Semantic Web 1 (2016) 1-5
10S Press

STEM: Stacked Threshold-based Entity
Matching for Knowledge Base Generation

Enrico Palumbo »>¢*, Giuseppe Rizzo® and Raphaél Troncy °

2 Istituto Superiore Mario Boella, Turin, Italy
> EURECOM, Sophia Antipolis, France
¢ Politecnico di Torino, Turin, Italy

Abstract. One of the major issues encountered in the generation of knowledge bases is the integration of data coming from
a collection of heterogeneous data sources. A key essential task when integrating data instances is the entity matching. Entity
matching is based on the definition of a similarity measure among entities and on the classification of the entity pair as a match
if the similarity exceeds a certain threshold. This parameter introduces a trade-off between the precision and the recall of the
algorithm, as higher values of the threshold lead to higher precision and lower recall, and lower values lead to higher recall
and lower precision. In this paper, we propose a stacking approach for threshold-based classifiers. It runs several instances of
classifiers corresponding to different thresholds and use their predictions as a feature vector for a supervised learner. We show that
this approach is able to break the trade-off between the precision and recall of the algorithm, increasing both at the same time and
enhancing the overall performance of the algorithm. We also show that this hybrid approach performs better and is less dependent
on the amount of available training data with respect to a supervised learning approach that directly uses properties’ similarity
values. In order to test the generality of the claim, we have run experimental tests using two different threshold-based classifiers
on two different data sets. Finally, we show a concrete use case describing the implementation of the proposed approach in the

generation of the 3cixty Nice knowledge base.

Keywords: knowledge base generation, entity matching, link discovery, stacking, FEIII, DOREMUS, 3cixty, OAEI

1. Introduction

In the last decade, we have witnessed to the genera-
tion of several knowledge bases that grant access to an
enormous amount of structured data and knowledge.
However, the generation of knowledge bases has re-
quired a tremendous manual effort to overcome sev-
eral challenges. One of the typical issues in the gen-
eration of knowledge bases that integrate data from
a collection of heterogeneous sources is that of au-
tomatically detecting duplicate records. Entity match-
ing (also known as instance matching, data reconcili-
ation or record linkage) is the process of finding non-
identical records that refer to the same real-world en-
tity among a collection of data sources [1]. Entity

*Corresponding author. E-mail: palumbo@ismb.it, Tel. +39 011
2276227

matching allows to identify redundant data, remove
them (deduplication) and obtain unambiguous entities.
Entity matching is rendered troublesome by the differ-
ent data models used by the data providers, by possi-
ble misspellings, errors and omissions in data descrip-
tions, by the use of synonyms, as well as the presence
of implicit semantics in the textual descriptions. Con-
sider as an example the case in which one record is
named “Black Diamond BGWB14 Inc.” and the sec-
ond record is named “Black Diamond f.s.b.”. In or-
der to understand whether the two records correspond
to the same real world entity, in addition to taking
into account other properties such as the address, the
state or the geographical position, it is clearly neces-
sary to have expertise in the domain and to be able to
understand the meaning of the abbreviations, as well
as to rule out evident misspellings or mistakes. Nev-
ertheless, a manual comparison from human experts

1570-0844/16/$35.00 (©) 2016 — 10OS Press and the authors. All rights reserved

2 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

is in most cases unfeasible, as matching entities re-
quires a quadratic computational time (e.g. matching
~ 103 entities requires ~ 10° comparisons). Thus, en-
tity matching systems typically define a metric to mea-
sure a similarity between entities. This metric can be
defined through knowledge of the domain and a trial-
and-error process, in a top-down manner [2,3], or can
be learned from annotated examples, in a bottom-up
way [4,5]. Then, the similarity is turned into a con-
fidence score, which represents the degree of confi-
dence in asserting that the pair of entities is a match.
Finally, a threshold has to be specified, in order to con-
vert the confidence score into a decision, namely clas-
sifying the pair as a match or not. This decision thresh-
old introduces a trade-off between the precision, i.e.
the capacity of discriminating false positives, and the
recall, i.e. the capacity of individuating true positives,
of the algorithm. Indeed, higher values of the thresh-
old lead to a more selective classifier, which tends to
incur in false negatives, reducing the recall of the al-
gorithm, while lower values of the threshold produce
the opposite effect. Thus, the user typically attempts
to find a balance between these two measures, either
manually or using more sophisticated approaches that
are able to learn a configuration from annotated ex-
amples. Independently from the strategy chosen to set
the final threshold, state-of-the-art systems typically
rely on a single decision threshold. In this paper, we
show that the combination of the predictions of an ar-
ray of thresholds using ensemble learning, and, more
in detail, stacked generalization, is able to break the
trade-off between the precision and the recall of the
algorithm, increasing both at the same time, and con-
sequently the F-score of the algorithm. We propose
a general approach called STEM (Stacked Threshold-
based Entity Matching), which can be applied on top
of any numerical threshold-based entity matching sys-
tem. STEM is based on the principle of Stacking (or
Stacked Generalization) [6], which consists in training
a meta-learner to combine the predictions of a num-
ber of base classifiers. STEM creates several instances,
corresponding to different values of the final decision
threshold, of a threshold-based classifier. Then, the
classification outputs of this ensemble of classifiers
are used as a binary feature vector for a supervised
learner, which is trained on a set of manually anno-
tated data. The main goal of STEM is that of enhanc-
ing the efficiency of a threshold-based entity match-
ing system, namely the capability of generating high-
quality matches improving the precision and the re-
call of the classifier at the same time [14]. In order

to test the generality of our claim, we run experimen-
tal tests using two different unsupervised threshold-
based classifiers. The first is a Naive Bayes classi-
fier [7,8], which follows the approach popularized by
the Paul Graham’s spam filter! and is implemented
by the open source deduplication framework Duke.?
The second is a linear classifier, implemented by the
open source framework Silk,> [9] which is currently
quite widespread in the Semantic Web and Linked
Data communities. The first dataset used for the ex-
perimental evaluation is that released by the organizers
of the Financial Entity Identification and Information
Integration (FEII) Challenge. The second dataset is
taken from the DOREMUS project, released by the in-
stance matching track of the Ontology Alignment Edi-
tion Initiative (OAEI). In addition to these datasets, we
further validate STEM by describing its implementa-
tion in a concrete use case, represented by the 3cixty
project.* In this context, STEM is used on top of a
Naive Bayes threshold-based classifier to match en-
tities and remove duplicates representing places and
events coming from a number of heterogeneous local
and global data sources in order to create a cleaner and
of better quality knowledge base, which is used to sup-
port the planning of tourist visits and to offer a digital
guide for tourists when exploring the city. The novel
contributions of this paper are:

— We design a generic framework based on stacked
generalization that is able to improve the effi-
ciency of threshold-based entity matching sys-
tems;

— We provide empirical evidence of this claim by
testing it with two different threshold-based entity
matching systems, showing that efficiency gain
can be up to 44% of F1 from a threshold-based
classifier;

— We show that STEM applied on top of a Naive
Bayes classifier performs better and has a weaker
dependence on the amount of manually annotated
entity pairs with respect to pure machine learning
approaches;

— We describe the implementation of the framework
in the generation of the 3cixty knowledge base,
providing evidence of its efficiency on a newly
generated gold standard data set;

ttp://www.paulgraham.com/spam.html
2https://github.com/larsga/Duke
3https://github.com/silk-framework/silk
‘https://www.3cixty.com

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 3

The remainder of the paper is structured as follows: in
Sec. 2 we describe the relevant related work in entity
matching, in Sec. 3 we describe the problem of entity
matching and of the trade-off between precision and
recall, in Sec. 4 we describe the STEM approach and
the theoretical background of the base classifiers uti-
lized in the experimental part, in Sec. 5 we describe
the experimental setup and the configuration process,
in Sec. 6 we show the experimental results, in Sec. 7
we describe the implementation of STEM in the 3cixty
project and in Sec. 8 we conclude the paper.

2. Related Work

Entity matching is a crucial task for data integration
[12] and probabilistic approaches able to handle un-
certainty have been proposed since the 60s [13].

A survey of frameworks for entity matching is reported
by Kopcke in [14], where a classification of several
entity matching frameworks is done by analyzing the
entity type, i.e. how the entity data is structured, block-
ing methods, i.e. the strategy employed to reduce the
search space and avoiding the comparison of each pos-
sible pair of records, the matching method, i.e. the
function utilized to determine if a pair of records repre-
sents the same real world entity and the training selec-
tion, i.e. if and how training data is used. By taking into
account the matching method, entity matching frame-
works may be divided in frameworks without train-
ing [2,3,15], in which the model needs to be manu-
ally configured, training-based frameworks [16,18], in
which several parameters are self-configured through
a learning process on an annotated training set, and hy-
brid frameworks, which allow both manual and auto-
matic configuration [19,20].

The authors of the survey thoroughly compare differ-
ent frameworks on a set of key performance indicators
and highlight a research trend towards training-based
and hybrid approach, which, in spite of the dependence
on the availability, size and quality of training data,
significantly reduce the effort of manual configuration
of the system. The most commonly used supervised
learners are Decision Trees and SVM. Training can
help for different purposes, such as learning match-
ing rules or in which orders matchers should be ap-
plied, automatically setting critical parameters and/or
determining weights to combine matchers similarity
values [23,17,18,19]. In [21], a comparison among
the most common supervised (training-based) learn-
ing models is reported together with an experimental

evaluation. The authors report a high degree of com-
plementarity among different models which suggests
that a combination of different models through ensem-
ble learning approaches might be an effective strategy.
The idea of ensemble learning is to build a prediction
model by combining the strengths of a collection of
simpler base models. Ensemble learning can be bro-
ken down into two tasks: developing a population of
base learners from the training data, and then combin-
ing them to form the composite predictor [22]. In [23]
the authors report that an ensemble of base classifiers
built through techniques such as bagging, boosting or
stacked generalization (also known as stacking) gen-
erally improves the efficiency of entity matching sys-
tems. Another evidence of the efficiency of ensemble
approaches to entity matching is reported in [24].

In the past years, the Linked Data [25] research
community has shown a great deal of interest for En-
tity Matching. More specifically, Entity Matching (or
Instance Matching) can be seen as a part of the pro-
cess of Link Discovery. Link Discovery has the pur-
pose of interlinking RDF data sets that are published
on the Web, following the evidence of recent stud-
ies that show that 44% of the Linked Data datasets
are not connected to other datasets at all [26]. Link
Discovery can be seen as a generalization of Entity
Matching, because it can be used to discover other
properties than an equivalence relation between in-
stances. Moreover, as remarked in [27], in Link Dis-
covery resources usually abide by an ontology, which
describes the properties that resources of a certain type
can have as well as the relations between the classes
that the resources instantiate. The authors of [27] re-
port a comprehensive survey of Link Discovery frame-
works, which shows that modern framework such as
Silk [28.,4], LIMES [29], EAGLES [5] combine man-
ually defined match rules with genetic programming
and/or active learning approaches to automatize the
configuration process. A different approach is pro-
posed by WOMBAT [30], which relies on an iterative
search process based on an upward refinement oper-
ator. WOMBAT learns to combine atomic link speci-
fications into complex link specifications to optimize
the F-score using only positive examples. Another line
of work is that of collective entity matching (or reso-
lution) systems, which are not based on pairwise sim-
ilarity comparison as STEM, but rather on the attempt
to capture the dependencies among different matching
decisions [31,32,33,34,35,36].

STEM is a general approach to improve the effi-

4 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

ciency of an entity matching system, which is in prin-
ciple applicable to any pairwise numerical threshold-
based classifier to enhance its efficiency.

3. Problem Formulation

The problem of entity matching can be defined as
follows [37]:

Definition 1 Given two datasets A and B, find the sub-
set of all pairs of entities for which a relation ~ holds:
M ={e; €A,es € B, (e1,e2) € AxB : ey ~ e3}

In this formulation, we assume that the schema map-
ping problem is solved, and thus:

Definition 2 Given a property m of the schema of A
and a property p of the schema of B, we assume that
a set of mapped properties has been defined m; =
{(7;,pi)} with i = 1..K. In the following, when we re-
fer to the properties i = 1..K, we refer to the compo-
nents of the mapping m;, i.e. to m; for ey € A and p; for
es € B.

We assume that the comparison between a pair of enti-
ties e1 and ey is carried out on a set literal values v; of
properties i = 1..K. We assume that the entity match-
ing system is a pairwise numeric threshold-based bi-
nary classifier acting on the properties i = 1..K. Thus:

Definition 3 We define the linkage rule as a Boolean
function f : (e1,es) € AxB — {0,1}, where f = 1
indicates that the pair is deemed a match and f =0
indicates that the pair is not deemed to be a match.

Definition 4 The comparison of two entities is car-
ried out by means of a comparison vector s(e1,es) =
{s1(e1,e2), s2(e1,e2)..5¢(e1,e2)}, where the compo-
nents s; € RT represent atomic similarities de-
fined over a number of literal values si(e1,e2) =
s(vi(e1),vi(e2)) of the properties i = 1..K

Definition 5 The comparison vector is then turned

Definition 7 We define as threshold-based classifier a
linkage rule f that depends on the confidence function
f in the following way:

flersea;1) = 0(f(c(er,e2)) —1) M

where 6 is the Heaviside step function and 7 € [0, 1]
is a given threshold.’> The linkage rule of a threshold-
based classifier has a very intuitive interpretation. A
pair of entities is considered to be a match if the degree
of confidence f that the pair is a match is above a cer-
tain threshold 7. The threshold 7 can be defined experi-
mentally or can be learned from a set of examples. In-
dependently from the strategy through which it is set,
the threshold ¢ introduces a trade-off between the rate
of false positives and false negatives that the algorithm
will accept. To see why this is the case, let us first start
from the definition of the two types of errors defined
in [37], considering the variations of the confidence
value f € [0, 1]. The first error, which corresponds to
the probability of having false positives, occurs when
an unmatched comparison is considered as a match:

1
o= P(f = ler # e3) = /0 P(f = 11f)P(fler # e2)df
@)

Given that we consider a binary threshold-based clas-
sifier, it follows from Eq. 1 that:

P(f=1|f) =6(f 1) 3)
which leads to:

1
pip =P =ller 2 e2) = [P(fler £ ex)df &

The second error, which corresponds to the probability
of false negatives, occurs when a matched comparison
is not considered to be a match:

into a confidence vector c(e1, e2) = {c1(s1(e1,e2)),ca(s2(e1, e2))..cx(sk(e1,e2))},

where each component c; represents the degree of con-
fidence in stating that the pair of entities is a match
given by the similarity score s;(e1,e2)

Definition 6 We define a confidence function f :
c(e1,e2) — [0,1] which maps the confidence vector
c(e1,e2) into a final score representing the confidence
of the entity matching system in stating that the pair of
entities is a match.

1
mqu:wfwﬂzﬁpmﬁ:@mﬁﬂmw
5)

5We assume that both f and ¢ are normalized in the [0,1] interval,
but it is intuitive to see that the same argument holds for any closed
interval [a,b] € R with a < b, as Eq. 1 is invariant to any multiply-
ing factor within the 6 function.

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 5

From Eq. 3, it follows that:

P(f=0lf)=1-6(f—1) (6)

and thus:
pm=P(f = 0Oler = e2) = / P(fles = ex)df (7)
0

The probability of true positives is similarly measured
as:

1
pp =P = ller = e2) = | P(fler = ex)df ®

Let us now consider the graphic illustration provided
in Fig. 1. Assuming that f is a meaningful confidence
function, the probability density function of the values
of f under the condition that e¢; = eq, i.e. P(fle; =
e2), has a higher mean and is located to the right, while
P(f|e1 # e2), conditioned by e # ea, is located to the
left. Let also NV be the total number of positive pairs,
i.e. matching entities, and N_ the total number of neg-
ative pairs, i.e. non matching entities, in the data. In
this graphical representation, the linkage rule of Eq. 1
implies that the area of P(f|e; = es) situated to the
left of the vertical line (in yellow) corresponds to the
probability of classifying a true match as a non match-
ing pair, i.e. to the probability of producing false neg-
atives py,. The number of false negatives FN is then
given by FN = ps,Ny. On the other hand, the area
of P(fle1 # e2) situated to the right of the vertical
line (in orange) corresponds to the probability of clas-
sifying a false match as a match, i.e. the probability of
producing false positives py,. Similarly to the previ-
ous case, we have that FP = N_py,. Finally, we also
have that the grey area in the graph is the probability
of true positives p;,. The number of true positives is
then given by: TP = N, p,,. From Fig. 1 we can see
that p,, and consequently F'N, is increasing when the
threshold ¢ increases, and at the same time py,, and
consequently FP, is decreasing when the threshold ¢
increases. p;, is also decreasing, but at a slower pace.
Now, if we recall the definition of precision and recall
[38]:

TP
_ P 9
P=TpiFP ©)
TP 10

"TTPYIFN

P(fle, #e,) P(fle,=e,)

p(fn)
p(tp)

p(fp)

Fig. 1. Graphical depiction of py,, ps, and pyp under the linkage
rule Eq. 1. The vertical line represents the decision threshold ¢. The
shape of the probability distribution has illustrative purposes.

we can see that, when ¢ increases, FP — 0 faster than
TP, and p increases. At the same time, FN is grow-
ing and r decreases. Conversely, when ¢ decreases FP
grows and F'N decreases, increasing r and decreasing
p- Thus, the threshold ¢ introduces a trade-off between
the precision and the recall of the algorithm (we pro-
vide experimental evidence of this heuristic argument
in Sec. 6). Note that this trade-off is not limited to En-
tity Matching and is well known by the Information
Retrieval and Statistical Learning community, where
precision-recall curves obtained through variations of
the decision threshold are often used as a measure of
an overall algorithm’s efficiency [39,38,40].

4. Stacked Threshold-based Entity Matching

In this work, we show that stacking can break the
trade-off by raising both precision and recall at the
same time through supervised learning. Stacking [6]
(also known as stacked generalization), is based on
the idea of creating an ensemble of base classifiers
and then combining them by means of a supervised
learner, which is trained on a set of labeled exam-
ples. In this case, the base classifiers correspond to
a single threshold-based classifier f(e,eq;1) with a
set of different decision thresholds t1, #5.., ty. The su-
pervised learner is a binary classifier whose features
are the match decisions of the base classifiers F

{f(er,eain1), fler,easta)...fler,easty)} — {0,1}

6 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

and whose output is a binary match decision, which
represents the final decision of the system. Stacking
requires the creation of a gold standard G containing
correctly annotated entity pairs, which are used as a
training set for the supervised learning approach. More
in detail, the Stacking Threshold-based Entity Match-
ing approach (Fig. 2) works as follows:

1. Blocking (optional): although not strictly needed,
it is in practice necessary for large datasets to find
good candidates e, e2 using a blocking strategy,
avoiding a quadratic comparison of entities (see
Section 5.3 and Section 5.4).

2. Threshold-based classifier: start from a link-
age rule based on a threshold-based classifier
f(e1, e2; 1) such as the one defined in Eq. 1

3. Threshold perturbation: generate an ensemble
of N linkage rules f (e1,e2;t;) where 1; are lin-
early spaced values in the interval [r — §,7 + §]
and 0 < § < min{t,1 — t} is the perturbation
amplitude

4. Stacking: combines the predictions correspond-
ing to different thresholds using supervised learn-
ing.

Features: use the predictions x; = f(e1, e;1;) as
features for a supervised learner F(x; w) where w
are parameters that are determined by the learn-
ing algorithm.

Training: train the supervised learner F(x; w) on
the gold standard G, determining the parameters
w. This typically involves the minimization of an

error function E(x, w,G):

W:IninE(x,w,G) (11

The shape of the error function E(x,w,G) and
how the optimization is solved depends on the
particular supervised learner that is chosen. In
this paper, we use an SVM classifier and we thus
rely on the SVM training algorithm [22]. Note
that the training process only needs to be done
once per dataset, as the learned model can be
stored and loaded for testing.

Testing: generate the final prediction F(x; w).

The intuition behind this approach is that using
stacking the space of features is no longer the confi-
dence score f as for the threshold-based classifier. The
supervised learner F uses as features the set of match-
ing decisions of the base classifiers and, by combin-

ing them in a supervised way, it is no longer tied to
the trade-off introduced by the threshold ¢ that we have
described in Sec. 3. We show experimental evidence
of the effectiveness of stacking in increasing both the
precision and the recall of a threshold-based classifier
in Sec. 6.

We now provide the descriptions of the two threshold-
based entity matching systems that are used in this pa-
per, showing that they both constitute particular cases
of Eq. 1.

4.1. Linear Classifier

One of the simplest models for the confidence func-
tion f(eq,e2) of a pair of entities 1 and e is that ob-
tained by the linear combination of the components of
the confidence vector c(eq, e3) introduced in Sec. 3.
Given the set of properties j = 1..K and their respec-
tive values v;(e1) and v;(e2) for both entities, property-
wise similarities are functions that yield a vector of
similarity scores s; = s;(vj(e1),vj(ez2)), where typi-
cally s; € [0,1] with s; =1 <= v;(e1) = vj(e2).
At this point, similarity scores s; are normally turned
into the property-wise confidence scores ¢; = ¢;(s;),
which are then linearly combined through the con-
fidence function f. This is the case of Silk® [28],
which is a popular Link Discovery framework, specif-
ically built to generate RDF links between data items
within different Linked Data resources. More specifi-
cally, Silk works with distances d; rather than with sim-
ilarities s; and different comparators can be selected
to define the distances d;, such as Levehnstein, Jaro-
Winkler, exact comparators, Jaccard [41]. Then, dis-
tance scores d; > 0 are turned into confidence scores c;
according to the rule’ (Fig. 3):

d.
—24+10<d; <21
¢i = cldi) = {—f d; > 27

where 7; are property-specific thresholds. Note that c¢;
is a monotone decreasing function, as it depends on
distances d; rather than on similarities s; values. In
this way, for each property used for the comparison, a
confidence score ¢; € [—1,1] is obtained. Silk allows
to combine these confidence scores in multiple ways,

Shttp://silkframework.org
"Thttps://github.com/silk-framework/silk/
blob/master/doc/LinkageRules.md

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 7

Data1
Name Zip code Address
Lowry bank 56348 223 main st.
el Data2
JP bank 19390 101 aven. 1. Blocking
Name Zip code Address
Hill fsb 10300 13 green st. P
James bank 75800 front st., 1 JP fsb bank 56347 main st. e2
Bison bank 10200 broad st,, 12 JPR bank 1390 taven.
JP state bank 10299 13 green st.
JP bancorp 75800 redst., 1
JP bank inc. 10200 large st., 12

fe1,62; t) 2. Threshold-based classifier

3. Threshold perturbation

/

f1(e1,e2; t1) f2(e1,62;12) 3(e1,e2;t3) fa(e1,e2;t4)

N(e1,e2; tN)

Match Match Match No match No match

features x1 xz\ 7/ xN
gold
R

4. Stacking F(X; W) standard

training

testing

Match

Fig. 2. Global architecture of the STEM framework.

among which the linear combination, which is the one
that has been utilized in this work:

K
+1 4 f=00 wici—1) (12)
i=1

which corresponds to the linkage rule Eq. 1 with:

K
- di f(c(el,eg)) = ZW,‘C[(13)
i=1

The final decision threshold ¢ corresponds to the
parameter ‘minConfidence’ in Silk configuration file.
This parameter, together with all the others such as
property-wise thresholds or comparators, can be man-
ually set through a trial-and-error process or they can

Fig. 3. Silk function to compute property-wise confidence scores
from distance values

be learnt through an active learning algorithm that
is based on the approach of letting users annotate
matches that produce the utmost information gain [42].

8 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

4.2. Naive Bayes Classifier

Naive Bayes is a term used to describe a fam-
ily of classifiers that are based on the Bayes theo-
rem and on a particular assumption of independence
among the components of the evidence vector [7,43].
In this paper, we use the formulation of the Naive
Bayes classifier that has been popularized by Paul Gra-
ham’s Bayesian spam filter.® We now want to show
that the Naive Bayes classifier can be considered as a
threshold-based classifier, obeying to the decision rule
of Eq. 1.

Given a set of classes X; with i = 1..N and a vector of
observations x = {x1, x2..xg }, the Naive Bayes clas-
sifier aims to estimate the probability of a class given
a set of observed data P(X;|x) by applying the Bayes
theorem and the conditional independence condition
(from this assumption comes the adjective ‘Naive’):

P(x[x)P(X;) P(Xi) Ty P(x;|X))

P(Xilx) = =
P(x) P(x)

(14)

In our case, we have a binary classification problem,
where the decisions X; = 1 = "Match’ and X = 0 =
’No Match’ and the observations are represented by
the comparison vector s. Eq. 14 for X; = 1 becomes:

P() T, P(si1)

Pl1ls) = =ik

Since P(s) = P(s|1)P(1) + P(s|0)P(0) the denomi-
nator can be rewritten as:

P() T, P(si1)

P(1ls) = P(s|1)P(1) + P(s]0)P(0)

5)

and then, using again the conditional independence hy-
pothesis, factorized as:

P() [T, P(si1)

P(1]s) = - .
P(1) [Tz, P(si1) + P(0) [Ti_, P(si]0)
(16)

Now, by applying Bayes theorem P(s;|1) = P}gtlls)i)P(si)
and P(s5;]0) = Pff()(‘,‘;’)P(s,-), denoting with x = P(1)

8http://www.paulgraham.com/spam.html

and 1 — x = P(0), we have:

k
%Hi:l P(1]s;)
k k
et [Ty P(Lsi) + W [Ti=y P(Ols:)
(17

P(1s) =

Finally, assuming that, a priori, P(1) = P(0) and thus
x = 1 — x, we can remove the coefficients and by de-
noting with ¢; = P(1]s;) we obtain:

C1C92..Ck

P(1|S) - Cc1C2..Ck + (1 - Cl)(l - 62)"(1 - Ck)

(18)

Details of the derivation can be found in [44]. Note
that ¢; = P(1]|s;) exactly represents the confidence
score derived from the similarity value s;. It is also
important to notice that this simplifying assumption
P(1) = P(0), although widespread in practice and
used in the implementation of Duke, is not necessary
for a Naive Bayes classifier and can be modified with
any other strategy to estimate prior probabilities.

At this point, it is necessary to specify a decision rule,
that is a rule to turn the probability evaluation into a de-
cision. A common approach is the Maximum a Posteri-
ori (MAP) Estimation [45], namely selecting the class
that maximizes the posterior probability:

X =arg max P(X;|x) (19)

which allows to define a binary linkage rule as:

f=1 <<= P(1]s) > P(0]s) (20)
which can easily be rewritten as:

- P(1)s)
F=1= %)

21
Now, by adopting a decision-theoretic notion of cost,

we can turn Eq. 21 into [46]:

. P(1)s)
F=1= %)

(22)

where A is a value that indicates how many times false
positives are more costly than false negatives. From
Eq. 22, it is clear that if A > 1, we require that P(1|s)
is A times greater than P(0|s) in order to consider the
pair to be a match, and thus we are more keen to ac-
cept false negatives than false positives. Vice versa, if

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 9

A < 1, the algorithm will tend to have more false pos-
itives than false negatives. Finally, by considering that
P(0|s) = 1—P(1]s) and by using Eq. 18 we obtain the
decision rule:

~ C1€92..Ck

=1 <= >t
f crca.cr+ (L —c1)(1 —c2)(1 —cx)
(23)
where # = 745 It is now easy to see that Eq. 23 can be
rewritten as:
f: P C1C2..Ck —l) (24)

(Clcg..Ck +(1=c1)(1—c2) (1 —cp)

which has the same form of Eq. 1, where the combina-
tion of confidence scores c¢; has the role of the global
‘confidence function’:

C1C2..Ck
creancr+ (1 —c1)(1 —c2)..(1 —cp)
(25)

flcler,e2)) =

We have thus shown that from a Naive Bayes classifier
we can obtain a threshold-based classifier abiding by
Eq. 1. As we have argued in Sec. 3, the threshold ¢
rules the trade-off between the rate of false positives
and false negatives that the algorithm will accept. This
is evident by its relation with A:

A—-co=t—1 (26)

A1=0=t—-0 27)

Thus, the higher the value of ¢, the higher needs to be
the probability that the pair is a match for the algorithm
to consider it a match. Thus, we are less likely to have
false positives and more likely to have false negatives.

In the past years, Naive Bayes classifiers have been
utilized in a large number of fields, such as spam fil-
tering [8], document and text classification [47], infor-
mation retrieval [7], entity matching [48] and so on.
Duke’ is a popular open-source deduplication engine,
which implements Naive Bayes classification. Duke is
a flexible tool, which accepts different formats of input
data, and is easy to configure through a simple XML

https://github.com/larsga/Duke

file. For each field of each data source, the user can
choose a number of string cleaners, such as functions
that remove abbreviations or normalize lower/upper
cases. For each property, Duke allows to select a com-
parator among popular string similarity measures such
as Levensthein, Jaro-Winkler, exact comparators and
so on [41]. The comparators thus compute, for each
property, a normalized similarity score s;. Then, in or-
der to turn similarity scores into a confidence score c;,
Duke uses the heuristic function:

low; $i < 0.5
ci=P(1s;) = { (high; — 0.5)s7 + 0.5 5; > 0.5

where low; and high; are parameters that the user can
configure for each property. The rationale behind this
formula of P(1]s;) is that P(1|s; = 0) = low and
P(1|s; = 1) = high, and, as Duke’s users were finding
the algorithm to be too strict, a quadratic instead of a
linear trend has been chosen when s, is larger than 0.5.
After that ¢; is computed for each property, the over-
all P(1|s) is calculated through Eq. 18 and the deci-
sion is taken through Eq. 23. Similarly to the case of
Silk, the final decision threshold ¢ is a parameter that
can be configured in a XML file. Duke also includes
a genetic algorithm that automatizes the configuration
process and in general represents a valid alternative to
the manual configuration. Through an active learning
approach, Duke asks to the user in an interactive way
if a pair of entities should be a match or not, selecting
the most informative pairs, i.e. the ones with utmost
disagreement among the population of configurations

[5].
4.3. Computational complexity

A crucial point for entity matching systems, which
are often used to find matching entities among datasets
with large numbers of instances, is their computa-
tional complexity. The stacking approach introduced
by STEM adds an overhead to the runtime perfor-
mance of the base classifier due to the generation of
the ensemble of predictions and to the learning pro-
cess. More in detail, the computational complexity of
STEM in the current sequential implementation can be
roughly approximated with:

TS TEM =~ N * Tbasecla.rsifier (I’l, m) + T.s‘l‘a('king (N, D) k)

where N is the number of features, n is the num-
ber of instances of the first dataset, m is the num-

10 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

ber of instances of the second dataset, g is the size
of the training set and k is the size of the test set.
Tpaseciassifier(n, m) depends on the nature and the con-
figuration of the base classifier, especially on the
blocking strategy. Let us assume that the base classifier
adopts a smart blocking strategy such as that of Silk,
we can assume that Tageciassifier (. m) = O(n+m) [9].
T stacking (N, g, k) depends on the supervised learner that
is used and depends on the training and the testing time
Tstacking (N7 8 k) = Trrain (N’ g) + Ttest(Na k) The train-
ing and testing processes can easily be decoupled, for
instance saving the trained model to a file and load-
ing it subsequently for testing. However, in this sec-
tion, we discuss the worst case in which we need to
first train and then test the model. In this paper, we
use a kernel SVM!? classifier as a supervised learner,
whose complexity may vary depending on a number of
practical factors depending on the specific implemen-
tation. However, as a rule of thumb, it is reasonable to
assume [10,11] that: O(N * g2) < Tyuin(N, g)(N, g) <
O(N * g%) and T.5;(N, k) < O(N * k). To summarize,
we can then say that:

Tidm, < N O(n+m) + O(N x g%)

TE ey < N*O(n+m) + O(N x k)

In our experiments, we have that g <= n, g <= m
and, by using cross-validation, we have that k ~ g.
In practice, we observe that when the number of fea-
tures N grows, the time for generating the predic-
tions quickly surpasses the time of stacking, i.e. N *
Thasec/as.vifier(nv m) > Tstacking(N’ 8, k) (See Section 6
for an example). Note that the time could be reduced to
TSTEM ~ Tbaseclassifier(n5 m) + Tstacking (N» g) by paral_
lelizing the generation of the predictions of the N base
classifiers, which we leave as a future work.

5. Experimental setup

As we have explained in Sec. 4, the STEM ap-
proach is general and can be utilized on top of any
threshold-based entity matching system. In this paper,
we have implemented it and evaluated through two dif-
ferent open source frameworks, Duke and Silk, which
are based respectively on a Naive Bayes and on a lin-
ear classifier. In Sec. 5.3 and in Sec. 5.4, we describe
the configuration process of these frameworks inside

Onttp://scikit-learn.org/stable/modules/
svm.html

STEM. The software implementation of STEM, the
configuration files and the data used for the experi-
ments are publicly available on github.'!

5.1. Datasets

The first dataset utilized for the evaluation of the
proposed approach is that released by the organiz-
ers of the Financial Entity Identification and Informa-
tion Integration challenge of 2016 (FEIII2016).'? The
purpose of the challenge is that of creating a refer-
ence financial-entity identifier knowledge base linking
heterogeneous collections of entity identifiers. Three
datasets have been released:

— FFIEC: from the Federal Financial Institution Ex-
amination Council, provides information about
banks and other financial institutions that are reg-
ulated by agencies affiliated with the Council.

— LEI: contains Legal Entity Identifiers (LEI) for a
wide range of institutions.

— SEC: from the Securities and Exchange Commis-
sion and contains entity information for entities
registered with the SEC.

In this paper, we focus on the Entity Matching of enti-
ties of the FFIEC database and the SEC database, as it
proved to be the most challenging one. The gold stan-
dard, which can be seen as a benchmark for the evalu-
ation of the systems as well as a set of annotations to
create a supervised system, has been created by a panel
of experts of the field. The gold standard contains 1428
entity pairs, with 496 positive and 932 negative exam-
ples. The dataset is available online.'?

A second evaluation of the STEM approach is per-
formed on the dataset released by the DOREMUS
project'* in the context of the instance matching
track of the Ontology Alignment Evaluation Initia-
tive 2016 (OAEI2016'). The Instance Matching Track
of the OAEI 2016 aims at evaluating the efficiency
of matching tools when the goal is to detect the de-
gree of similarity between pairs of items/instances ex-
pressed in the form of OWL Aboxes. The DOREMUS
datasets contain real world data coming from two ma-
jor French cultural institutions: the French National

Mhttps://github.com/enricopal/STEM
2https://ir.nist.gov/dsfin/index.html
Bhttps://ir.nist.gov/dsfin/data/
feiii-data-2016-final.zip
“http://www.doremus.org/
15http://islab.di.unimi.it/im_oaei_2016/

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 11

Library (BnF) and the Philharmonie de Paris (PP). The
data is about classical music works and is described by
a number of properties such as the name of the com-
poser, the title(s) of the work, its genre, instruments
and the like. We focused our evaluation on two tasks,
whose description we report here:

— Nine heterogeneities: “This task consists in
aligning two small datasets, BnF-1 and PP-1, con-
taining about 40 instances each, by discovering
1:1 equivalence relations between them. There
are 9 types of heterogeneities that data manifest,
that have been identified by the music library ex-
perts, such as multilingualism, differences in cat-
alogs, differences in spelling, different degrees of
description.”

— Four heterogeneities: “This task consists in
aligning two bigger datasets, BnF-2 and PP-2,
containing about 200 instances each, by discov-
ering 1:1 equivalence relations between the in-
stances that they contain. There are 4 types of
heterogeneities that these data manifest, that we
have selected from the nine in task 1 and that ap-
pear to be the most problematic: 1) Orthographi-
cal differences, 2) Multilingual titles, 3) Missing
properties, 4) Missing titles.”

Data is accessible online.'® To the reference links pro-
vided by the organizers, we add 20 and 123 false links
respectively for the nine heterogeneities and the four
heterogeneities gold standards, to enable the super-
vised learning approach implemented by STEM that
necessitates both positive and negative entity pairs.

A third dataset used in the experimentation of
the STEM approach is derived from the 3cixty Nice
Knowledge Base. This knowledge base contains Nice
cultural and tourist information (such as Place-type en-
tities) and it is created with a multi datasource collec-
tion process, where numerous entities are represented
in multiple sources leading to duplicates. This creates
the need of matching and the resolution of the entities.
Further details of the making of the knowledge base
with the selection of the gold standard is detailed in
Sec. 7, while in this section we report the statistics of
the gold standard that drove the entity matching task.

For the FEIII and the DOREMUS datasets, we assume
that the Unique Name Assumption is true, meaning
that two data of the same data source with distinct ref-

nttp://islab.di.unimi.it/im_oaei_2016/
data/Doremus.zip

erences refer to distinct real world entities. For 3cixty
this is clearly not the case, as we are matching the
dataset with itself to detect duplicates.

A summary of the datasets statistics is reported in
Tab. 1 and of the matching tasks in Tab. 2.

5.2. Scoring

To evaluate the efficiency of the algorithm we have
used the standard precision p, recall r and f measures
[38]. These measures, if not specified otherwise, have
been evaluated through a 4-fold cross validation score
process. Given the ambiguity of the definition of p,
r and f when performing cross validation [49], we
hereby specify that we have used:

1 4
P=7 > pi (28)
i=1
1 4
r=7 ; ri (29)
1 4
f=32_4 (30)
i=1
€1y

where i = 1..4 are the four folds. The computation of
the precision score depends on the closed/open world
assumption, i.e. whether we assume that all correct
matches are annotated in the gold standard or not. In
practice, it is normal to have in the gold standard only
a fraction of all the real matching entities and we thus
follow, by default, the open world assumption. In this
case, when a pair of entity is considered to be a match
by STEM and is not present in the gold standard, we
are unable to determine whether this is due to a false
positive or to a missing annotation and we simply ig-
nore it in the scoring. In the case of the experiments
with DOREMUS datasets, where the organizers of the
challenge claim to have annotated all the true matches,
we follow the closed world assumption. In this case,
every match that is not annotated in the gold standard
is considered as a false positive.

5.3. Duke

Entity format: Duke is able to handle different for-
mats for input data, such as .csv (comma separated
value) or .nt (n-triples). In the first case, an entity is
represented by a record in a table. In the second case,

12 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

Matching tasks summary

Dataset Domain Provider Number of entities | Format
FFIEC Finance Federal Financial Institution Council 6652 CSV
SEC Finance Security and Exchange Commission 129312 CSv
BnF-1 Music French National Library 32 RDF
PP-1 Music Philharmonie de Paris 32 RDF
BnF-2 Music French National Library 202 RDF
PP-2 Music Philharmonie de Paris 202 RDF
3cixty Nice places | Culture and Tourism 3cixty Nice Knowledge Base 336,900 RDF
Table 1
Datasets summary
Dataset 1 Dataset 2 Gold standard pairs | Challenge Task
FFIEC SEC 790 FEIII2016 FFIEC-SEC
BnF-1 PP-1 52 OAEI2016 | DOREMUS - 9 heterogeneities
BnF-2 PP-2 325 OAEI2016 | DOREMUS - 4 heterogeneities
3cixty Nice places | 3cixty Nice places 756 - -
Table 2

an entity is a node in a Knowledge Base.

Blocking method: we reduce the search space for the
entity matching process from the space of all possi-
ble pairs of entities AxB using an inverted index, in
which property values are the indexes and the tuples
are the documents referred by the indexes. The lookup
of a tuple given a value has, therefore, a unitary cost.
We reduce the search space to a small subset of the
most likely matching entity pairs that satisfy a given
Damerau-Levenshtein distance [50] for each value pair
of the tuples, and we considered the first m candi-
dates.”

Configuration: the first step of the implementation
consists in configuring Duke. Duke is built by de-
fault on top of a Lucene Database,'® which indexes the
records through an inverted index and does full-text
queries to find candidates, implementing the blocking
strategy. The Lucene Database can be configured in
Duke by setting a number of parameters such as the
max-search-hits, that is the maximum number of can-
didate records to return or min-relevance, namely a
threshold for Lucene’s relevance ranking under which
candidates are not considered. Duke then allows to se-
lect a number of properties to be taken into account

17We empirically set the distance to 2 and the number of poten-
tially retrievable candidates to 1,000,000 (conservative boundary).
nhttps://lucene.apache.org

to establish if a pair of entities match, such as name,
address, zip code. Duke requires to specify a map-
ping between the fields of the data sources and those
on which the comparison has to be performed, e.g.
“LegalName — NAME, LegalEntityAddress — AD-
DRESS, LegalEntityCode — ZIPCODE”. In this case,
we have manually configured Duke during the partic-
ipation to the FEIII2016 challenge and the choice of
cleaners, comparators is reported in [51].

54. Silk

Entity format: Silk is specifically built to deal with
RDF formats, such as .ttl (turtle) or .nt (n-triples),
where entities are represented as nodes in a Knowl-
edge Graph. However, it allows to convert data from
a variety of formats, such as .csv (comma separated
values).

Blocking method: Silk implements a multidimen-
sional blocking system, called MultiBlock [52], which
is able to not lose recall performance. Differently from
most blocking system that operates on one dimension,
MultiBlock works by mapping entities into a multidi-
mensional index, preserving the distances between en-
tities.

Configuration: Silk can easily be configured through
an XML file. To configure the blocking algorithm, it
is sufficient to specify the number of blocks, which

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 13

we have empirically set to 100. A set of properties
i = 1..K onto which the matching is based needs to
be specified and then, for each of them, the user can
select among a large number of ‘transformators’ (com-
parable to Duke’s cleaners) to pre-process and normal-
ize strings. The choice of transformators and compara-
tors has been based on the result obtained with Duke
in the participation to the FEIII challenge and a sim-
ilar configuration file has been produced for Silk. A
manual configuration to optimize the f score has been
used also for the DOREMUS data in the context of the
OAEI challenge [53].

5.5. Stacking

Differently from the previous steps, which are
mainly based on low-level string similarity measures,
the supervised learner can implicitly learn semantic
similarities from the human annotations of the gold
standard. The stacking process is implemented through
a Python script that executes Duke or Silk a number
N of times, editing the threshold ¢ through uniform
perturbations of amplitude a, automatically modify-
ing Duke’s or Silk’s configuration file. Then, the script
saves Duke’s or Silk’s outputs and turns them into a
training set for a supervised learner with id1, id2 pairs
on the rows and N features on the columns.

The user may choose different supervised learners for
the stacking layer. What we have experimentally found
to work better, given the small number of features, is an
SVM with a RBF kernel [22], which is the default. In
many cases, such as the default one, the learning algo-
rithm leaves a number of parameters (so-called “hyper
parameters”) to be determined. Let F(x; W,) be a su-
pervised learner where 6 is the vector of hyper param-
eters (C and vy in the case of SVM with RBF kernel). In
order to optimize the efficiency of the algorithm with
respect to these hyper parameters, we have trained the
algorithm on an array of possible values of 6 and se-
lected 6 as the vector that optimized 4-fold cross vali-
dation score (grid search cross validation [54]).

For what concerns the number of features N, it is rea-
sonable to expect that higher values tend to increase
the efficiency of the algorithm up to a saturation point,
where no further predicting power is added by an ad-
ditional instance of the base classifier. Actually, we
observe that increasing the number of features can
also lead to efficiency decrease, as a typical overfitting
problem. This saturation point will typically depend on
the amplitude a of perturbation, as with small intervals
—a/2,a/2 we expect it to occur earlier. This will also

depend on the size of the datasets and its complexity,
so no one-fits-all solution has been individuated. As
we will see in the experiments though, a = 0.25 and
N = 5 appears to be a good rule of thumb.

6. Results
6.1. STEM vs threshold-based classifiers

In this section, we first provide evidence of the
trade-off between precision and recall introduced by
the decision threshold and then we show that STEM is
able to increase the precision and the recall of the base
classifiers at the same time. In the following, we refer
to the STEM approach implemented on top of Duke as
STEM-NB and to that implemented on top of Silk as
STEM-LIN.

The premise of this work is that the threshold 7 in de-
cision rule Eq. 1 introduces a trade-off between preci-
sion and recall. In Sec. 3 we have provided a heuris-
tic argument of why this should be the case and now
we provide experimental results. In Fig. 4, we report
the precision and recall obtained by running Duke on
the FFIEC-SEC dataset for a set of 20 equally spaced
threshold values 7 € [0.05,0.9]. The graph clearly
shows the trade-off between precision and recall of the
algorithm ruled by the threshold ¢. The trend for both
curves is non-linear, with moderate changes in the cen-
tral part and sudden variations at the sides. The typi-
cal configuration process of a threshold-based classi-
fier attempts to find a balance between the two met-
rics, in order to maximize the F-score of the algorithm.
Then, using STEM, both metrics can be increased at
the same time using stacking. In Tab. 3 and Tab. 4 we
support this claim by reporting respectively the results
obtained using STEM-NB and STEM-LIN on FFIEC-
SEC, DOREMUS 4-heterogeneities, DOREMUS 9-
heterogeneities tasks, varying the number of features
N. The value of the perturbation amplitude a has been
fixed to a = 0.25 following the analysis reported in
Fig. 5, which shows that this value allows to reach
f = 0.95 with only 10 configurations and limits the
dependence on the value of N. The plot also shows that
the saturation effect tends to occur sooner when a is
small, as this corresponds to a denser and therefore less
informative sampling of the interval.

In Tab. 3, we can observe that, for the FFIEC-SEC
task, even with a small number of features N = 5,
stacking leads to a significant increase of the F-score

14 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

1.00-
0.95-
0.90-
0.85-
0.80-
0.75-

0.70- Precision-Recall curvi

0.65- -
0.60- = Precision

0.55-
0.50 - mm= Recall
0.45-
0.40-
0.35-
0.30-
0.25-
0.20-
0.15-

005 020 035 050 065 080
thresholds

Fig. 4. Precision and recall curves as functions of the threshold ¢ for
Duke on the FEIII dataset. It clearly shows the trade-off between
p(t) and r(¢) introduced by the Naive Bayes classifier decision rule
Eq. 23

of the algorithm (12%), obtained by increasing both
precision and recall at the same time. Increasing the
number of features N tends to increase the efficiency,
with a saturation effect as the number gets larger. In-
deed, going from N = 5 to N = 10 only grants a 1%
gain and no difference of efficiency is observed from
N =10to N = 20. A similar behavior is observed for
the DOREMUS tasks, where the big efficiency leap is
given by the introduction of stacking, whereas raising
the number of features N grants small improvements
in the case of 4-heterogeneities and decreases the effi-
ciency in the case of 9-heterogeneities. A similar be-
havior is observed for all the experiments that we have
done.

To show that the increase of efficiency is not de-
pendent on the particular threshold-based classifier, we
have run the same experiments using STEM-LIN and
reported the results in Tab. 4. In this case, we can
observe that, although absolute values are lower, the
increase in efficiency given by the stacking layer is
equally or even more important, achieving a +20% on
the F-score with only N = 5 in the FFIEC-SEC task
and a +43% and +36% for DOREMUS tasks. Also in
this case, both precision and recall are increased at the
same time and a saturation effect can be detected as
N grows. In general, it seems that the saturation effect
occurs earlier for DOREMUS tasks, as in three cases
out of four with N = 5 we already reach the peak effi-
ciency and the fourth case the efficiency only increases
by 1%. This is probably due to the fact that DORE-
MUS datasets are smaller and thus a model with too
many features tends to overfit the data.

a

0.94

0.35

ON-ry 0.9

(W] 0.94 | 0.95

0.2 0.94 | 0. 0.94

0.15 0.89 Mk 0 cps 0.91

01 0.88 0.91 0.88 0.88 0.88

5 10 15 20 25 N

Fig. 5. F1 score for different combinations of @ and N on the
FFIEC-SEC dataset for STEM-NB

6.2. STEM vs supervised learning on similarity
values

In this section, we discuss the second claim of the
paper, namely the comparison of a hybrid approach
such as STEM with a system that performs machine
learning ‘from scratch’. More in detail, we have com-
pared STEM to a number of commonly used machine
learning algorithms, using similarity values s; as fea-
tures. In addition to verifying whether STEM performs
better than the other systems in absolute, the intent is
also to see whether it is less dependent on the amount
of annotated training data. Indeed, given the quadratic
nature of the entity matching problem, in most real us-
age scenarios, annotating a comprehensive gold stan-
dard (such as those of FEIII and DOREMUS) is an
extremely time consuming endeavour and the user is
able to annotate just a small fraction of all possible en-
tity pairs. Therefore, it is interesting to see how an en-
tity matching system performs with a small amount of
annotated training pairs. To this end, we have studied
how STEM performs at the variation of the amount of
training data with respect to an SVM classifier with a
RBF kernel, a random forest and a logistic classifier.
In order to avoid possible size effects on the scores, we
have split the FEIII data in two halves, according to
the stratified sampling technique, i.e. keeping constant
the proportion of matching and non matching pairs in
the two parts. The first half is used as training data
and the second half is used as test data. Then, we ran-
domly extract a fraction z of training data from 0.1 to
0.9, train the systems and score them on the test set,

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 15
FFIEC-SEC DOREMUS 4-het DOREMUS 9-het
Base classifier N P r f of P r f of p r f of
Duke n/a 0.88 | 0.77 | 0.82 0 046 | 057 | 0.51 0 0.48 | 0.66 | 0.55 0
STEM-NB 5 0.90 | 098 | 0.94 12% 0.89 | 098 | 093 | 42% 0.97 1.0 0.99 | 44%
STEM-NB 10 093 | 097 | 095 | 13% 0.89 | 098 | 093 | 42% 0.94 1.0 097 | 42%
STEM-NB 20 094 | 097 | 095 13% 0.89 | 099 | 0.94 | 43% 0.87 1.0 093 | 35%
Table 3
Results of STEM-NB vs Duke for @ = 0.25 and different values of N across different datasets
FFIEC-SEC DOREMUS 4-het DOREMUS 9-het
Base classifier N P r f of P r f of p r f of
Silk n/a 0.57 | 0.67 | 0.59 0 045 | 043 | 043 0 046 | 0.81 | 0.58 0
STEM-LIN 5 0.77 | 0.81 | 0.79 | 20% 0.82 | 093 | 0.86 | 43% 0.89 1.0 094 | 36%
STEM-LIN 10 0.78 | 0.83 | 0.80 | 21% 0.75 | 0.66 | 0.69 | 28% 0.89 1.0 0.94 | 36%
STEM-LIN 20 077 | 0.84 | 0.81 | 22% 0.75 | 0.60 | 0.64 | 21% 0.87 1.0 093 | 35%
Table 4
Results of STEM-LIN vs Silk for a = 0.25, different values of N across different datasets
which remains the same. For each value of z, we re- 0.95 1 T
peat the extraction 50 times and we compute the aver- W
age value. Using the FEIII datasets and the STEM-NB 0.90 - Svst
implementation, values of s; have been computed us- ystem
ing the same comparators with the same configuration a STEM-NB
of STEM-NB. The configuration procedure of the ma- o
chine learning classifiers is the same as that described Logistic
in Sec. 5.5, namely a grid search hyper parameters op-
® SVM

timization has been used to maximize 4-fold cross vali-
dation scores, setting C and y for SVM, ‘n_estimators’
for the random forest and the regularization constant
C for logistic regression.!® The result of the experi-
ment is depicted in Fig. 6. We can see that STEM-
NB performs better than any other classifier in abso-
lute terms, reaching a peak of 0.931 when 90% of the
training data is used. Moreover, it shows little depen-
dency on the amount of training data, producing 0.914
with only 10% of the training data. SVM performs bet-
ter than the other pure machine learning approaches
when 90% of training data is used, but decreases fast
when annotated examples are reduced. In Tab. 5, we
report, for each classifier, the quantitative estimation
of the dependency of f from the fraction of training
data z, obtained through the statistical estimation of the
angular coefficient m of a linear fit of the points (i.e.
the straight lines of Fig. 6). What we can observe is
that more complex models such as SVM and Random
Forest tend to depend more on the amount of training

Yhttp://scikit-learn.org/stable/user_guide.
html

10 20 30 40 50 60 70 80 90
Percentage of training data

Fig. 6. F-score at the variation of the percentage of training data
used. STEM-NB is compared to an SVM classifier, a Random Forest
and a logistic classifier

data, while a simple linear model such as logistic re-
gression is performing well even with a small amount
of training data. The logistic model is even less depen-
dent on the training data than a hybrid approach such
as STEM, but it is not comparable in terms of abso-
lute efficiency. STEM thus represents a model that is
complex enough to achieve good efficiency in abso-
lute terms and it is also able to maintain it with a little
amount of training data.

6.3. Runtime performance

In Sec. 4.3 we have discussed the computational
complexity of STEM, which can be summarized as

RandomForest

16 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

Classifier min | max m
STEM-NB 091 | 093 | 0.015 =+ 0.008
SVM 0.74 | 0.84 0.09 £ 0.01
Random Forest 0.74 | 0.83 0.09 +0.01
Logistic 0.78 | 0.82 | 0.002 % 0.006
Table 5

Dependency on the amount of training data. “Min’ and ‘Max’ represent respectively the minimum and maximum F-score and ‘m’ represents the

angular coefficient of a straight line interpolating the points of Fig. 6

150 -

Runtime
£ 400- = T _base
£ = T_stack
'_

T_STEM
50 -
O -
0 10 20 30 40 50
N

Fig. 7. Runtime for STEM-NB on DOREMUS 4-heterogeneities
task with increasing number of features N.

TSTEM ~ N x Tbaseclassifier(n, m) + Tsracking(Ns 8 k)
We have also argued that we observed that the time re-
quired to run the ensemble of base classifiers is longer
than the time required for the stacking layer. In this
section, we show an example of such a behavior mea-
suring the runtime of STEM-NB on the DOREMUS 4-
heterogeneities dataset with increasing number of fea-
tures N. In Fig. 7, we can see that the time required
to generate the features Tpuse = N * Thage classifier
quickly becomes much more significant than the time
required for stacking Tsacking- A similar behavior has
been observed for all the datasets under consideration,
suggesting that a parallelization of the feature gener-
ation process would greatly improve the runtime per-
formance of STEM as a whole. In general, we also ob-
serve a linear trend in both the components T,z (N)
and T gqcking(N), which implies a linear trend for the
total time T,,;, consistently with what we expect from
Sec. 4.3.

7. 3cixty Knowledge Base Generation

In this section, we describe the implementation of
STEM in the generation of the 3cixty Nice knowl-

edge base, introducing first the key components of the
3cixty data chain.

OVERVIEW 3cixty is a semantic web platform that en-
ables to build real-world and comprehensive knowl-
edge bases in the domain of culture and tourism for
cities. The entire approach has been tested first for the
occasion of the Expo Milano 2015 [55], where a spe-
cific knowledge base for the city of Milan was de-
veloped, and is now refined with the development of
knowledge bases for other cities, among those Nice.
These knowledge bases contain descriptions of events,
places (sights and businesses), transportation facilities
and social activities, collected from numerous static,
near- and real-time local and global data providers, in-
cluding Expo Milano 2015 official services in the case
of Milan, and numerous social media platforms. The
generation of each city-driven 3cixty knowledge base
follows a strict data integration pipeline, that ranges
from the definition of the data model, the selection of
the primary sources used to populate the knowledge
base, till the entity matching used for distilling the enti-
ties forming the final stream of cleaned data that is then
presented to the users via multi-platform user inter-
faces. A detailed description of the technology leading
to the creation of the knowledge base is summarized
in [59]. In the remainder of this section we introduce
the data model and the data sources used in 3cixty.
We then detail the entity matching process, which is
performed using STEM, describing the experimental
setup, gold standard, and results.

DATA MODEL The 3cixty ontology design principle
has focused on optimizing the coverage of the termi-
nology in the context of culture and tourism. For each
entity to model, such as Place-type and Event-type,
we looked for existing knowledge resources (keyword

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 17

search) in LOV,% Swoogle,?! Watson,?? and the Smart
City catalogue.?® We established a rigid search mecha-
nism where two domain experts analyzed the ontology
resources that resulted from the search. In detail, they
first agreed on a set of keywords to be utilized in the
search. The set contains: Event, Place, Transportation,
Tourism, Culture, City, Smart City. Then, each expert
analyzed the results of the search through the different
platforms noting in a spreadsheet the classes and re-
lated properties most valuable for the vertical domain
of the 3cixty knowledge bases. The two experts com-
pared manually the two spreadsheets and resolved any
conflict of representation by optimizing the selection
criteria are:

— the popularity of classes/properties based on us-
age data,

— clarity of descriptions,

— and favoring schema.org when suitable.

Once consensus was reached, classes and predi-
cates were taken and added to the 3cixty data model,
which therefore consists in a constellation of exist-
ing ontologies. We re-used some classes and proper-
ties from the following ontologies: dul,?* schema,?
dc,? 1ode,” geo,28 transit,? and topo.30 A
few additional classes and properties have been cre-
ated to describe travel distances: we defined origin,
distance, travel time, the nearest metro station and bike
station. Details are available in [56].

DATA SOURCES The 3cixty knowledge bases contain
information about places, events, artists, transportation
means, and user-generated content such as media and
reviews. The knowledge bases are built using three
types of data sources:

— local sources usually offered by city open data
portals,

— global sources such as social media platforms,

— editorial data generated by experts of the domain.

Opttp://lov.okfn.org/dataset/lov

2lnttp: //swoogle . umbc. edu
2http://watson.kmi.open.ac.uk/WatsonWUT
Bhttp://smartcity.linkeddata.es
Xnttp://www.loa-cnr.it/ontologies/DUL.owl
Shttps://schema.org
2http://purl.org/dc/elements/1.1/
2Thttp://linkedevents.org/ontology
2nttp://www.w3.org/2003/01/geo/wgs84_pos
Pnttp://vocab.org/transit/terms
Onttp://data.ign.fr/def/topo

The selection of the sources follows a strict protocol
that involves two teams of experts who analyze and
rank the data sources at disposal to decide which ones
were important to be selected for being included in the
knowledge base. The teams are both composed of two
researchers in the field of data integration and the Se-
mantic Web and two local data experts, knowledge-
able of technicalities concerning data publishing, in-
tegration and data exploitation. The experts are asked
to maximize a 3-objective function: data semantics, in-
stance coverage, and real-time update. The output of
such an investigation leads to a survey, which is cross-
validated by two domain experts who decide by con-
sensus and iterate in checking existing and new data
sources according to the aforementioned objectives,
updating the list continuously.

DATA RECONCILIATION The data reconciliation prob-
lem is addressed via both category reconciliation and
instance reconciliation. The rationale of having both
types of reconciliation is to improve the data con-
sumer perceived data quality by removing both cate-
gory and instance duplicates. In both cases, the recon-
ciliation processes have been applied to the two main
topical types of entities in the knowledge base: Events
and Places. Such a stage is at the core of the knowl-
edge base creation, since the consumption of the data
from the knowledge base is highly polarized by a clean
feed of data where no duplicates or near-duplicates are
shown.

Reconciling categories has the objective to reduce
sparsity in the use of different labels for the same
category groups. We addressed the process by using
two category thesauri (implemented in skos) as piv-
ots: the Foursquare taxonomy3! for Places, and the
taxonomy used in [58] for Events. The alignment,
led by two experts of the domain, has established
a set of links from the gathered categories, using
skos:closeMatch and skos:broadMatch. An
automatic process is then used to identify links accord-
ing to the exact match of the found categories with the
alignment defined by the experts.

Given two data sources, namely A and B, an in-
stance reconciliation process looks at identifying data
instances that are similar according to their semantics
and thus linking them with sameAs links. In 3cixty, we
have implemented the instance reconciliation task us-

3lpttps://developer. foursquare.com/
categorytree

18 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

ing STEM. To do so, we have first generated a gold
standard for training the STEM stacked machine learn-
ing (Sec. 7.1), and then validated its efficiency (Sec.
7.2).

Using the findings reported in [58] we have listed
the instance fields used for the entity matching pro-
cess, in detail: for Place-type instances the set P =
(label, geo, address), where label is the place name,
geo are the geographic coordinates according to a fixed
bounding box, and address in plain text. For Event-
type instances the set E = (label, geo, time), where
label is the place name, geo are the geographic coor-
dinates according to a fixed bounding box, and time
when the event starts and ends.

7.1. Gold Standard Creation

Given the generality of the STEM approach and the
data model of the different 3cixty knowledge bases,
we have generated a gold standard from the 3cixty
Nice KB, i.e. the knowledge base built for the Nice
area, to be used to benchmarking the performance of
STEM and to be utilized as training set for the other
city knowledge bases.

The gold standard has gone through a process of
identifying, with a random sampling, a small portion
of Place-type pairs®? to match, totaling 756 pairs. This
accounts to a tiny fraction of the entire set of possi-
ble pairs (order of 10° possible pairs); then, two hu-
man experts rated each as a match or as no-match. The
annotation process was divided in two steps: i) indi-
vidual annotation, i.e. each expert performed annota-
tions separately; 1i) adjudication phase, i.e. the two
experts compared the annotations and resolved even-
tual conflicts.

This has prompted the creation of a gold standard
that accounts 228 match and 528 no-match pairs.*

7.2. Experimental Results

Similarly to what has been done in Sec. 6.1, we
compared STEM with Duke. In order to put Duke in
the best conditions, we let it learning the best configu-
rations using the active learning built-in function, just
giving as input the instance fields to be utilized in the

32For the sake of brevity we report the entity matching process of
the Place-type entities

33We aim to share the Gold Standard once the paper is published
to foster the reuse and experimental reproducibility.

matching task and the gold standard created by the two
experts.

The built-in active learning function works as fol-
lows: it iterates multiple times changing the config-
urations of the comparators aiming to minimize the
matching error rate. Such a process prompts the cre-
ation of a configuration file summarizing the best Duke
settings for the dataset used.

Having observed that it performs better than STEM-
LIN (Sec. 6), we have then deployed STEM-NB using
Duke configured as above and we conducted a 4-fold
cross validation. Table 6 shows the results of the ex-
periments. We can observe how STEM with five clas-
sifiers holds better results than a single run of Duke
with a 8f of 20%. We can also observe how the boost
STEM introduces is slightly reduced with an increas-
ing number of Duke instances N, similarly to what
observed for DOREMUS data. As we mentioned ear-
lier in the paper, this is the typical overfitting problem,
where introducing additional complexity in the model
does not provide better learning. As a general sugges-
tion, N = 5 seems to be enough to obtain a consis-
tent increment of efficiency with respect to the base-
line without overfitting the data. The matching process
with N = 5 took approximately 3 hours on a laptop
with 4 cores and 12GB of RAM.

8. Conclusion

In this paper, we have proposed a framework for
stacking threshold-based entity matching algorithms.
We have argued and then shown empirically that the
final decision threshold, which converts the confidence
score of a threshold-based classifier into a decision, in-
troduces a trade-off between the precision and the re-
call of the algorithm. Using stacking, we have demon-
strated that this trade-off can be broken, as the combi-
nation of the predictions of an ensemble of classifiers
with different threshold values can raise both metrics
at the same time, resulting in a significant enhance-
ment of the matching process. This enhancement is
not bound to the type of classifier nor to the dataset
used, as we observe consistent results for both a linear
and a Naive Bayes classifier on three different datasets.
Generally, using five classifiers is enough to obtain a
consistent increase in performance and increasing the
number of classifiers N can easily lead to overfitting,
providing small improvements or even decreasing the
accuracy of the predictions.

STEM is independent from the configuration pro-

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

Base classifier | N p r f of
Duke nfa || 0.76 | 0.65 | 0.70 0
STEM-NB 5 090 | 092 | 0.90 | 20%
STEM-NB 10 0.76 | 0.81 | 0.78 8%
STEM-NB 20 0.79 | 0.81 | 0.79 9%
Table 6

Results of STEM-NB vs Duke on the 3cixty Nice dataset for a = 0.25 and different values of N.

cess of the threshold-based classifier. Indeed, we have
provided three experimental evaluations and in two
of them we have manually configured the system,
whereas in the third we have used an active learn-
ing approach. A further advantage of the STEM ap-
proach is the little dependency on the amount of train-
ing data, as we have shown that it can reach high levels
of performance even with a small fraction of annotated
data. STEM has allowed to greatly improve the data
reconciliation process of the generation of the 3cixty
knowledge base, proving to be accurate, reliable and
scalable, as the reconciliation process lasted roughly 3
hours. STEM is computationally more expensive than
a single threshold-based classifier, as it involves run-
ning several instances of the threshold-based classi-
fier and then training a supervised learner on top of
their matching decisions. Among these two compo-
nents of the total STEM runtime, we observe that for
the datasets that we have used in this work, the first
is the most expensive step. Thus, as a future work,
we plan to improve the computing time of the soft-
ware using a parallel and/or distributed implementa-
tion to allow the simultaneous execution of processes.
We also plan to extend the ensembling process to other
relevant parameters and to other threshold-based entity
matching systems and to experiment different super-
vised learners.

9. Acknowledgments

This work was partially supported by the innovation
activity 3cixty (14523) and PasTime (17164) of EIT
Digital Cities.

References

[1] J. Euzenat and P. Shvaiko, Ontology Matching, Springer, 2013

[2] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S.E.
Whang, J. Widom, Swoosh: a generic approach to entity reso-
lution, The VLDB Journal - The International Journal on Very
Large Data Bases, vol. 18, pp. 255-276, 2009.

[3] A. Thor and E. Rahm , MOMA - A Mapping-based Object
Matching System., CIDR, pp. 247-258, 2007

[4] R.Isele, C. Bizer, Learning linkage rules using genetic program-
ming, Proceedings of the 6th International Conference on On-
tology Matching-Volume 814, pp. 13-24, 2011

[5] A.C.N.Ngomo, K. Lyko, Eagle: Efficient active learning of link
specifications using genetic programming, Extended Semantic
Web Conference, pp. 149-163, 2012

[6] D.H. Wolpert, Stacked generalization, Neural Networks, vol. 5,
pp. 241-259, 1992

[7]1 D.D. Lewis, Naive (Bayes) at forty: The independence assump-
tion in information retrieval, Machine learning: ECML-98, 4-
15, 1998

[8] V. Metsis, I. Androutsopoulos, and G. Paliouras, Spam filtering
with naive bayes-which naive bayes?, CEAS, pp. 27-28, 2006

[9] J. Volz, C. Bizer, M. Gaedke and G. Kobilarov, Silk A link dis-
covery framework for the web of Data, 2nd Workshop about
Linked Data on the Web, Madrid, Spain, 2009

[10] Chih-Chung Chang and Chih-Jen Lin., Libsvm: a library for
support vector machines., ACM transactions on intelligent sys-
tems and technology (TIST), 2(3):27, 2011.

[11] Léon Bottou and Chih-Jen Lin., Support vector machine
solvers., Large scale kernel machines, 3(1):301-320, 2007.

[12] W.W. Cohen, H. Kautz, and D. McAllester, Hardening soft in-
Sformation sources, Proceedings of the sixth ACM SIGKDD in-
ternational conference on Knowledge discovery and data min-
ing, 255-259, 2000

[13] H.B. Newcombe, and J.M. Kennedy, Record linkage: making
maximum use of the discriminating power of identifying infor-
mation, Communications of the ACM, vol. 5, 563-566, 1962

[14] H. Kopcke and E. Rahm, Frameworks for entity matching: A
comparison, vol. 69, pp. 197-210, 2010

[15] Leitdo, Luis and Calado, Pavel and Weis, Melanie, Structure-
based inference of XML similarity for fuzzy duplicate detection,
Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management, pp. 293-302, 2007

[16] Mikhail Bilenko and Raymond J Mooney., Adaptive dupli-
cate detection using learnable string similarity measures., Pro-
ceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 39—-48. ACM,
2003.

[17] S. Tejada, C.A. Knoblock and S. Minton, Learning domain-
independent string transformation weights for high accuracy
object identification, Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data min-
ing, pp. 350-359, 2002

[18] S. Tejada, C.A. Knoblock, and S. Minton, Learning object
identification rules for information integration, Information
Systems, vol. 26, 8, 607-633, 2001

20 Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation

[19] M.G. Elfeky, V.S. Verykios and A.K. Elmagarmid, TAILOR: A
record linkage toolbox, Proceedings. 18th International Confer-
ence on Data Engineering, 2002, pp. 17-28, 2002

[20] Hanna Kopcke and Erhard Rahm., Training selection for tun-
ing entity matching.,QDB/MUD, pages 3-12, 2008.

[21] T. Soru and A.C.N. Ngomo, A comparison of supervised learn-
ing classifiers for link discovery, 10th International Conference
on Semantic Systems, pp. 41-44, 2014

[22] T. Hastie, R. Tibshirani, J. Friedman and J. Franklin, The ele-
ments of statistical learning: data mining, inference and predic-
tion, The Mathematical Intelligencer, vol. 27, 83-85, 2005

[23] H. Zhao, S. Ram, Entity identification for heterogeneous
database integration - a multiple classifier system approach and
empirical evaluation, Information Systems, vol. 30, 119-132,
2005

[24] Z. Chen, D.V. Kalashnikov and S. Mehrotra, Exploiting context
analysis for combining multiple entity resolution systems, Pro-
ceedings of the 2009 ACM SIGMOD International Conference
on Management of data, 207-218, 2009

[25] C. Bizer, T. Heath, and T. Berners-Lee, Linked data - the story
so far, Semantic Services, Interoperability and Web Applica-
tions: Emerging Concepts, 205-227, 2009

[26] M. Schmachtenberg, C. Bizer and H. Paulheim, Adoption of
the linked data best practices in different topical domains, Inter-
national Semantic Web Conference, 245-260, 2014

[27] M. Nentwig, M. Hartung, A.C.N. Ngomo, and E. Rahm, A sur-
vey of current Link Discovery frameworks, Semantic Web Jour-
nal, pp. 1-18, 2015

[28] J. Volz, C. Bizer, M. Gaedke and G. Kobilarov, Discovering
and maintaining links on the web of data, International Semantic
‘Web Conference, 650-665, 2009

[29] A.C.N. Ngomo and S. Auer, Limes - a time-efficient approach
for large-scale link discovery on the web of data, Integration,
vol. 15,2011

[30] Sherif, Mohamed Ahmed and Ngomo, Axel-Cyrille Ngonga
and Lehmann, Jens, WOMBAT-A Generalization Approach for
Automatic Link Discovery, European Semantic Web Confer-
ence, pp. 103-119, 2017

[31] L. Zhu, M. Ghasemi-Gol, P. Szekely, A. Galstyan and
C.A. Knoblock, Unsupervised Entity Resolution on Multi-type
Graphs, International Semantic Web Conference, 649-667, 2016

[32] H. Pasula, B. Marthi, B. Milch, S. Russell, I. Shpitser, Identity
uncertainty and citation matching, Advances in neural informa-
tion processing systems, pp. 1401-1408, 2002

[33] P. Cudré-Mauroux, P. Haghani, M. Jost, and K. Aberer, H. De
Meer,idMesh: graph-based disambiguation of linked data, Pro-
ceedings of the 18th international conference on World wide
web, 591-600, 2009

[34] X. Dong, A. Halevy, and J. Madhavan, Reference reconcili-
ation in complex information spaces, Proceedings of the 2005
ACM SIGMOD international conference on Management of
data, pp. 85-96, 2005

[35] Mustafa Al-Bakri, Manuel Atencia, Jérdme David, Steffen La-
lande, and Marie-Christine Rousset., Uncertainty-sensitive rea-
soning for inferring sameas facts in linked data., In 22nd euro-
pean conference on artificial intelligence (ECAI), pp 698-706.
10S press, 2016.

[36] Fatiha Sais, Nathalie Pernelle, and Marie-Christine Rousset.,
L2r: A logical method for reference reconciliation., In Proc.
AAALI pp 329-334, 2007.

[37] LP. Fellegi, and A.B. Sunter, A theory for record linkage, Jour-
nal of the American Statistical Association, vol. 64, 1183-1210,
1969

[38] D.M. Powers, Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and correlation,
Journal of Machine Learning Technologies, 2011

[39] C.D.Manning and H. Schiitze, Foundations of statistical natu-
ral language processing, vol.999, 1999

[40] V. Raghavan, P. Bollmann and G.S. Jung, A critical investiga-
tion of recall and precision as measures of retrieval system per-
formance, ACM Transactions on Information Systems (TOIS),
vol. 7, 205-229, 1989

[41] W. Cohen, P. Ravikumar and S. Fienberg, A comparison of
string metrics for matching names and records, KDD Workshop
on data cleaning and object consolidation, vol. 3, 73-78, 2003

[42] R. Isele, C. Bizer, Active learning of expressive linkage rules
using genetic programming, Web Semantics: Science, Services
and Agents on the World Wide Web, vol.23, pp. 2-15, 2013

[43] 1. Rish, An empirical study of the naive Bayes classifier, JICAI
Workshop on Empirical Methods in Artificial Intelligence, pp.
41-46, 2001

[44] E. Croot, Bayesian spam filter, http://people.math.
gatech.edu/~ecroot/bayesian_filtering.pdf -
Last visited: 10 January 2017

[45] K.P. Murphy, Machine learning: a probabilistic perspective,
MIT press, 2012

[46] 1. Androutsopoulos, J. Koutsias, K.V. Chandrinos, and C.D.
Spyropoulos, An experimental comparison of naive Bayesian
and keyword-based anti-spam filtering with personal e-mail
messages, 23rd International Conference on Research and de-
velopment in Information Retrieval (SIGIR), 160-167, 2000

[47] A. McCallum, K. Nigam and others, A comparison of event
models for naive bayes text classification, AAAI Workshop on
Learning for Text Categorization, vol. 752, pp. 41-48, 1998

[48] S. Sarawagi, A. Bhamidipaty, Interactive deduplication using
active learning, 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), vol.3, pp. 269-
278, 2003

[49] G. Forman, M. Scholz, Apples-to-apples in cross-validation
studies: pitfalls in classifier performance measurement, ACM
SIGKDD Explorations Newsletter, vol.12, pp. 49-57, 2010

[50] G.V. Bard, Spelling-error Tolerant, Order-independent Pass-
phrases via the Damerau-levenshtein String-edit Distance Met-
ric, Sth Australasian Symposium on ACSW Frontiers, 2007

[51] E. Palumbo, G. Rizzo and R. Troncy, An Ensemble Approach
to Financial Entity Matching for the FEIII 2016 Challenge,
DSMM'’16: Proceedings of the Second International Workshop
on Data Science for Macro-Modeling, 2016

[52] R.Isele, A. Jentzsch, and C. Bizer, Efficient Multidimensional
Blocking for Link Discovery without losing Recall, WebDB,
2011

[53] M. Achichi, M. Cheatham, Z. Dragisic, J. Euzenat, D. Faria,
A. Ferrara, G. Flouris, I. Fundulaki, I. Harrow, V. Ivanova and
others, Results of the Ontology Alignment Evaluation Initiative
2016, 11th ISWC workshop on ontology matching (OM), pp.
73-129, 2016

[54] C.W. Hsu, C.C. Chang, C.J. Lin and others, A practical guide
to support vector classification, http://www.csie.ntu.
edu.tw/~cjlin/papers/guide/guide.pdf - Last
visited: 10 January 2017, 2003

Palumbo et al. / STEM: Stacked Threshold-based Entity Matching for Knowledge Base Generation 21

[55] G. Rizzo, R. Troncy, O. Corcho, A. Jameson, J. Plu, J.C.
Ballesteros Hermida, A. Assaf, C. Barbu, A. Spirescu, K. Kuhn,
I. Celino, R. Agarwal, C.K. Nguyen, A. Pathak, C. Scanu,
M. Valla, T. Haaker, E.S. Verga, M. Rossi and J.L. Redondo
Garcia, 3cixty@Expo Milano 2015: Enabling Visitors to Ex-
plore a Smart City, 14" International Semantic Web Conference
(ISWC), Semantic Web Challenge, 2015

[56] G. Rizzo, O. Corcho, R. Troncy, J. Plu, J.C. Ballesteros Her-
mida, A. Assaf, The 3cixty Knowledge Base for Expo Milano
2015: Enabling Visitors to Explore the City, 8'h International
Conference on Knowledge Capture (K-CAP), 2015

[57] N. Mihindukulasooriya, G. Rizzo, R. Troncy, O. Corcho and
R. Garcia-Castro, A Two-Fold Quality Assurance Approach for
Dynamic Knowledge Bases: The 3cixty Use Case, International

Workshop on Completing and Debugging the Semantic Web,
2016

[58] H. Khrouf, V. Milicic and R. Troncy, Mining events connec-
tions on the social web: Real-time instance matching and data
analysis in EventMedia, Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 24, pp. 3-10, 2014

[59] R. Troncy, G. Rizzo, A. Jameson, O. Corcho, J. Plu, E.
Palumbo, J. C. Ballesteros Hermida , A. Spirescu, K. Kuhn, C.
Barbu, M. Rossi, I. Cellino, R. Agarwal, C. Scanu, M. Valla, T.
Haacker, 3cixty: Building comprehensive knowledge bases for
city exploration, Web Semantics: Science, Services and Agents
on the World Wide Web, 2017

