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ABSTRACT
Fact checking is the task of determining if a given claim holds.
Several algorithms have been developed to check facts with refer-
ence information in the form of knowledge bases. While individual
algorithms have been experimentally evaluated, we provide a first
publicly available benchmark evaluating fact checking implemen-
tations across a range of assumptions about the properties of the
facts and the reference data. We used our benchmark to compare
algorithms designed on different principles and assumptions, as
well as algorithms that can solve similar tasks developed in closely
related communities. Our evaluation provided us with a number of
new insights concerning the factors that impact the performance
of the different methods.
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1 INTRODUCTION
Fact checking refers to the task of verification of textual content.
Given the increase of incorrect claims over the Web, fact checking
is no longer an activity for journalists only. To tackle the spread of
misleading information, Web companies have introduced forms of
fact checking in their services. In these approaches, information on
the trust of the news is gathered from websites (e.g., politifact.com,
factcheck.org, and snopes.com), where journalists manually assess
the quality of the information.

However, the proliferation of websites and bots spreading false
information has motivated an effort for computational fact check-
ing [4], which aims at automatic verification to scale over thousands
of daily facts. Several algorithms focus on different types of facts
and different domains. We are interested here in techniques that
focus on validating “worth checking” facts against trustful Knowl-
edge Bases (KBs) [3, 9]. In the following, we assume the facts and
the entities involved have been identified [8], and focus our atten-
tion on the step estimating the veracity of a given fact (expressed
as structured data) w.r.t. reference data considered trusted.

The core problem for fact checking with KBs is that we cannot
assume the reference information to be complete (Open World
Assumption), i.e., we cannot say if a fact not in the KB is false
or just missing [5]. Given a KB K and a fact f , the fact checking
algorithms should therefore state if f is a valid missing fact in K .

There are many factors that affect the outcome of the fact check-
ing step. The quality of the reference KB plays a pivotal role, and it
must be selected according to the specific domain. Once the KB has
been fixed, there is the challenge of picking the right algorithm to
validate the facts. There are several proposals available, that differ
significantly in their principles and assumptions. Also, given the
novelty of the field and the complexity of the problem, there are
still no established and unified sets of metrics and datasets.

In this work, we lay the foundation for a benchmark to com-
pare and contrast fact checking algorithms that rely on external
information in the form of RDF KBs. Our ultimate goal is to create
a benchmark with a large variety of annotated datasets, tools to
create synthetic datasets with different properties, and metrics to
evaluate different algorithms on a level playing field.

Our contributions in this work are the following.
1. We classify most of the existing fact checking algorithms by their
methodology and discuss their main properties (Section 2).
2. We craft the datasets and the metrics for a fair evaluation of the
methods in an early version of our benchmark (Section 3).
3. We demonstrate the use of the benchmark1 with an experimen-
tal analysis of representative algorithms from our classification.
(Section 4).

2 ALGORITHM CLASSIFICATION
We first give some background and fix the terminology. We then
classify different fact checking algorithms according the methods
they use to solve the problem.

2.1 Background
A fact is defined as a triple that has the form of ("subject" s, "predi-
cate" p, "object" o). Natural language processing (NLP) techniques
are used to convert a claim in natural language into a structured
format. Facts can be classified into categories, such as numerical,
quote, and object property. We focus on object properties, which
are facts stating a relationship between the subject and the object
in a sentence, e.g., Sacramento is the capital of California.

A Knowledge Base (KB) is a direct graph where nodes correspond
to entities (subject or object in a fact) and edges correspond to
binary predicates among entities. We focus on algorithms that take
as input a KB and a fact that is not part of it. Such algorithms assess
if the given fact belongs to the missing part of the KB (therefore is
“true") or no (is “false").

Methods assume that training examples (labelled facts) are avail-
able to build the models. We will detail how we craft our datasets
in terms of training data, but, in general, the common assumption
is that the KB is trustable, and examples are extracted from it.

2.2 Path Based Algorithms
Given a fact (s , p, o), this group of algorithms makes a decision for
it by exploiting the paths in the KB of existing p triples. These KB
triples act as positive examples for the learning of the alternative
paths (different from p) between their subjects and objects. Prop-
erties of the paths are then modeled as features in a classifier that
decides if predicate p holds for the given s and o.

2.2.1 Knowledge Linker (KL). This algorithm builds an internal
model based on a weighted adjacency matrix with edge weights

1Code and data available at https://github.com/huynhvp/Benchmark_Fact_Checking
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computed as the in-degree of each node in the KB, then transformed
to similarity scores [3]. As the model ignores the labels (semantics)
of the predicates, it evaluates the validity of an input fact based
on measuring the proximity between its subject and object. Two
distance closures are introduced. With the Metric closure, every
path connecting a given subject and object is mapped to a score
computed on the generality of the nodes in the path, where the
generality of a node is its frequency in the KB. The more often
the node occurs in KB, the less information it conveys. With the
Ultra-metric closure, only the node with highest generality is used
to compute the score for each possible path. In both cases, the
maximum score is equivalent to the shortest path between subject
and object.

2.2.2 Discriminate Predicate Path Mining (KG-Miner). This al-
gorithm identifies and exploits frequent anchored predicate paths
between pair of entities in the KB [9]. Given an input fact (s, p,
o), it collects as training data the predicate paths for node pairs
that satisfy p in the KB and have subject with the same type of s
(denoted φ(s)) and object with type of o (denoted φ(o)). From each
subject u ∈ φ(s) and corresponding object v ∈ φ(o), predicate paths
that alternatively represent predicate p are extracted from the KB
with a depth-first search (DFS) traversing the graph from u to v up
to a length of m. The information gain of these paths and corre-
sponding labels is computed based on their number of occurrences.
It then selects the most discriminative paths and plugs them into
training for a logistic regression model that optimizes the Area
Under Receiver Operating Characteristic (AUROC). This model is
then used to compute the likelihood of an input fact.

2.2.3 Path Ranking Algorithm (PRA). PRA discovers the rela-
tionships among entities in a stochastic way by performing random
walk inference over the KB [7]. For the feature extraction, from a
given training set of triples, it uses two-sided, unconstrained ran-
dom walk starting at the source and corresponding target nodes
to retrieve paths connected between them. Top k paths for each
training instance are kept based on their number of occurrences
and are collected into a feature matrix. A value in the matrix corre-
sponding to a training instance (s, p, o) is the probability of arriving
at the target node o by a random walk starting at source node s and
following a specific path among its top k paths. This probability is
computed using the approximate method of rejection sampling to
reduce the computational complexity. The feature matrix is then
used with a classifier to validate the input fact.

2.3 Sub-Graph Based Algorithms
Given a fact, this method extends the previous approach by using
sub-graphs of the KB that model the subjects and the objects of
the examples. These sub-graphs can be built in different ways, and
their features are used in a classifier to evaluate input facts.

2.3.1 Sub-graph Feature Extraction (SFE). SFE [6] extracts fea-
tures from sub-graphs built from the nodes in the KB. Such features
are then used in a classifier to test input facts. While KG-Miner
uses a full-graph exhaustive search to extract features, which is
costly with complexity proportional to the out-degree to the power
of path length per node, PRA uses random walk, which reduces
the computational time, but leads to an approximation. To avoid

these issues, SFE provides a more efficient way to extract features
by using a sub-graph breadth-first search (BFS).

Given a parameterm, the sub-graph of depth m for each node
n is the result of m BFS steps starting at it. Features are then ex-
tracted with two variants. In the first one (Predicate Path), it uses a
sequence of predicates that connect a source node to target node
by intersecting the sub-graphs of source and target on intermediate
sharing nodes (similar to KG-Miner and PRA). The alternative (one-
sided) uses a sequence of predicates that starts at source node or
target node, but does not necessary reach at corresponding target
or source node. SFE uses binary features: it disregards the frequency
(like KG-Miner) or the probability (like PRA) of feature paths.

2.4 Embedding Based Algorithms
Embeddings encode entities and relations in the KB into a low-
dimensional vector space while preserving certain information of
the graph and minimizing a margin-based ranking loss. The idea is
that a relation in the graph can be interpreted as a translation from
subject entity to object entity in the embedding space.

To check a fact (s, p, o), this method checks the relevance of
the embedding representations s of s and o of o with respect to
embedding representation p of relation p though a specific score
function f(s, p, o). The score function f depends on the projection
used to transform entities and relations.

2.4.1 Knowledge Graph Embedding (Para_GraphE). TransE [2]
represents a relation p from triple (s, p, o) as a translation from
subject s to object o on the same low-dimensional embedding space,
that is s + p ≈ o if (s, p, o) is true. Its score function is defined as:
f (s,p,o) = ∥s + p − o∥, where ∥.∥ can be either L1 or L2 norm.

TransE has drawbacks when dealing with non functional rela-
tions. As it uses the same embedding space for both entities and
relations, a many-to-one relation, for example, requires different
subject entities in this relation to have identical embedding repre-
sentation, which is not a good assumption. To address this issue,
TransH enables an entity to have different embedding represen-
tations w.r.t. the different relations it participates[10]. For each
relation p, it introduces a relation-specific hyperplanewp (normal
vector) and defines embedding vector p on this hyperplane.

Embedding learning in a large-scale knowledge graph is an ex-
pensive operation. We use a framework that offers multi-thread
implementation of embedding algorithms [11].

There are other methods that can be adapted to verify facts
with KBs, such as logical rules mined from the KB itself [5]. As
discovered rules needs to be manually verified, we leave the study
of algorithms that require manual setup to future work.

3 THE BENCHMARK
Knowledge Graph. We instantiate our benchmark with DBPedia
[1], an RDF knowledge base with triples extracted from Wikipedia.
From these triples, we construct a graph by assigning each unique
entity to a graph node, and converting the triple into a directed edge
with label “predicate" from the entity “subject" to entity “object".
We obtain a directed graph with ≈4M nodes, ≈27M edges, and 671
relations. Other KBs can be plugged to the benchmark as long as
they are expressed according to the graph format.
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Dataset Example Facts True / Total

Fu
nc
tio
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l

Capital 1 Arizona, capital, Phoenix 50 / 300
Arizona, capital, Oregon

Capital 2 Massachusetts, capital, Boston 50 / 259
Massachusetts, capital, Worcester

Capital 3 Massachusetts, capital, Boston 50 / 259
Massachusetts, capital, Worcester

France, capital, Paris∗
Japan, capital, Tokyo∗
Japan, capital, Osaka∗

N
on

fu
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tio

na
l

Bestseller Never Go Back, author, Lee Child 93 / 558
Personal (novel), author, Lee Child

Greater Journey, author, Michael Lewis
Award J. Kittinger, award, War Prisoner Medal 100 / 600

J. Kittinger, award, Bronze Star Medal
H. F. Davison, award, Military Cross
J. L. Morgan, award, Military Cross
Lothar Linke, award, 2009 RTHK

∗ The instances used only for training.
Table 1: Datasets in the benchmark (false claims in italic)

Test cases. We collect and extend test cases used for fact checking
in the literature. Each dataset includes both true and false facts for
a specific relation, as shown in Table 1. We distinguish functional
and nonfunctional relations, and craft datasets that have different
properties:

Capital 1. A one-to-one relation, which contains facts capi-
talOf(city,state) for 50 US states. From these 50 correct capital city-
state triples, we create 200 incorrect triples by random matching
each capital to 4 other states for a total of 200 statements (50 true
and 250 false).

Capital 2. A one-to-one relation, which contains again true
facts for relation capitalOf for 50 US states but with challenging
false facts. Unlike Capital 1, in which false instances are created
by random matching capital cities to states, in Capital 2 contains
as false facts triples extracted from relation largestCities, which
is semantically close to capitalOf. For each state in the 50 correct
capital-state triples, we include its largest cities in the test set for a
total of 209 false facts.

Capital 3. A one-to-one relation, which focuses on checking
relation capitalOf of 50 US states but with heterogeneous positive
examples in training. In capital datasets 1 and 2, training entities
are semantically close to entities in testing phase. That is, to check
whether a US city is capital of a US state, the methods rely on the
information from other US capitals and cities. In this dataset, we
train the algorithms with capital of countries in the world. Now,
the examples model a more general concept of capital, as it is no
longer simply a US capital city of a US state. We employ the same
259 true/false instances as Capital 2 for testing stage, but training
stage includes worldwide facts, such as Paris-France as true labels,
and Osaka-Japan as false labels.

Bestseller. A one-to-many relation, where we focus on the per-
sons in the author relation with at least one book. We collected
63 authors who wrote 93 books that appeared on New York Time
bestseller list between 2010 and 2015 (an author can have more
than one best-seller book). We create 465 incorrect pairs by random
matching each book to 4 other authors.

Award. A many-to-many relation, for which we check state-
ments between persons who won prizes as an award. We consider
50 persons who are awarded 69 prizes from different fields (mili-
tary, sport, art). We create 500 negative-labeled pairs by random
matching each person to 5 other prizes.

Evaluationmetric.Weuse the Area Under the Receiver Operating
Characteristic curve (AUROC) as ametric to evaluate the algorithms.
Our datasets have a low proportion of true statements and AUROC
is more informative than classification accuracy when dealing with
high class imbalance.

4 ALGORITHM ANALYSIS
The goal of this section is to show that the right benchmark can
lead to useful insights about the advantages and limits of the differ-
ent methods. We therefore executed different algorithms with our
datasets to better understand their behavior and the current state
of the art.
Experiment setting.We test KL with metric and ultra-metric clo-
sure [3]. KG Miner and SFE are tested with the maximum predicate
path lengthm equals to 3 (default value [9]), 4, and 5. PRA is set
with number of random walk per source node w/s = 100 and 200,
number of randomwalk per feature path w/p = 50 (default value [7])
and 100. For TransE, TransH, we set 100 as embedding dimension
and implement embedding learning with a margin of one and a
learning rate of 0.01 for 1,000 epochs, as recommended [2].

All experiments are performed on a on machine with 8 1.8Ghz
CPUs and 16GB RAM using 10-fold cross validation, except for
Capital 3, in which the testing set is different from the training
one. Source code and datasets of the benchmark can be found
at https://github.com/huynhvp/Benchmark_Fact_Checking.

Results and observations. Qualitative results are reported in Ta-
ble 2. All methods perform well in the simple, one-to-one relation
Capital 1. Due to the clear false facts and the semantically similar
training examples, there are few paths/sub-graphs between 2 en-
tities in false facts and entities in true facts are highly connected.
However, differences in the methods become clear with the other
datasets involving nonfunctional relations (Bestseller, Award) or
complex training data (Capital-2,3).

KL is more robust to nonfunctional predicates than other path-
based methods. The reason is that it does not rely on the predicate
semantics as expressed by the labels. However, KL has issues in
the classification of Capital 2, where false instances are created
from other close but different relations. For example, Cambridge is
not capital of Massachusetts, but it is one of its largestCities. Due
to the lack of semantics, KL treats both Cambridge and Boston as
capital of Massachusetts because it finds good proximity between
the two cities and the state in the graph. This leads to worse result,
compared to KG-Miner, PRA and SFE.

KG-Miner, PRA, SFE outperform KL and GraphE but show a sig-
nificant drop in quality for Capital 2, where the true capitalOf
statements are mixed with false statements that relate to largestCi-
tites predicate. The two predicates have similar paths that lead to
misclassification in some cases. Moreover, 17/50 US capital-cities
are also the largest city in their states, which results in degraded
performance when the algorithms treat capital as largest city.

https://github.com/huynhvp/Benchmark_Fact_Checking
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Algorithm Feature Settings Capital 1 Capital 2 Capital 3∗ Bestseller Award
KL Metric 0.98 0.75 0.75 0.82 0.87

Ultra-metric 0.98 0.75 0.75 0.67 0.47
KG-Miner Predicate path maxdepth (m) = 3 1.0 0.92 0.88 0.78 0.47

m = 4 Timeout Timeout Timeout Timeout Timeout
PRA Random walk path walk/source (w/s) = 100, walk/path (w/p) = 50 0.98 0.87 0.91 0.83 0.79

w/s = 200, w/p = 100 0.99 0.91 0.92 0.84 0.79
SFE PRA-style m = 3 1.0 0.93 0.87 0.80 0.46

m = 5 1.0 0.97 0.92 0.89 0.84
Para_graphE TransE embedding = 100, r = 0.01 0.84 0.66 0.66 0.65 0.73

TransH embedding = 100, r = 0.01 0.82 0.58 0.58 0.64 0.74
∗ Cross validation not applied for Capital 3 since we use different testing and training sets

Table 2: Accuracy Performance (AUROC) using 10-fold cross validation

Increasing the length of predicate paths leads to more discrimina-
tive/informative feature paths, thereby improving the performance,
as we see with SFE from length=3 (AUROC = 0.93) to length=5 (AU-
ROC = 0.97). However, this comes with a trade-off in computational
complexity, as we discuss later.

KGMiner, PRA, SFE are also challenged by themore intricate training
set in Capital 3, with the best methods now achieving AUROC =
0.92. This show the context-dependency of discriminative path-based
models, where a specific relation may have different definition in
different contexts. For example, US state capitals and worldwide
capitals are different in many ways (such as scale, the institutions
they host) and this is reflected by their features.

Non functional predicateAward is difficult to model for all methods
due to two reasons. First, awards come from very different fields,
so it is hard to find a recurrent pattern for most of the people
who got at least one. Second, it is hard to define award with short
predicate paths, as shown by the poor results in length 3 KG-Miner
and SFE. Extracting longer paths bring a significant improvement
with length 5 SFE outperforming length 3, as the algorithm can
now find informative paths that nicely support checking Award
facts. Similar comments apply for Bestseller, where the impact of
the nonfunctional triples is smaller because of the large number of
authors with only one book.

TransE and TransH do not achieve the same performance of the
other methods. Also, no clear distinctions are visible when compar-
ing their results, despite TransH is expected to better handle non
functional relations. This may due to the knowledge graph we used
in this work. DBPedia graph is larger and denser than FB15K (≈75K
nodes, ≈315K edges), the largest graph used in previous tests [10].

Algorithm Setting Time (seconds)
KL Metric 10.5

KG-Miner m = 3 0.12
m = 4 > 600

PRA w/s = 100, w/p = 50 0.48
w/s = 200, w/p = 100 0.60

SFE m = 3 0.001
m = 5 0.01

Para_graphE TransE/TransH 4 hours (to learn embed.)
Table 3: Average feature extraction time (sec) for fact.

We report in Table 3 the average execution times for each algo-
rithm to calculate the inference of a fact. Path-based algorithms are
faster than computational models such as KL or stochastic models
like TransE, TransH, and PRA. As expected, sub-graph search in
SFE is more efficient than full-graph search in KG-Miner when
increasing the predicate path length.

5 CONCLUSIONS
This work is the first step towards a general benchmark for fact
checking algorithms. We plan to extend it with more datasets, in-
cluding more predicates and more KBs, and more algorithms. An
important missing component is a generator of synthetic scenarios
that makes use of the lessons learned with our initial datasets. The
generator will create scenarios of arbitrary size and complexity by
mixing the properties we highlighted, such as challenging false
facts and heterogeneous true facts. Another important direction is
to extend the test bed with real facts from news, from example from
existing fact check challenges (e.g., https://herox.com/factcheck).
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