmetry and helps to achieve the multi-user
MIMO performance. Thus, in the sequel, the focus is on the estima-
tion of FA.



Let us consider an antenna array of M elements partitioned into
G groups denoted by A1, A2, . . . , AG. Group Ai contains Mi an-
tennas such that

∑G
i=1Mi = M. Each group Ai transmits a se-

quence of Li pilot symbols, defined by matrix Pi ∈ CMi×Li where
the rows correspond to antennas and the columns to successive chan-
nel uses. Note that a channel use can be understood as a time slot
or a subcarrier in an OFDM-based system, as long as the calibration
parameter can be assumed constant over all channel uses. When an
antenna group i transmits, all other groups are considered in receiv-
ing mode. After all G groups have transmitted, the received signal
for each resource block of bidirectional transmission between an-
tenna groups i and j is given by{

Yi→j = RjCi→jTiPi +Ni→j ,
Yj→i = RiCj→iTjPj +Nj→i,

(3)

where Yi→j ∈ CMj×Li and Yj→i ∈ CMi×Lj are received signal
matrices at antenna groups j and i respectively when the other group
is transmitting. Ni→j and Nj→i represent the corresponding re-
ceived noise matrix. Ti, Ri ∈ CMi×Mi and Tj , Rj ∈ CMj×Mj

represent the effect of the transmit and receive RF front-ends of an-
tenna elements in groups i and j respectively.

The reciprocity property implies that Ci→j = CT
j→i, thus for

two different groups 1 ≤ i 6= j ≤ G, by eliminating Ci→j in (3)
we have

PT
i F

T
i Yj→i −YT

i→jFjPj = Ñij , (4)

where the noise component Ñij = PT
i F

T
i Nj→i − NT

i→jFjPj ,
while Fi = R−Ti Ti and Fj = R−Tj Tj are the calibration matrices
for groups i and j. The calibration matrix F is diagonal, and thus
takes the form of F = diag{F1,F2, . . . ,FG}.

Let us use fi and f to denote the vectors of the diagonal co-
efficients of Fi and F respectively, i.e., Fi = diag{fi} and F =
diag{f}. This allows us to vectorize (4) into

(YT
j→i ∗PT

i )fi − (PT
j ∗YT

i→j)fj = ñij , (5)

where ∗ denotes the Khatri–Rao product (or column-wise Kronecker
product1), where we have used the equality vec(A diag(x)B) =
(BT ∗A)x. Finally, stacking equations (5) for all 1 ≤ i < j ≤ G
yields

Y(P)f = ñ, (6)
with Y(P) defined as

(YT
2→1 ∗PT

1 ) −(PT
2 ∗YT

1→2) 0 . . .
(YT

3→1 ∗PT
1 ) 0 −(PT

3 ∗YT
1→3) . . .

0 (YT
3→2 ∗PT

2 ) −(PT
3 ∗YT

2→3) . . .
...

...
...

. . .


︸ ︷︷ ︸

(
∑G

j=2

∑j−1
i=1 LiLj)×M

.

(7)
A typical way to estimate f consists in solving a LS problem such as

f̂ = argmin
f
‖Y(P) f‖2

= argmin
f

∑
i<j

‖(YT
j→i ∗PT

i )fi − (PT
j ∗YT

i→j)fj‖2 , (8)

where Y(P) is defined in (7). This needs to be augmented with a
constraint

C(f̂ , f) = 0, (9)

1With matrices A and B partitioned into columns, A =[
a1 a2 . . . aM

]
and B =

[
b1 b2 . . . bM

]
where ai

and bi are column vectors for i ∈ 1 . . .M , then, A ∗ B =[
a1 ⊗ b1 a2 ⊗ b2 . . . aM ⊗ bM

]
[13].

in order to exclude the trivial solution f̂ = 0 in (8). The constraint
on f̂ may depend on the true parameters f . As we shall see further
this constraint needs to be complex valued (which represents two
real constraints). Typical choices for the constraint are
1) Norm plus phase constraint (NPC):

norm: Re{C(f̂ , f)} = ||f̂ ||2 − c , c = ||f ||2, (10)

phase: Im{C(f̂ , f)} = Im{f̂Hf} = 0. (11)

2) Linear constraint:C(f̂ , f) = f̂Hg − c = 0 . (12)

If we choose the vector g = f and c = ||f ||2, then the Im{.} part
of (12) corresponds to (11). The most popular linear constraint is
the First Coefficient Constraint (FCC), which is (12) with g = e1,
c = 1.
3. OPTIMAL ESTIMATION AND PERFORMANCE LIMITS
From (3), we have

Yi→j = RjCi→jR
T
i︸ ︷︷ ︸

Hi→j

FiPi +Ni→j .
(13)

We define Hi→j = RjCi→jR
T
i to be an auxiliary internal chan-

nel (not corresponding to any physically measurable quantity) that
appears as a nuisance parameter in the estimation of the calibration
parameters. Note that the auxiliary channel Hi→j inherits the reci-
procity from the channel Ci→j : Hi→j = HTj→i. Upon applying the
vectorization operator for each bidirectional transmission between
groups i and j, we have, similarly to (6)

vec(Yi→j) = (PT
i ∗ Hi→j) fi + vec(Ni→j). (14)

In the reverse direction, usingHi→j = HTj→i, we have

vec(YT
j→i) = (HTi→j ∗PT

j )fj + vec(Nj→i)
T . (15)

Alternatively, (14) and (15) may also be written as
vec(Yi→j) =

[
(FiPi)

T ⊗ I
]

vec(Hi→j) + vec(Ni→j)

vec(YT
j→i) =

[
I⊗ (PT

j Fj)
]

vec(Hi→j) + vec(Nj→i).
(16)

Stacking these observations into a vector
y =

[
vec(Y1→2)

T vec(YT
2→1)

T vec(Y1→3)
T . . .

]T
, the above

two alternative formulations can be summarized into
y = H(h,P)f + n = F(f ,P)h+ n, (17)

where h =
[
vec(H1→2)

T vec(H1→3)
T vec(H2→3)

T . . .
]T

, and n
is the corresponding noise vector. The composite matricesH and F
are given by,

H(h,P) =


PT

1 ∗ H1→2 0 0 . . .
0 HT1→2 ∗PT

2 0 . . .
PT

1 ∗ H1→3 0 0 . . .
0 0 HT1→3 ∗PT

3 . . .
...

...
...

. . .



F(f ,P) =



PT
1 F1 ⊗ I 0 0 0 . . .

I⊗PT
2 F2 0 0 0 . . .

0 PT
1 F1 ⊗ I 0 0 . . .

0 I⊗PT
3 F3 0 0 . . .

0 0 PT
2 F2 ⊗ I 0 . . .

0 0 I⊗PT
3 F3 0 . . .

...
...

...
...

. . .


.

(18)
The scenario is now identical to that encountered in some blind chan-
nel estimation scenarios and hence we can take advantage of some
existing tools [14], [15], which we exploit next.



3.1. Cramér-Rao bound

Treating h and f as deterministic unknown parameters, and assum-
ing that the receiver noise n is distributed as CN (0, σ2I), the Fisher
Information Matrix (FIM) J for jointly estimating f and h can im-
mediately be obtained from (17) as

J =
1

σ2

[
HH
FH

] [
H F

]
. (19)

The computation of the CRB requires J to be non-singular. How-
ever, for the problem at hand, J is inherently singular. In fact, the
calibration factors (and the auxiliary channel) can only be estimated
up to a complex scale factor since the received data (17) involves the
product of the channel and the calibration factors, Hf = Fh. As a
result the FIM has the following null space [16], [17]

J

[
f
−h

]
=

1

σ2

[
H F

]H
(Hf −Fh) = 0. (20)

To determine the CRB when the FIM is singular, constraints have
to be added to regularize the estimation problem. As the calibration
parameters are complex, one complex constraint corresponds to two
real constraints. Another issue is that we are mainly interested in the
CRB for f , the parameters of interest, in the presence of the nuisance
parameters h. Hence we are only interested in the (1, 1) block of the
inverse of the 2× 2 block matrix J in (19). Incorporating the effect
of the constraint (9) on f , we can derive from [17] the following
constrained CRB for f

CRBf = σ2Vf
(
VHf HHP⊥FHVf

)−1

VHf (21)

where PX = X(XHX)†XH and P⊥X = I− PX are the projection
operators on resp. the column space of matrix X and its orthog-
onal complement, and † corresponds to the Moore-Penrose pseudo
inverse. Note that in some group calibration scenarios, FHF can
be singular (i.e, h could be not identifiable even if f is identifiable
or even known). The M × (M−1) matrix Vf is such that its col-
umn space spans the orthogonal complement of that of ∂C(f)

∂f∗ , i.e.,
PVf = P⊥∂C

∂f∗
.

It is shown in [16], [17], [18] that a choice of constraints such
that their linearized version ∂C

∂f∗ fills up the null space of the FIM
results in the lowest CRB, while not adding information in subspaces
where the data provides information. One such choice is the set
(10), (11) (NPC). Another choice is (12) with g = f . With such
constraints, ∂C

∂f∗ ∼ f which spans the null space of HHP⊥FH. The
CRB then corresponds to the pseudo inverse of the FIM and (21)
becomes CRBf = σ2

(
HHP⊥FH

)†
. If the FCC constraint is used

instead (i.e., (12) with g = e1, c = 1), the corresponding CRB is
(21) where Vf corresponds now to an identity matrix without the first
column (and hence its column space is the orthogonal complement
of that of e1).

Note that [3] also addresses the CRB for a scenario where trans-
mission happens one antenna at a time. The relative calibration fac-
tors are derived from the absolute Tx and Rx side calibration param-
eters, which become identifiable because a model is introduced for
the internal propagation channel. In this Gaussian prior the mean is
taken as the line of sight (LoS) component (distance induced delay
and attenuation) and complex Gaussian non-LoS (NLOS) compo-
nents are contributing to the covariance of this channel as a scaled
identity matrix. The scale factor is taken 60dB below the mean
channel power. This implies an almost deterministic prior for the
(almost known) channel and would result in underestimation of the
CRB, as noted in [3, Sec. III-E-2]. Hence, we rederive the CRB

for this case in a more conventional fashion assuming an unknown
channel h. Assuming that the first calibration coefficient is f1 =
t1/r1 = 1 (FCC), we choose t1 = r1 = 1, where ti, ri corre-
spond to the transmit and receive calibration parameters for antenna
i. Note that as there are three unknown parameter sets that appear
in product form in Y, we can choose the scale factor for two. Then,
θT = [t2 r2 . . . tM rM︸ ︷︷ ︸

θ1

c1→2 c1→3 . . . cM−1→M︸ ︷︷ ︸
θ2

], where ci→j cor-

responds to the prop. channel from antenna i to antenna j. Then,

CRBf ′ =
∂f ′

∂θT
J−1
θ

(
∂f ′

∂θT

)H
, Jθ =

1

σ2
E
∂µHy
∂θ∗

(
∂µHy
∂θ∗

)H
µy = [r2c1→2t1 r1c1→2t2 r3c1→2t1 . . .]T

∂µHy
∂θ∗2

=

r
∗
2t
∗
1 r∗1t

∗
2 0 0 . . .

0 0 r∗2t
∗
1 r∗1t

∗
2 . . .

...
...

...
...

. . .



∂f ′

∂θ1
=


1
r2

0 0 0 . . .

0 −t2
r22

0 0 . . .

0 0 1
r3

0 . . .
...

...
...

...
. . .

 , ∂f ′

∂θ2
= 0.

(22)
Here, σ2 is the noise variance, f ′ = f2:M and

∂µH
y

∂θ∗1
=

0 r∗1c
∗
1→2 0 0 r∗3c

∗
2→3 0 . . .

c∗1→2t
∗
1 0 0 0 0 c∗2→3t

∗
3 . . .

0 0 0 r∗1c
∗
1→3 0 r∗2c

∗
2→3 . . .

0 0 c∗1→3t
∗
1 0 c∗2→3t

∗
2 0 . . .

...
...

...
...

...
...

. . .


Now, for the FCC, (21) becomes

CRBf ′ = σ2
(
[HHP⊥FH]2:M,2:M

)−1

=
∂f ′

∂φT
J−1
φ

(
∂f ′

∂φT

)H
(23)where φ = [fT hT ]T and Jφ is defined similarly to Jθ . Now, since

φ and θ are both valid parameterizations of the estimated channels,
the CRBs in (22) and (23) and hence (21) are identical.

3.2. Variational Bayes (VB) Estimation
In VB, a Bayesian estimate is obtained by computing an approxima-
tion to the posterior distribution of the parameters h, f with priors
f ∼ CN (0, α−1IM), h ∼ CN (0, β−1INh) and α, β are assumed
to have themselves a uniform prior. Nh is the number of elements in
h. This approximation, called the variational distribution, is chosen
to minimize the Kullback-Leibler distance between the true posterior
distribution p(h, f , α, β|y) and a factored variational distribution

qh(h) qf (f) qα(α) qβ(β). (24)

The factors can be obtained in an alternating fashion as,
ln(qψi(ψi)) =< ln p(y,h, f , α, β) >k 6=i +ci, (25)

where ψi refers to the ith block of ψ = [h, f , α, β] and <>k 6=i
represents the expectation operator over the distributions qψk for all
k 6= i. ci is a normalizing constant. The log likelihood,
ln p(y,h, f , α, β) = ln p(y|h, f , α, β) + ln p(f |α) + ln p(h|β)
= −Ny lnσ2 − 1

σ2
‖y −Hf‖2 +M lnα− α ‖f‖2

+Nh lnβ − β ‖h‖2 + c.
(26)

Here, Ny refers to the number of elements in y and c is a constant.
We shall assume σ2 = 1, which is equivalent to considering α, β as
relative to σ2. It is straightforward to see that proceeding as in (25),



α, β would have a Gamma distribution with mean <α>= M
<‖f‖2>

and<β>= Nh

<‖h‖2> . On the other hand (taking only relevant terms),

ln qf (f) = fH <HH> y − fH <HHH> f− <α> fHf

ln qh(h) = hH <FH> y − hH <FHF> h− <β> hHh
(27)

This implies that f ∼ CN (f̂ ,Cf̃ f̃ ) and h ∼ CN (ĥ,Ch̃h̃). The
overall algorithm may now be summarized as in Algorithm 1.
Algorithm 1 Variational Bayes Estimation of calibration parameters

1: Initialization: Initialize f̂ using existing calibration methods.
Use this estimate to determine ĥ, <α>,<β>.

2: repeat
3: <HHH>= HH(ĥ)H)(ĥ)+ <HH(h̃)H(h̃)>
4: f̂ = (<HHH> + <α> I)−1HHy
5: Cf̃ f̃ = (<HHH> + <α> I)−1

6: <FHF>= FH(f̂)F(f̂)+ <FH(f̃)F(f̃)>
7: ĥ = (<FHF> + <β> I)−1FHy
8: Ch̃h̃ = (<FHF> + <β> I)−1

9: <α>= M
<‖f‖2> , <‖f‖2>= f̂H f̂ + tr{Cf̃ f̃} .

10: <β>= Nh

<‖h‖2> , <‖h‖2>= ĥH ĥ+ tr{Ch̃h̃}.
11: until convergence.

WhenG =M , Cf̃ f̃ and Ch̃h̃ are diagonal and<FH(f̃)F(f̃)>,
< HH(h̃)H(h̃) > can be computed easily (diagonal). However,
when G < M , these matrices are block diagonal. To simplify the
computation, we propose the following,

Cf̃ f̃ ≈
tr{(<HHH> + <α> I)−1}

M
IM

Ch̃h̃ ≈
tr{(<FHF> + <β> I)−1}

Nh
INh .

(28)

We call this approach EC-VB (Expectation consistent [19] VB).
Note here that by forcing the matrices Cf̃ f̃ , Ch̃h̃ to zero and α, β
to zero, this algorithm reduces to the Alternating Maximum Like-
lihood (AML) algorithm [14, 15] which iteratively maximizes the
likelihood by alternating between the desired parameters f and the
nuisance parameters h for the formulation (17). The penalized ML
method used in [3] uses quadratic regularization terms for both f
and h which can be interpreted as Gaussian priors and which may
improve estimation in ill-conditioned cases. In our case, we arrive
at a similar solution from the VB perspective and more importantly,
the regularization terms are optimally tuned.

4. SIMULATIONS

In this section, we assess numerically the performance of various cal-
ibration algorithms and also compare them against their CRBs. The
Tx and Rx calibration parameters for the BS antennas are assumed to
have random phases uniformly distributed over [−π, π] and ampli-
tudes uniformly distributed in the range [1−δ, 1+δ]. SNR is defined
as the ratio of the average received signal power across channel real-
izations at an antenna and the noise power at that antenna. In Fig. 2,
δ = 0.5. We consider transmit schemes that transmit from one an-
tenna at a time (G =M ) and compare their MSE performance with
the CRB. The MSE with FCC for Argos, Rogalin [2] and the AML
method in Algorithm 1 is plotted. The curves are generated over
one realization of an i.i.d. Rayleigh channel and known first coeffi-
cient constraint is used. As expected, the Rogalin method improves
over Argos by using all the bi-directional received data. AML out-
performs the Rogalin performance at low SNR. These curves are
compared with the CRB derived in 3.1 for the FCC case and it can
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Fig. 2. Comparison of single antenna transmit schemes with the
CRB (G =M = 16).
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Fig. 3. Convergence of the various iterative schemes for M = 16
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Fig. 4. Slow convergence of the iterative AML scheme for M = 16
andG =M when initialized with all ones for the calibration factors.
be seen that the AML curve overlaps with the CRB at higher SNRs.
Also plotted is the CRB as given in [3] assuming the internal propa-
gation channel is fully known (the mean is known and the variance
is negligible) and a (small) underestimation of the MSE can be ob-
served as expected. Though not explicitly shown to reduce cluttering
the figure, the two different CRB derivations in 3.1 lead to exactly
same results, further validating our CRB derivations.

Next, we compare the convergence of the proposed iterative al-
gorithms when the calibration parameters are generated with δ =
0.25 in Figures 3 and 4. The curves in Figure 3 are generated for
a single channel and calibration parameter realization and averaged
over 200 noise realizations. We clearly see that the VB methods
(initialized by LS) are far superior to the AML in terms of both MSE
achievable and speed of convergence. Figure 4 shows the importance
of a good initialization for the iterative algorithms. In this case, when
the AML is initialized as a vector of all 1’s, a very large number of
iterations is necessary for convergence.

5. CONCLUSION
In this paper, we came up with a simple and elegant derivation of
the CRB for a general calibration framework that includes as subsets
all existing calibration techniques. For the case of groups involv-
ing a single antenna, the conventional CRB derivation assuming first
coefficient known has also been provided. An optimal estimation
algorithm based on VB is also introduced along with it’s variants.
All these techniques have been compared via simulations in terms of
both MSE performance and speed of convergence.
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