Design and implementation of a tailorable awareness framework

Verena Fastenbauer Jakob Hummes* Bernard Merialdo
Institut EURECOM - Sophia Antipolis, FRANCE
{fastenba,hummes,merialdo }@eurecom.fr

~ Abstract

This paper describes an approach for tailoring that combines frameworks and compo-
nents. The approach is validated by implementing a general awareness service, which can
be adapted to different problem domains. Using an object-oriented framework approach
together with component based programming, the presented awareness framework remains
invariant, but cooperates with its extending components. Furthermore, the framework of-
fers the end-users a filtering mechanism, which ailows them to tailor the behavior of the
awareness service during the cooperative session at run-time to their current needs.

Keywords: Tailoring, CSCW, awareness, component model, Java Beans

1 Introduction

Awareness is a key requirement for cooperation [4]. Within groupware systems, spatially
dispersed cooperating users must be notified about actions of others. Apart from a noti-
fication mechanism, an awareness service should offer a filtering mechanism. Since in a
personalized setting, different users want to be notified in different ways, each user may
tailor the filter to his personal needs. For efficient cooperation the notification settings must
be tailorable at any time. '

As example, users perceive awareness information in the background or in the fore-
ground [1]. A tailorable awareness service allows each user to weight the importance for
specific notification types. While the user is working on an individual task, most noti-
fications from others are recorded in the background, but certain from the user selected
notifications trigger immediately a pop-up window, :

This paper introduces a tailorable groupware framework, which offers a general aware-
ness service. This distributed framewoerk uses the notion of awareness events, which are
passed by producing components to consuming components. The end-user tailors the ap-
pearance and behavior of the framework with the help of filter components. Filters provide
the means to select at run-time the components, which compute and present the awareness
data. Although we focus on the development of an awareness framework, the presented
approach is valid for a range of tailorable groupware systems.

Mgrch [7] distinguishes three levels of tailoring. The levels are classified by the design
distance which is experienced by the end-user during tailoring. Generally speaking, with
an increasing level the tailoring possibilities for a user increase, but also become more com-
plex. This paper focuses on the part of the awareness framework that enables integration

*Contact author. Tel: (33) 04 93 00 26 70, Fax: -27; email: hummes@eurecom.fr. The described work is part
of the ACOST research project, which is funded by the research institute CNET Lannion of France Telecom.

i



of new components and behavioral changes at run-time — second level tailoring following
Mgrch’s taxonomy.

In section 2, frameworks and components are described as enabling technology for
tailoring. In section 3, we describe the design of the awareness framework. Section 4
presents implementation issues, which highlight the benefits of using frameworks together
with a standardized component model. Section 5 illustrates the tailoring activities of both
the application developer and the end-user.

2 Frameworks and Components

Both component models and frameworks for object-oriented languages emerged of soft-
ware engineering research to reduce development costs and to improve the overall quality
of software,

A component is an independent “unit of software that encapsulates its design and im-
plementation and offers interfaces to the outside, by which it may be composed with other
components to form a larger whole” [2]. A component is self-descriptive and can such be
analyzed automatically at run-time. Therefore, a standardized component model supports
tailoring on different composition levels [8].

A framework is defined as “a reusable, ‘semi-complete’ application, that can be spe-
cialized to produce custom applications” {3]. Frameworks provide a reusable context for
components [6]. :

Frameworks and components are different, but cooperating technologies. The main
distinction between the component-based development and the framework approach is that
frameworks offer an even higher degree of reusability. Components focus on code-reuse.
Apart from code-reuse, frameworks provide design-reunse [6].

Regardless of their specific scope and aim, frameworks can be classified by the used
technique for extension [3]. The specific peculiarity ranges between the two extremes of
black-box and white-box frameworks. The extension mechanism of white-box frameworks
is based on object-oriented inheritance and overriding of certain hook-methods. Black-box
frameworks support extensibility by delegation. They define interfaces for components.
Interface-conform components can be plugged into the framework.

In our approach, the framework is the invariant which is extended by application spe-
cific components. The extensibility of black-box frameworks and the reflective capabilities
of components enable the tailoring of the system’s behavior, which is described in the next
sections.

3 Design Issues

We have developed an application framework which provides a general awareness service.
This framework is described as Awareness Service Framework or short AS Framework.
The main goals of the AS Framework are to support awareness in distributed systems, to
offer run-time tailoring and to be independent of any specific problem domain.

Awareness in groupware systems means that the group members gain the needed in-
formation about the others to perform their work. We use the notion of awareness events,
which are produced by components at the source and consumed by other components at
the receiver. The main intent of the AS Framework is to offer the enabling infrastructure to
support awareness among a distributed group of persons.

A high-level use case illustrates the requirements of the AS Framework (figure 1(a)).
Two different actors are distinguished: Sources and Receivers. Components at the sources

2



souice

receiver recelver receiver

{3} lHustration of a (b) Structure of the
high-level use case customized AS Framework

Figure 1: Overview of the AS Framework

emit awareness events. Filters can be applied by the user to ensure privacy. The events
are then distributed to all receivers. Users set filters to receive only those events, they
are interested in. The users specify the components which finally process the events. So,
different presentations are achieved by end-user tailoring. The AS Framework itself is
independent of the actual transmitted events. It does not have to be changed for different
scenarios,

The end-user tailors the application by changing the settings of the filters. Should they
feet uncomfortable with the publication of certain events, the users suppress them with
source filters. The users, who receive awareness events, apply receiver filters to select
those components that interpret the events. If no component handles a specific event, it is
discarded.

Since the AS Framework offers a general awareness service, future event types cannot
be anticipated. Each specific problem domain will have its own awareness events. Compo-
nents which support those events can be plugged into the framework without changing the
AS Framework itself. The application developer uses the offered interfaces to create new
event types.

Figure 1(b) depicts the event flow. After the registration of the customized source com-
ponents to the AS Framework, awareness events are accepted by the AS Framework. Using
a distribution middleware, the framework passes the events to every receiver part of the AS
Framework. At the receiver part, the events are passed to the customized receiver compo-
nents with regard to the filter’s setting.

Regardless to the level of tailoring, design-time and run-time tailoring are distinguished.
The main difference between the two forms is that design-time tailoring is applied only
once by the application developer or system integrator. In opposition, run-time tailoring is
performed by every end-user frequently.

Design-time tailoring covers the creation of the problem specific event and listener
types. In addition, the source and receiver components of those events are created. These
components are plugged into the AS Framework and integrated into the user application.



The components may be integrated into the user application either at design-time or
at run-time. With the help of an IDE, even the end-user can customize the application at
design-time. Although not shown in this paper, the customized source and receiver compo-
nents can be integrated also at run-time [5].

Run-time tailoring allows to change the event processing. The end-users apply the filter-
ing mechanism at both the source and the receiver side to tailor the AS Framework to their
specific needs. To facilitate this task, the AS Framework offers a default implementation,
which already provides a graphical user interface,

4 Implementation Issues

The AS Framework is implemented in Java and uses the component model JavaBeans.
The standardized event model of JavaBeans provides a foundation for the communication
between components. In order to apply the event model in distributed systems, we reused
prior developed group communication beans [5].

JavaBeans offers introspection to analyze components at run-time. In addition, the
reflection API of Java enables very late binding of method calls by looking up interfaces
and methods at run-time [2]. This allows to keep the framework invariant from the plugged
domain specific components.

As outlined in section 3, the events may be filtered at the source and at the receiver
side. The filtering mechanism at the source side guarantees the assurance of privacy needs.
The filtering mechanism at the receiver side covers the ability to select the events and to
change the processing of the events. In the following, we will concentrate on the filtering
mechanism at the receiver side.

The standardized event model in conjunction with the introspection mechanism of Jav-
aBeans allows to offer the filtering mechanism for events without knowing their specific
type at design-time of the framework. The filter dynamically manages the connections be-
tween the interested listeners and the AS Framework. In addition, the filter ensures that the
end-user is not overwhelmed with all events that may occur. Only those awareness events
which may be emitted by the sources are considered. Using the filtering mechanism, the
user decides, how the events are processed during run-time.

The filter stores the by introspection discovered event types and the interested receivers
in a dictionary. One entry in the dictionary consists of a key, which is the event type, and
a vector containing the references to all interested receivers. The main task of the filtering
component is to manage the entries of the dictionary. Each entry reflects one filter setting,
Every change to the filter settings causes an update of the receiver vector. Furthermore, the
filter vetoes the attempt of incorrect settings.

Apart from the management of the filters settings, the filter is responsible to process the
awareness events properly. Whenever an awareness event arrives the filter queries its dictio-
nary and forwards the event to all interested receivers. Although the receiver components
differ, they work with the same filtering mechanism.

In order to ensure that the filter considers only those events which can be emitted by
a source component, the filtering mechanism must be supplied with all types of potential
awareness events. Therefore, the event types of the source components are extracted during
their registration process. This data are transmitted to the receivers. Refemring to late-
comers, a trade-off has been made. To ensure the tailorability of the filter, the information
about the event types is queried. However, the late comers are not supplied with the events
that have already been distributed.



filter Dialog

ASPersonLogoutEvent

ASTaskStarledEvent ASTaskinterruptedEvent

ASRecetverdriter ASDialogAnnouncst
(a) Extension of the (b) Integration of naw
framework at design-time ! functionality at un-time

Figure 2: Illustration of the tailoring activities

5 Tailoring Example

This section introduces a small example to highlight the tailoring activities by both- the
application developer and the end-user.

Figure 2(a) shows, how a developer extends the AS Framework at design time. This
example assumes that the receiver components are already developed and the event types
are defined. The developer drops in a visual composition editor for JavaBeans the proxy for
the framework (ASFrameworkProxy), a filter (ASReceiverFilter), two receiver components
(ASLogFile and ASDialogAnnouncer) and the viewer for the log file. The model of the log
file is attached to the corresponding view (1) and plugged into the AS Framework (2). In
order to offer the facility to be informed immediately of certain events, additionally a dialog
announcer is attached to the AS Framework (3). The receiver filter is plugged into the the
AS Framework (4) to provide selection at run-time. These activities suffice to add two new
receiver components among their filter to the AS Framework at design-time.

In the running application, the end-user can now tailor the such extended AS Frame-
work. Pressing the button from the log file view, the user opens the default dialog of the
filter component (figure 2(b)). The dialog offers two control buttons to change the settings:
an “Add” and a “Remove” filter button. Corresponding to the selection of the list items
the buttons are enabled. The filter discovers the receiver components at run-time. Each re-
ceiver is represented with a tab, which allows the user to easily select a receiver component.
Corresponding to the selected component, the current fitter settings are displayed.

The list of available filters contains the potential event types for the selected receiver.
The event types of the list of added filters represent the enabled events, which are forwarded
to the component. In addition, the filtering mechanism of the AS Framework ensures, that
the user is not overwhelmed. Only those events that may be emitted by the sources and
the receiver is able to handle are shown. Whenever new event types are introduced by a
source component, the filter reflects this new state by adding the potential events to the list
of available filters.

Figure 2(b) depicts a scenario, where the user has already tailored the filters settings of
the receiver components. In this example, there are two receiver components, ASLogFile
and ASDialogAnnouncer. The log file adds the events into a list and the dialog announcer



pops up a confirm dialog, whenever a selected event arrives.

In the example illustrated in figure 2(b), the log file is triggered each time a ASPerson-
Logout, ASTaskinterrupted or ASTaskEnded event occurs. However, the user may also get
informed if a new person logs in. Since the user has already selected the ASPersonLogin
event in the available filter list, the “Add" button is available; when it is pressed, the selected
filter is added and the view is updated

We have chosen these two receiver components to highlight the capabilities of support-
ing different styles of awareness by tailoring. The user perception of occurred events differ
drastically for these two components. The log file works silently in the background, while
the dialog announcer pops into foreground, when a selected event occurs. With the help
of tailoring, the user can easily switch between different perception modes, which fulfills a
major demand of awareness systems [1].

6 Conclusion

This paper has demonstrated how software engineering concepts such as components and
frameworks are used to support tailorability. In conjunction with introspection, we have
shown how to implement a rensable, tailorable, and general awareness groupware frame-
work. The example of the awareness system validates our approach.

In farther work, we will concentrate on the ability of adding and concatenating more
sophisticated filters. We have already a first implementation of extension filter components,
which analyze the contents of awareness events before forwarding an event.

References

{1] B. Buxton, Integrating the Periphery and Context: A New Taxonomy of
Telematics. In Proceedings of Graphics Interface’95, pages 239-246, 1995.
http://www.dgp.toronto.edu/people/rroom/research/papers/bg fg/bg_fg.html,

[2] D.F. D’Souza and A. C. Wills. Objects, Components and Frameworks With Uml: The
Catalysis Approach. Object Technology Series. Addison-Wesley, October 1998.

[3] M. E. Fayad and D. C. Schmidt. Object—oriented application frameworks. Communi-
cations of the ACM, 40(10):32-38, October 1997.

[4] S. Greenberg, C. Gutwin, and A. Cockburn. Using distortion-oriented displays to sup-
port workspace awareness. Research report 96/581/01, Department of Computer Sci-
ence, University of Calgary, Calgary, Canada, November 1996.

[5]1 J. Hummes and B. Merialdo. Design of extensible component-based groupware. Com-
puter Supported Cooperative Work — An International Journal, 1998. accepted for
publication.

[6] R.E. Johnson. Frameworks = (components + patterns), Communications of the ACM,
40(10):39-42, October 1997.

[71 A. Mprch. Three levels of end-user tailoring: Customization, integration, and ex-
tension. In M. Kyng and L. Mathiassen, editors, Computers and Design in Context,
chapter 3, pages 51-76. The MIT Press, Cambridge, MA, 1997.

[8] O. Stiemerling and A. B. Cremers. Tailorable component architectures for cscw-
systems. In Proceedings of the 6th Euromicro Workshop on Farallel and Dis-
tributed Programming, pages 302-308, Madrid, Spain, January 1998. IEEE Press.
http://www.cs.uni-bonn.de/ os/.



