
Elastic Provisioning of Cloud Caches:
a Cost-aware TTL Approach

Damiano Carra
University of Verona

Giovanni Neglia
Université Côte d’Azur, Inria

Pietro Michiardi
Eurecom

Abstract

We consider elastic resource provisioning in the cloud,
focusing on in-memory key-value stores used as caches.
Our goal is to dynamically scale resources to the traffic
pattern minimizing the overall cost, which includes not
only the storage cost, but also the cost due to misses.
In fact, a small variation on the cache miss ratio may
have a significant impact on user perceived performance
in modern web services, which in turn has an impact on
the overall revenues for the content provider that uses
those services.

We propose and study a dynamic algorithm for TTL
caches, which is able to obtain close-to-minimal costs.
Since high-throughput caches require low complexity
operations, we discuss a practical implementation of
such a scheme requiring constant overhead per request
independently from the cache size. We evaluate our so-
lution with real-world traces collected from Akamai, and
show that we are able to obtain a 17% decrease in the
overall cost compared to a baseline static configuration.

1 Introduction

In-memory key-value stores used as caches are a funda-
mental building block for a variety of services, includ-
ing web services and Content Delivery Networks (CDN).
With the advent of cloud computing, these services, in-
cluding the caches, have been offered as managed plat-
forms with a pay-as-you-go model. Amazon’s Elasti-
Cache [1] and Microsoft’s Azure Redis Cache [6] are ex-
amples of caches that employ popular open source soft-
ware such as Memcached [5] or Redis [7].

Elasticity, i.e., the ability to adapt to workload
changes, is a key characteristic of cloud computing:
auto-scaling tools, configured by the users, determine the
amount of cloud resources to deploy. The techniques
used to drive the scaling process have been the subject
of many studies in the past – see [30] and the references

therein. These studies mainly focus on traditional ser-
vices, such as computing, where the relation between
the performance and the amount of deployed resources is
usually simple. For instance, a highly loaded web server
can be duplicated, so that each instance receives half of
the traffic, with an almost linear impact on the load.

When considering the caches, the relation between a
key performance index, the hit ratio (or, equivalently, the
miss ratio), and the resources deployed is not linear, e.g.,
doubling the cache size does not correspond to doubling
the hit ratio (or halving the miss ratio). The analysis of
dynamic adaptation of caches has received little atten-
tion: the few studies have focused on minimizing storage
costs for a given target hit ratio, disregarding the possi-
bility to leverage the hit ratio elasticity itself and ignoring
misses costs.

Several studies have highlighted the cost of delay for
web services [4], i.e., a direct connection between the
response time (or web page load time) and economic
losses, for example because the customer does not final-
ize a purchase. Notice that, even a small increase in the
miss ratio (e.g., 1%), often translates into a high variation
in the average latency (e.g., 25%) [18]. Misses can also
translate to infrastructure costs because of the additional
load on back-end databases or content servers. Beyond
these specific examples, in this paper we assume that it is
possible to quantify the cost due to misses. Then, when
analyzing dynamic cache resource allocation, these costs
should be considered.

In this paper we study the dynamic assignment of re-
sources for in-memory data stores used as caches. To
this aim, we take into account the cost of the storage and
the cost of the misses, and we adapt the amount of re-
sources to the traffic pattern minimizing the total cost.
We consider an approach based on TTL caches [21], and
we study a model in which the Time-To-Live (TTL) is
adapted through stochastic approximation iterations and
dynamically converges to the best setting. We operate
the system using a virtual TTL cache, whose virtual size

informs the elastic deployment of cache server instances
to ingest incoming requests.

High-throughput caches rely on low complexity op-
erations: for instance, key lookup and update in LRU
caches have O(1) complexity per request. This bound
is considered a hard requirement for CDNs running on
commodity hardware [13]. The auto-scaling tool, there-
fore, should not have higher complexity, otherwise it
may represent a performance bottleneck. For this rea-
son, based on the results obtained from the model, we
design a practical policy to automatically scale horizon-
tally caches, which has O(1) complexity per request.

We evaluate such TTL-based solution with a testbed,
using real-world traces collected from production cache
servers for over 30 days in Akamai, one of the largest
Content Delivery Networks. We show that our approach
can achieve the same savings obtained by previously pro-
posed solutions based on Miss Ratio Curves (MRCs)
[35], which are less scalable because they have a per-
request computational overhead that grows logarithmi-
cally with the cache size.

Contributions: We make the following contributions.

• TTL-based approach: We propose and study a dy-
namic algorithm for TTL caches, which adapts the
TTL value to both misses and storage costs mini-
mizing the total operational expenditure (§ 4).

• Design and implementation of a horizontally scal-
able TTL-based solution: We design and implement
a system based on the TTL approach, which dynam-
ically adds and removes cache instances in order to
maintain the total cost at minimum. We pay par-
ticular attention to system scalability, and provide a
O(1) solution, as the operations employed in high-
throughput caches (§ 5).

• Evaluation: We evaluate the TTL-based solution in
our testbed with real-world traces from Akamai, and
show a decrease in the total cost of 17% compared
to the fixed size approach (§ 6).

Roadmap: In Sect. 2 we provide some background, and
we define the problem, while in Sect. 3 we discuss the
related works. We present the general framework of a
TTL-based solution in Sect. 4, and discuss its practical
implementation in Sect. 5. We evaluate our approach in
Sect. 6 and conclude the paper in Sect. 7

2 Background and problem definition

2.1 In-memory data stores
In-memory key-value stores represent a fundamental
piece of web architectures. They are used to cache pop-

ular contents, so that the web application can access
quickly to the frequently requested data, while the back-
end database contains the original copy of all the con-
tents. For instance, Facebook heavily relies on caches
based on in-memory data stores, and organize them hier-
archically in order to store and access to a complex set of
contents [10].

The most used in-memory stores are Memcached [5]
and Redis [7]. While Redis contains a richer set of APIs,
when used as a cache it shares with Memcached some
basic commands, such as setting a key-value entry, or re-
trieving the value given a key. If the cache is full and
a new content needs to be inserted, both systems em-
ploy slight variations of the Least Recently Used policy
(LRU). In particular, Memcached organizes the content
into classes of objects with similar sizes, and performs
LRU within each class. Redis picks randomly 5 objects
and evicts the one least recently accessed; if the available
space is not sufficient, it repeats the process.

The amount of RAM assigned to Memcached or Redis
instances is set when the instance is created, and it can-
not be changed at runtime. In order to achieve vertical
scalability – i.e., changing the amount of memory at run-
time – the only option is to create a new instance with the
desired amount of memory and transfer the content from
the old instance to the new one. Since this approach takes
time and resources, vertical scalability is usually not con-
sidered practical.

On the other hand, horizontal scalability is easy to
achieve. Instances can be added to (or removed from)
a cluster of nodes, with a load balancer tool (such as
mcrouter [3]) that manages all the aspects related to the
distributed caches: data placement and request routing,
data replication (if configured) and instance failure man-
agement. Data placement and request routing may use
consistent hashing to map keys and nodes to points on
the hash space, and key responsibility is assigned to the
closest node in the hash space.

In this paper, we consider the basic scenario where the
content is not replicated across instances and one load
balancer is sufficient for managing the cluster. The re-
sults can be easily extended to any replication factor that
the user may decide to adopt.

2.2 Elastic on-demand services

Cloud computing enables services to be instantiated on
demand, according to the volume of traffic. In the case
of web architectures, for instance, it is possible to modify
the number of web servers to accommodate the increas-
ing traffic. Service providers have recently included,
among the different services, in-memory data stores used
as caches. Prominent examples are Amazon’s Elasti-
Cache [1] and Microsoft’s Azure Redis Cache [6].

2

These managed solutions take care of the details of the
caches, such as software update and maintenance, and
provide simple APIs to create and shut down instances,
and manage the corresponding cluster of such instances.

The user can choose among a set of possible configu-
rations for each instance. For example, Amazon’s Elas-
tiCache [2] allows the customer to choose among in-
stances with different RAM size and number of cores
(vCPUs). Different types of instance are also available,
like regular, spot and burstable ones. The latter two types
refer to instances whose capacity may be changed (re-
claimed) by Amazon. In this work, we mainly focus on
regular instances.

2.3 Problem definition
In this work, we focus on the caches, without consider-
ing the other elements of the specific service which ex-
ploits the caches, such as the web server, the back-end
databases or the origin server if the cache is part of a
CDN. Our aim is to adapt over time the total cache size
to the content request pattern in order to minimize the to-
tal cost, that is the sum of the storage cost and the cost
due to the misses.

The storage cost is immediate to evaluate, because it is
determined by the pricing scheme of the cloud provider
(we provide later specific examples for Amazon Elasti-
Cache service). The provider offers different possible
configurations with different costs. As a design choice,
we can consider either a set of homogenous instances,
or combine heterogeneous instances. The latter option
introduces a set of management issues, such as the se-
lection of instances to switch on and off when scaling,
which are not simple to deal with. Therefore, we focus
on homogenous instances.

Since the cost model of the service providers usually
has a specific granularity (typically, one hour), we con-
sider fixed intervals that we call epochs, and the choice
of changing the number of instances is done at the end
of each epoch. The alternative—an asynchronous sce-
nario where instances can be added or removed at any
moment—poses more challenges. For instance, it is
not simple to decide when addition and removal should
be done. Moreover, turning off an instance before the
billing period ends is uselessly hurtful since the user will
pay for the full period anyway, therefore desynchronised
choices may lead to waste of resources. Let I(k) be the
number of instances selected during the k-th epoch and
cs be the cost of one instance. The storage costs over the
first k epochs is then

Cs(1,k) =
k

∑
h=1

csI(h)

Let us now consider the other contribution to the total

cost. The cost of a miss can correspond to the additional
delay experienced by the final user or to the additional
load on the origin server, e.g. in terms of number of re-
quests or bytes to serve. In any case, we assume indeed
that the service provider has quantified monetarily the
miss cost. There are for example several studies on the
connection between delay and revenues like [4]. We de-
note by mo the miss cost for object o, that we assume to
be deterministic and constant over time. Let r(n) be the
object requested by the n-th miss. With some abuse of
notation, we let n ∈ [k1,k2] denote that the n-th miss oc-
curred in the time interval corresponding to the epochs
k1, k1 + 1, . . . k2, with k1 < k2. The total miss cost per
time unit during the first k epochs is then

Cm(1,k) = ∑
n∈[1,k]

mr(n).

Our goal is to select the number of instances I(1), I(2),
. . . I(k), in order to minimize the total cost. The trade-
off is evident. At any epoch, a larger number of instances
would decrease the number of misses—and therefore the
corresponding cost—but it would cause a higher cost due
to storage. Conversely, a smaller number of instances
would increase the cost due to misses, but it would de-
crease the cost of storage. In what follows we present a
policy that, at the end of each epoch, determine the num-
ber of instances in the cluster such that the (estimated)
total cost for the next epoch is minimal.

2.4 On the complexity of the solution
In order to deliver high throughput, caches require small
processing overheads. For example, O(1) time complex-
ity per request is considered a hard requirement for CDN
caches [13]. At high request rates, more complex op-
erations can pose an intolerable load on the CPU caus-
ing spurious misses [33], i.e. a requested content may
not be served even if present in the cache. This is one
of the reasons why eviction policies such as LRU and
LFU are widely adopted: in fact their operations (key
lookup, removal and insertion) have O(1) time complex-
ity. On the contrary, more sophisticated eviction policies
proposed in the literature, such as the Greedy Dual Size
[14] and LRFU [28], may improve over LRU in terms
of hit ratio, but have often O(logM) time complexity per
request (where M is the number of objects in the cache)
and therefore they pose a high burden on the CPU.

Not only the eviction policy, but any operation related
to the cache – including the operations of the load bal-
ancer to route requests and dynamically adapt the cache
size – needs to have small processing overheads. In order
to show the impact of the computational complexity on
the system, we set up an experiment focusing on the load
balancer, where we compare the basic scenario – a fixed

3

number of cache instances, where the load balancer sim-
ply routes requests to the correct instance using the hash
of the key – with an improved load balancer that com-
putes dynamically the number of instances to use in the
cluster. The improved load balancer may use two poli-
cies: (i) our TTL-based solution, which has O(1) time
complexity, and (ii) a MRC-based solution, which has
O(logM) time complexity (see Sect. 3 for a discussion
on the complexity of the MRC computation).

For the experiment, we use a trace with more than
2 billion requests collected by Akamai – the character-
istics of the trace and the testbed used are described in
Sect. 6.1. The trace contains, for each requests, a times-
tamp. In the first experiment, we replay the trace, i.e., we
generate the requests following the timestamps provided
in the trace. Figure 1, left, shows the CPU load over time
for two representative days. We see that the additional
task to compute the MRC leads to almost double the
CPU usage in comparison to the basic scenario, where
the load balancer only distributes the requests among a
fixed number of instances. On the contrary, the overhead
of our TTL-approach is below 20%. While the hardware
we used in the testbed was adequate to support also the
computationally expensive MRC-approach, should the
requests rate increase, a scheme with logarithmic com-
plexity would not be able to cope with the processing
leading to spurious misses [33].

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45

MRC-based

TTL-based

Fixed # instancesC
P

U
 u

ti
li

z
a
ti

o
n
 (

%
)

Time (hour)

 0

 0.2

 0.4

 0.6

 0.8

 1

Fixed TTL MRC

N
o
rm

al
iz

ed
 t

h
ro

u
g
h
p
u
t

Figure 1: Left: CPU load using a fixed requests rout-
ing scheme and our TTL-based solution (which have
O(1) time complexity) compared to MRC-based solution
(which has O(logM) time complexity). Right: Through-
put normalized to the fixed scheme case.

These findings are confirmed in the second experi-
ment, for which we ignored the trace timestamp, and
generated a new request as soon as we received the re-
ply from the load balancer for the previous request. This
would provide an indication of the maximum throughput
achievable by the different schemes. For ease of repre-
sentation, we normalize the throughput with respect to
the basic scenario with a fixed number of instances. The
results are shown in Fig. 1, right. While our TTL solu-

tion experiences about 8% throughput reduction due to
the additional data structure we maintain, the MRC solu-
tion almost halves the achievable throughput.

3 Related works

Elastic resource provisioning of cloud services has been
the subject of many studies. The authors in [30] provide
a general overview of the techniques, such as control the-
ory as used in [29]. Despite the broad set of results and
their computational complexity, it is not clear if they can
be applied in the context we consider, where the relation
between the resource deployed and the key performance
index (the hit ratio) is not linear. Moreover, none of them
are based on stochastic approximation as our main result
on TTL caches. Another prominent example of a gen-
eral approach for auto-scaling is given by [36] but the
proposed solution is based on tools (e.g., time series pre-
diction) that are computationally intensive for the high-
throughput scenario we consider.

Similarly to our problem, memory management aims
to determine the amount of memory to assign to com-
peting applications, but the proposed solutions, such as
[18] [15] [25] [34], all require computations with higher
complexity than our solution.

As for minimizing costs in a cloud computing envi-
ronment, the authors in [41] and [39] explore the use of
spot instances for different aims, such as content replica-
tion or decreasing the overall storage cost. Despite the
computational complexity of the solution, the proposed
schemes do not take into consideration in the minimiza-
tion the cost due to misses, as we do. The authors in
[39] also consider a policy for modulating the allocation
of on-demand instances to match the dynamic needs, but
they do not describe it in detail.

Part of our TTL-based solution is based on the concept
of a virtual cache, that maintains the metadata of some
cacheable objects, but not their actually content. These
objects are sometimes referred to as ghosts. This addi-
tional information is used in many caching schemes to
decide how to manage the objects in the physical cache.
For example in 2-LRU [22] the virtual cache is managed
by LRU and a content is actually stored in the physical
cache only if its metadata is already present in the vir-
tual cache. As another example, ARC [32] uses two vir-
tual caches to decide which contents should be evicted
to make space for a new one. Differently from the cases
above, we use a virtual cache to size the physical one.

A recent work [11] also explores how to adapt the TTL
value to the request pattern by using stochastic approxi-
mation. In particular, the authors focus on vertical scal-
ing and aim to achieve a target hit ratio, possibly with a
small cache size. On the contrary our approach addresses
horizontal scaling to minimize the total operational cost.

4

MRC-based solutions. Miss Ratio Curves (MRCs) are
a well-known tool for cache profiling [35]: in a single
graph it is possible to observe the relation between cache
size and miss ratio, therefore one can compute the cost
of the storage and estimate the cost of the misses for
each point. The main issue with MRCs is their compu-
tational complexity. The seminal algorithm proposed by
Mattson [31] takes O(M) operations per request, where
M is the number of objects in the cache. A more ef-
ficient implementation, proposed by Olken [42], makes
use of a tree data structure (e.g., counting B-Tree) to
keep track of the objects in the cache. This reduces time
complexity to O(logM) per request. In order to decrease
the complexity to O(1) per request, many solutions have
been proposed in the literature that compute approximate
MRC [35] [40] [38] [37]. Such solutions share a com-
mon characteristic: they have been designed considering
objects with uniform sizes. On the contrary, the applica-
tions we are interested into exhibit contents with hetero-
geneous sizes.

We observe that it is possible to extend Olken’s ap-
proach to MRC computation to the case of heterogeneous
size contents maintaining O(logM) complexity per re-
quest. To this aim, we suggest to use a special tree, called
order statistics tree, that has a method rank(x), which
returns the sum of the weights of the elements with keys
less than or equal to x (the weights are the object size).1

On the contrary, it is not clear how to extend the algo-
rithms to compute approximate MRCs, while maintain-
ing the same level of accuracy. We support this claim
with the following experiment. We consider in particular
the method proposed in [38] [37] (but the others oper-
ate in a similar way): the request trace is sampled with
rate R, a first MRC is computed on the subsampled trace
and then scaled it up opportunely to get the approximate
one for the whole traffic. A constant sampling rate would
lead to O(logRM) time complexity. By adapting dynam-
ically R according to the available memory, it is possible
to reach O(1).

We use a trace described in [33], § 4.4 – the distri-
bution of the object popularity and object size are also
reported in Fig. 4, but for understanding the results of
the experiment, the details of the trace are not essential.
For each request, besides the timestamp and the object
identifier, we have the object size. First, we ignore the
actual object size and assume it to be uniform. In this
case, the method predicts the MRC with a prediction er-
ror2 smaller than 3∗10−3 for all sampling rates between

1This is how we compute MRCs in this paper. We suspect that
this approach may be known, but we were not able to find it described
elsewhere.

2As in [38], the error is evaluated by measuring the absolute differ-
ence between the exact and the approximated MRCs over all the mean-
ingful cache sizes, and then by computing the mean of these absolute
differences.

0.1 to 0.001—see Fig. 2—, similarly to what observed
in the original papers [38] [37]. We then consider the
object sizes and repeat the experiments: for a given sam-
pling rate, the error increases by one order of magnitude!
Moreover, in order to reach a given target error it may
be necessary to increase by two orders of magnitude the
sampling rate. Correspondingly, the dynamic sampling
rate approach described in [38] would require a larger
memory footprint and a larger number of operations for
request.

 0.001

 0.01

 0.1

 1

0.1 0.01 0.001

A
v
er

ag
e

er
ro

r

Sampling rate (R)

homogeneous. sizes
heterogeneous sizes

Figure 2: Accuracy of the approximate MRC computa-
tion through sampling, with uniform and nonuniform ob-
ject sizes.

This simple experiment shows that object sizes may
have an unexpected impact on the accuracy of the ap-
proximated MRC computation. Other approximated
techniques, designed to have O(1) time complexity per
request, such as MIMIR [35] or AET [26], may be af-
fected when considering a scenario with heterogeneous
object size. In MIMIR, the authors state that their solu-
tion can be extended and consider non uniform sizes, but
they do not show experimentally their claim, and their so-
lution is not publicly available. Therefore, it is not pos-
sible to understand the impact of heterogeneous object
size on the accuracy of their method. Similarly, the AET
approach assumes uniform object size, and it is not clear
if it can be easily extended to consider heterogeneous ob-
ject size.

In summary, the approximated computation of the
MRC, even if it can be performed with O(1) time com-
plexity per request, still need to be studied in depth, espe-
cially for the heterogeneous size case. Currently, there-
fore, the only option is to compute the MRCs exactly,
which has O(logM) complexity per request.

4 Adaptive TTL based solutions

In this section, we begin with a key building block to
the design of a horizontally scalable caching system.
Our work draws inspiration from Time-To-Live (TTL)

5

caches, i.e. caches that are managed by a TTL policy.
There are two families of TTL policy: with and with-
out renewal. In both cases, upon a miss, the content is
stored locally and a timer with duration equal to T is ac-
tivated and the content is evicted when the timer expires.
The difference is that, in the case with renewal, the timer
is reset by the following hits for the content, while it is
not affected by them in the case without renewal. TTL
caches are a natural model for DNS caches, but they have
also been proposed as an approximated model to study
the performance of existing replacement policies like
LRU [16]. Moreover, different papers have suggested
their practical use because of their higher configurability
as well as amenability to analysis [21, 20, 11]. While a
replacement policy maintains in the cache as many con-
tents as the available space buffer allows (contents are
evicted only if needed to make space, under a TTL pol-
icy the actual storage keeps varying over time and is, in
theory, potentially unbounded. A real implementation of
a TTL cache will have a finite capacity and then it may
need to evict some contents from the cache even if their
timer has not expired yet. Some of these practical issues
are discussed in [21]. In our solution a TTL cache with
renewal is used as a virtual cache, storing only content
metadata:3 by computing its virtual size, our approach
steers the addition or removal of cache server instances.

4.1 Dynamic adaptation
We present an adaptive mechanism based on stochastic
approximation by which the timer value converges to the
value that minimizes the total cost.

The theoretical results hold in the following scenario.
We consider a finite catalogue with N contents and that
requests for the different contents occur according to in-
dependent renewal processes. We denote by λi the re-
quest rate for content i. A case of particular interest in
what follows is the case where these processes are Pois-
son ones. Then, a given request will be for content i with
probability λi/∑

N
j=1 λ j independently from any previous

request. This is (a continuous version of) the well known
Independent Reference Model (IRM) [19].

In what follows, we consider an ideal TTL cache with
renewal and assume that the cloud service charges the
user only for the instantaneous storage occupancy. This
differs from the more realistic scenario described above
where the user needs to pay for the instances indepen-
dently from their usage, but we will come back to the
more realistic billing in Sect. 5.1. Let si be the size of
object i and c be the cost per unit time to store a unit of
content ([39] shows that prices are almost linear also for
real cloud services). Then, the total cost to store content

3The total storage required by the virtual cache will then be negli-
gible.

i over a time window of duration τ is csiτ . For simplic-
ity, we denote ci = sic. A miss for content i incurs a cost
equal to mi.

Let Xi(t) be the indicator function for the event “con-
tent i is stored in the cache at time t” and Mi(t) the count-
ing process of content i misses in the interval [0, t]. We
can define the storage cost and the miss cost analogously
to what done in Sect. 2.3. The total cost over the interval
[0, t] is then

C(0, t) =Cs(0, t)+Cm(0, t)

=
N

∑
i=1

∫ t

0
Xi(t)ci dt +Mi(t)mi. (1)

If the caching policy uses a constant TTL value equal
to T , then each process Xi(t) is a renewal process whose
regeneration points are the time instants at which content
i misses occur. The renewal reward theorem guarantees
that, for each content, the time-average cost is equal to
the expected cost over a renewal period divided by the
expected duration of a renewal period, i.e.

lim
t→∞

∫ t
0 Xi(t)ci dt +Mi(t)mi

t
=

ciτS,i +mi

τM,i
,

where τS,i is the expected sojourn time of content i in the
cache and τM,i is the expected time between two misses.

The asymptotic time average cost (C) of the system as
a function of T is then

C (T) = lim
t→∞

C(0, t)
t

=
N

∑
i=1

ciτS,i +mi

τM,i
. (2)

We observe that τS,i/τM,i is the asymptotic fraction of
time content i spends in the cache or equivalently, the
probability that content i is in the cache at a random time,
that is often called the occupancy probability and we will
denote by oi. The inverse of τM,i is the rate at which miss
occurs that we can also write as λi(1− hi), where hi is
the hit ratio, i.e. the fraction of requests for content i that
incurs a hit. Then we can rewrite (2) as

C (T) =
N

∑
i=1

cioi +λimi(1−hi). (3)

When the arrival process is IRM, it holds oi = hi
because of PASTA property and moreover hi = 1 −
e−λiT [21]. (3) becomes

C (T) =
N

∑
i=1

ci +(λimi− ci)e−λiT . (4)

We can check that if T = 0, i.e. no content is stored in the
cache, the cost per time unit is equal to ∑

N
i=1 λimi: we pay

systematically for all the misses. Instead, if Ti = ∞, all

6

the contents are stored indefinitely and the corresponding
cost per time unit is ∑

N
i=1 ci.

We could look for the value T ∗ that minimizes the
cost (4) by applying a gradient algorithm as follows:

T (n+1) = T (n)− ε(n)
dC

dT

∣∣∣
T (n)

= T (n)+ ε(n)
N

∑
i=1

λie−λiT (n) (λimi− ci) ,

where the sequence ε(n) converges to zero as n diverges,
but it is not summable, i.e. ∑n∈N ε(n) = ∞. This ap-
proach is not viable because in a realistic scenario pop-
ularities are unknown, keep changing over time and are
not easy to estimate. The gradient algorithm suggests
us a practical solution based on stochastic approxima-
tion [27]. We observe that λie−λiT = λi(1− hi) is equal
to the miss rate for content i. Upon a miss, this is for
content i with probability proportional to λi(1−hi). Let
r(n) be the object requested at the n-th miss and λ̂i(n) be
an unbiased estimate of the arrival rate λi. Consider the
following update rule for the variable T (n):

T (n+1) = T (n)+ ε(n)
(

λ̂r(n)mr(n)− cr(n)

)
, (5)

where the correction term λ̂r(n)mr(n)− cr(n) is a random
variable because i) content requests occur according to
IRM and ii) the estimator itself is a random variable.
The correction corresponds “on average” to the gradi-
ent dC /dT because, upon a miss, the fraction of re-
quests for content i is proportional to λie−λiT (n), and
then E(λ̂imi−ci) = λimi−ci. The following proposition
makes this result formal.

Proposition 1. Let {X(n,T (n))} be a sequence
of independent random variables such that
X(n,T (n)) is equal to λ̂imi − ci with probabil-
ity λie−λiT (n)/(∑N

j=1 λ je−λ jT (n)). Let {ε(n)} be a
non-negative sequence converging to 0, such that
∑n∈N ε(n) = ∞ and ∑n∈N ε2(n) < ∞. Consider the
update rule

T (n+1) = Π[0,Tmax](T (n)+ ε(n)X(n,T (n))) ,

where Π[0,Tmax](x) = min(max(0,x),Tmax) is the projec-
tion operator over the interval [0,Tmax], then the se-
quence T (n) converges with probability one to i) a sta-
tionary point of C (T) or ii) 0 or Tmax, if 0 and Tmax are
local minima of C (T).

Proof. The result follows from Theorem 2.1 in [27]. All
the hypotheses (A2.1)− (A2.7) are satisfied with f (.) =
C (.).

If, instead of letting the weights ε(n) converge to zero,
we keep them equal to a small constant value ε0, then, in

a stationary setting, T (n) converge to a neighbourhood of
the limits indicated in Proposition 1. At the same time,
a constant weight makes it possible to track changes in
the system, for example when popularities keep varying
over time.

4.2 An optimal clairvoyant TTL Policy
In this section we present the optimal TTL policy (re-
ferred to as TTL-OPT), that minimizes the total cost
when the sequence of future requests is known. The cost
achieved by this clairvoyant policy is clearly a lower-
bound for any feasible policy. Among the TTL poli-
cies, TTL-OPT plays the same role as Bélády’s algo-
rithm [12] for replacement policies. Indeed, Bélády’s
algorithm minimizes the miss ratio under knowledge of
the future requests and uniform content sizes. Interest-
ingly, the optimal clairvoyant TTL policy has polynomial
complexity under heterogeneous content sizes and miss
costs, while in such case the Belady’s policy is no more
optimal: finding an optimal replacement policy is an NP-
complete problem [24], due to a hard capacity constraint,
that makes the problem intrinsically combinatorial.

Algorithm 1: Optimal Clairvoyant TTL policy
(TTL-OPT)

input : {ci}, storage costs per unit of time
input : {mi}, miss costs
input : request sequence

1 foreach request r do
2 j← obj id of request r
3 t j,next← time of the next request for obj j
4 cS

j ← c j× (t j,next− tnow)

5 if (cS
j < m j) then

6 Tj← t j,next− tnow // store j until its

next request

7 else
8 Tj← 0 // do not store j

We allow the optimal policy TTL-OPT to select a TTL
value different for each content and for each request. The
policy is described in Algorithm 1 and is very simple:
given a request for a content, say j, at time tnow, if the cost
to store the content until its next request (at time t j,next)
is smaller than the cost of a miss for this object, then
the content should be stored in the cache until the next
request, i.e. the timer should be set equal to t j,next− tnow.
Otherwise, the object should be served but not stored.
The formal proof of TTL-OPT follows.

Proposition 2. The clairvoyant policy TTL-OPT in Al-
gorithm 1 minimizes the sum of storage and miss costs.

7

Proof. Let Ci(0, t) denote the total cost paid during the
interval [0, t] for content i, i.e.

Ci(0, t) =
∫ t

0
Xi(t)ci dt +Mi(t)mi.

The total cost C(0, t) in (1) is then given by the sum of
the costs for each content. The possibility to choose the
timer value independently for each content reduces the
minimization of the total cost C(0, t) to separately mini-
mize each term Ci(0, t).

Let {ti,k,k ∈ N} be the sequence of time instants of
the requests for content i. A TTL policy needs to se-
lect a TTL value for each request, let us denote as
Ti,k the timer for the k-th request occurring at time ti,k.
We observe that we can restrict ourselves to consider
Ti,k ∈ {0, ti,k+1− ti,k}. In fact, consider any sequence of
timer values {T̂i,k,k ∈ N}, and let T̂i,h be a timer such
that T̂i,h < ti,h+1− ti,h. If we replace T̂i,h with Ti,h = 0,
the cost Ci(0, t) cannot increase. Similarly, we can re-
place any value T̂i,h such that T̂i,h > ti,h+1 − ti,h with
Ti,h = ti,h+1−ti,h, without increasing the cost Ci(0, t). Let
then Zi,k be an indicator function such that Zi,k = 1 if
Ti,k = ti,k+1− ti,k, and Zi,k = 0 if Ti,k = 0. The total cost
for content i can then be rewritten as follows:

Ci(0, ti,k) = mi +
k−1

∑
h=0

(
Zi,hci(ti,h+1− ti,h)+(1−Zi,h)mi

)
,

(6)
where the first term on the right hand side corresponds
to the fact that the first request for content i generates
always a miss. From (6) if follows that Ci(0, ti,k) is min-
imized by choosing Zi,h = 1 if ci(ti,h+1− ti,h) < mi and
Zi,h = 1 otherwise. This corresponds to what TTL-OPT
does.

Clearly, the TTL-OPT policy can not be used online.
Nevertheless, given a trace, its cost can be computed (in
polynomial time) and used as a reference.

5 Implementation

In this section we present a practical, efficient implemen-
tation of a TTL cache with O(1) complexity. Then, we
describe the operation of our elastic caching system, by
focusing on the load balancer algorithm that determines
the total cache size, and hence the storage cost.

5.1 Practical implementation of the TTL-
based scheme

A straight application of (5) would require to update the
timer immediately upon a miss, and then popularity esti-
mates should be available for contents that are not in the

cache. Instead, we will start estimating content popular-
ity immediately after the content is stored in the cache
and we will then postpone the timer update to the mo-
ment when the estimate is available. The detailed de-
scription follows.

Let T (t) be the timer value at time t. If the timer is
updated at t, then we denote as T−(t) the value imme-
diately before the update. Updates are, as above, driven
by misses, and we denote as tn the time of the n-th miss
and r(n) the corresponding content. Upon a miss, con-
tent r(n) is stored and its timer is set to the current value
T (tn). Any new request for content r(n) before the timer
expiration will be a hit and will reset the timer to T (tn).
The number of hits for content r(n) during the interval
[tn, tn + T (tn)] is recorded. Let us denote this number
as hr(n). The ratio hr(n)/T (tn) is an unbiased estimator
of the rate λr(n). Once this estimate is available at time
tn +T (tn), the timer is updated as follows:

T (tn +T (tn)) =T−(tn +T (tn))

+ ε(n)

(
−cr(n)+

hr(n)

Tr(n)
mr(n)

)
. (7)

We observe that in general T−(tn + T (tn)) is different
from T (tn), because the timer may have been updated
during [tn, tn + T (tn)] as effect of misses for contents
other than r(n).

As a further refinement, we notice that the cache is
driven by two main events: request arrival and object
eviction. The updates of the timer should be done during
these events, so that we do not need to create a specific
event for each miss for updating the timer. This adds an
additional small delay, as it is shown in Fig. 3: given a
content, the TTL update is triggered by the hit after the
first timer (case a), or, if no hit occurs after this time, by
the content eviction (case b).

Object sojourn time

time
Object first TTL Update global TTL

Object sojourn time

time
Object first TTL Update global TTL

a)

b)

Figure 3: Global TTL update.

The update rule in (7) – with the additional consider-

8

ations shown in Fig. 3 – leads to a feasible implemen-
tation. We observe that Proposition 1 does not hold for
this new algorithm for two reasons. First, it is not true
that the different updates are independent and identically
distributed (conditioned on the current timer value). For
example, upon a miss for content i, it is less likely that
the following miss will also be for content i, because
the content was stored in the cache right after the first
miss. Second, the update delays could in principle affect
convergence. There are theoretical results for stochastic
approximation algorithms when the correction terms are
correlated and when updates are delayed, and we indeed
think that the implementation described above may still
converge, but we leave this study for further investiga-
tion, also because (7), while implementable, would not
satisfy our requirement on O(1) computational complex-
ity as we are going to discuss.

We observe that (7) would require to store in a calen-
dar the expiration instants of the timers, both to update
the TTL values and to evict the contents whose timer ex-
pired without being renewed by another request. Unfor-
tunately, the expirations instants are not necessarily or-
dered as the request arrival times: while it always holds
tn > tn−1, it may be tn +T (tn)< tn−1 +T (tn−1), because
the TTL value may have been decreased between tn−1
and tn. As a consequence, the calendar would require a
data structure that enables ordered data insertion, which
has O(logM) complexity, where M is the number of con-
tents stored in the cache.

In order to maintain a O(1) cost, we implement the
calendar as a FIFO, so that events are orderly inserted
at the head according to the request arrival times. For
the eviction, we process the events from the tail until a
non-expired event is found. The drawback of this ap-
proach is that objects that should be evicted because their
timer is expired may persist for some additional time in
the cache. Nevertheless, the impact of these objects on
the overall performance should be negligible. To ver-
ify this claim, we have conducted extensive experiments,
where we compare the TTL based solution correspond-
ing with (7) with our solution achieving O(1) complex-
ity, and we observed no significant difference in terms of
TTL, instantaneous cache size, or final cost .

5.2 Horizontally scalable cache system

The TTL-based scheme discussed so far considers a sin-
gle TTL cache, where the instantaneous storage occu-
pancy is billed. In other words, we have considered a per-
fect vertically-scalable system, where memory resources
can be smoothly added and removed. In this section
we discuss the design of a more practical horizontally-
scalable system inspired by the TTL-based approach,
where storage can only change at finite epochs.

In a horizontally-scalable solution, cache instances
can be added or removed from the cluster, and all the
instances have the same configuration. The first design
choice to face is the configuration of a generic instance.

Cache instances: These are the physical caches storing
the actual contents and have fixed size. They can be
implemented using Memcached or Redis with a simple
eviction policy like LRU.

Load balancer: The load balancer performs the ordi-
nary operations, such as request routing, and content in-
sertion, i.e., in case of a miss, after retrieving the object
from the origin or the back-end, it stores it in one of the
cache instances. In addition, the load balancer maintains
a virtual cache, with the references of the requested ob-
jects: this virtual cache is going to be managed as a TTL
cache according to the description in Sect. 5.1 and then
with O(1) computational cost per request. The size of
the virtual cache depends on the timer value T , which
in turn depends on the number of hits and misses, and
on the corresponding costs for the storage and for the
misses. Thus, the size of the virtual cache summarizes
the influence of costs of the previous requests, and can
be used to determine the number of actual instances to
employ in the cluster.

Proposed scheme: Our scheme is described in Algo-
rithm 2. At every request, we look for the object key
in the virtual cache, update its position in case of a hit,
or add it in case of a miss. Then, we start evicting ob-
jects from the virtual cache if they are expired. While
inserting a new object or removing expired objects, we
update the total size of the cache (the sum of the sizes
of non-expired objects). Clearly, object sizes can be het-
erogeneous. At the end of the epoch (line 7), we look at
the size of the virtual cache and we select the number of
instances such that the sum of the sizes is the closest to
the virtual cache size (line 8).

At the end of the observation interval, if the number
of instances has changed, the load balancer reassigns the
responsibility of the hash space to the current instances.

Additional considerations: We observe that objects
stored in the physical caches may be different from the
ones maintained by the virtual cache. When a physical
cache needs to make space for new data, it may evict one
content before the timer of the corresponding ghost at the
virtual cache is expired. On the other side, the eviction
of the ghost does not cause the eviction of the actual con-
tent at the cache. Moreover, when instances are added or
removed from the cluster, the object key space responsi-
bility must be rearranged, which may lead to a spurious
misses due to route changes: the object is in a physical
cache, but the request is routed to a different one. Over-
all, therefore, we will observe virtual misses at the virtual
cache, and actual misses at the physical cache, and these

9

Algorithm 2: TTL-based scaling
input : VC, Virtual Cache
input : Sp, Physical cache size
output: I(k+1), # of the instances in k+1-th epoch

1 foreach request r do
2 if (r ∈ VC) then
3 REMOVE(r, VC)

4 r.expire← tnow +T T Lnow
5 INSERT(r, VC)
6 EVICTEXPIRED(VC)

7 if (epoch k ended) then
8 I(k+1)← ROUND(VC.size / Sp)

two values may be different. We have experimentally ob-
served that, since the number of requests within an epoch
is usually very high, the effect of spurious misses due to
the change of the number of instances is negligible.

6 Experimental evaluation

6.1 Setup

We evaluate our approach using a testbed that is repre-
sentative of a typical web architecture.

Testbed: An application server is connected to a
database and to a cluster of caches. The application re-
ceives the requests and checks if the content is stored
in the cache. If the content is not in the cache, the ap-
plication server retrieves the object from the database,
serves the client and stores the object in the cache. For
the operations related to the cache (e.g., object lookup),
the application server relies on a load balancer. We have
implemented the scheme described in Sect. 5.2 in a cus-
tom tool similar to mcrouter [3]. The tool is able to add
or remove the cache instances from a local cluster, but it
can be easily extended so that it can use the APIs of a
cloud cache provider.

Trace: The requests sent to the application server are
generated by reproducing two anonymized traces col-
lected for over 30 days and 5 days from two vantage
points of the Akamai network. The traces we tested con-
tain the timestamp of the request arrival, the anonymized
object ID and the size of the requested object. We report
the results for the 30-day trace, since we obtain similar
qualitative results with the 5-day trace. In the 30-day
trace, there are 2 ·109 requests for 110 millions contents,
whose size varies from few bytes to tens of MB. Fig-
ure 4 (left-hand side) shows the number of requests for
each object, sorted by rank (in terms of popularity). The
right-hand side shows the empirical Cumulative Distri-

bution Function (CDF) for the size of the requested ob-
jects (without aggregating requests for the same object).
We could not carry on our experiments with other traces,
like the ones collected in the public repository [9], be-
cause they refer to low level storage (block I/O), and they
are not representative of a typical cloud-based applica-
tion, such as a web service.

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

N
u
m

b
er

 o
f

re
q
u
es

ts

Object popularity

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

C
D

F
 o

f
th

e
re

q
u
es

ts

Object size (bytes)

Figure 4: Number of requests per object, ordered by rank
(left), and cumulative fraction of the requests for objects
up to a given size (right).

Settings: For the configurations and the costs, we refer
to Amazon ElastiCache service [2]. For the duration of
the epoch, we consider the minimum billing time, which
is one hour. Among the different instances’ options, we
selected the cache.t2.micro with 0.555 GB RAM and one
vCPU, which costs 0.017$/hour (Oct. 2017, US based).
We use a small instance since it provides a fine granular-
ity when we resize the cluster: for instance the experi-
mental results in Fig. 5 shows that one small instance is
sufficient during low traffic periods. Moreover, bigger
instances (e.g., with 3.22 GB or 6.05 GB) have just two
vCPUs, which may limit the throughput of the cache.
Replicating small instances each with a vCPU helps in
maintaining the throughput while scaling the cluster. As
for the cache, we use Redis rather than Memcached in
order to avoid problems related to calcification [15] [25]
[34].

In order to determine reasonable miss costs, we
reasoned as follows. The production server from
which our trace was collected had an in-memory cache
of 4 GB [13], i.e. roughly corresponding to eight
cache.t2.micro instances. We assume that this is a well
engineered system whose cache size has been selected so
that storage and miss costs are equal. This is a reason-
able rule of thumb to select a close-to-optimal size. The
storage cost can be determined in our case considering
the corresponding hourly cost of eight cache.t2.micro in-
stances. By dividing this cost by the average number of
misses observed during one our in production, we obtain
the cost per miss (in our case, 1.4676×10−7 $ per miss).

Previous solutions: Because of the considerations
above, we consider as baseline setting a scenario with
eight cache.t2.micro instances. We compare also our re-

10

sults with an elastic resource allocation scenario driven
by the MRC-approach, as described in [35] and dis-
cussed in Sect. 3. In addition, as a reference, we consider
the scenario with an ideal, vertically scalable, pure TTL
cache, billed according to its instantaneous size.

6.2 Results
We present here the results for the trace described in
Sect. 6.1. We have also performed an extensive study
using synthetic traces generated according to the IRM
model – which is the arrival pattern for which the theo-
retical results in Proposition 1 hold. In such experiments,
it is possible to see that the TTL indeed reaches a stable
value, which corresponds to the minimum cost.

With a real trace, the arrival pattern varies over time.
Our TTL approach continuously tracks such a variation:
this is shown in Fig. 5 (left), where we plot the value of
the TTL for an interval of four representative days: the
evolution clearly follows a daily pattern. The fluctuation
of the TTL is mirrored by the virtual cache size (Fig. 5,
right), which varies from zero (the cost of the few misses
does not justify the storage of the object) to 3.5 GB.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 6 6.5 7 7.5 8 8.5 9 9.5 10

T
T

L
 (

s)

Time (day)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 6 6.5 7 7.5 8 8.5 9 9.5 10

V
ir

tu
al

 c
ac

h
e

si
ze

 (
G

B
)

Time (day)

Figure 5: Virtual cache: TTL over time (left), and cache
size (right).

The virtual cache size translates into the number of in-
stances used in the cluster. From this, it is possible to
compute the total cost for storage and misses. In Fig. 6
we show the cumulative costs for the first 15 days (along
with a zoom at day 15) for the TTL-based system, and
we compare it with a 8-instance fixed-size cache (corre-
sponding to our reference in-memory production cache)
and the MRC-based approach (discussed in Sect. 3). The
figure plots also the total cumulative cost of an ideal
TTL-cache. The results show that the TTL-based ap-
proach obtains similar cumulative costs as the MRC-
based approach, but with a O(1) complexity instead of
O(logM) complexity. Overall, with respect to the base-
line fixed-size approach, the TTL-based approach is able
to save 17% of the costs. The difference between the
ideal and the practical TTL-based implementation is due
to the discretization of cache sizes and billing periods,
and the spurious misses due to the reorganization of the

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

C
u

m
u

la
ti

v
e

co
st

 (
$

)

Time (day)

Fixed size
MRC-based
TTL - practical
TTL - ideal

 70

 75

 80

 85

 90

 95

 100

 14 14.2 14.4 14.6 14.8 15

C
u

m
u

la
ti

v
e

co
st

 (
$

)

Time (day)

Fixed size
MRC-based
TTL - practical
TTL - ideal

Figure 6: Cumulative cost of TTL-based approach com-
pared to fixed-size, MRC-based, and ideal pure TTL
(zoom on the right).

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 2 4 6 8 10 12 14

C
u

m
u

la
ti

v
e

st
o

ra
g

e
co

st
 (

$
)

Time (day)

Fixed size
MRC-based
TTL - practical
TTL - ideal

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

C
u

m
u

la
ti

v
e

m
is

s
co

st
 (

$
)

Time (day)

Fixed size
MRC-based
TTL - practical
TTL - ideal

Figure 7: Cumulative storage cost (left) and cumulative
miss cost (right) for different approaches.

object key responsibility. Nevertheless, such a difference
causes only a 2% cost increase in comparison to the ideal
implementation. Interestingly, this result suggests that,
at least for typical CDN applications, there is no need for
finer-grained billing periods or cache sizes, but most of
the potential improvement is already achievable with the
current offer.

In Figure 7 we show the two cost components: the cu-
mulative storage cost (left) and the cumulative misses
costs (right). MRC-based solution maintains a smaller
number of instances, which translates into a slighlty
higher cost due to misses. Nevertheless, their sum is sim-
ilar to the one obtained by the TTL-based approach, sug-
gesting that, when we are close to the minimum, different
configuration options are available.

As we anticipated in Sect. 2.4, Fig. 1, the computa-
tional complexity of our approach translates into a lightly
loaded CPU. Instead, the MRC-based approach imposes
a non negligible toll on CPU resources. This translates
into additional costs, that we have not considered in this
paper. In fact, as shown in Fig. 1 (right) for our exper-
imental setup, using a MRC-based approach harms the
load balancer, that can ingest only half of the incoming
requests. Thus, in a practical setting, the load balancer is
likely to be scaled up, inducing additional fixed costs.

Figure 8 compares our TTL solution with the clairvoy-
ant TTL-OPT described in Sect 4.2. We see that there is

11

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14

C
u

m
u

la
ti

v
e

co
st

 (
$

)

Time (day)

Fixed size
TTL - practical
TTL-OPT

Figure 8: Optimal cost based policy: cumulative costs
over time.

room for even more significant cost savings: TTL-OPT
achieves a cost that is one third of the baseline. TTL-
OPT assumes to know the sequence of future requests
and is thus unpractical. Nevertheless, this result suggests
that potential improvements can come from TTL poli-
cies that use different TTL values for different contents
(as TTL-OPT does) selecting the timer value on the basis
of a forecast for the next inter-arrival time. In the future
we plan to investigate this possibility.

Since we are dealing with a (dynamic) distributed
cache, one may wonder if the assignment of object keys
to cache instances is balanced. Note that Redis does not
use consistent hashing, but a two-step scheme [8]. There
are 16384 slots, and objects keys are hashed into one of
the slots. Each slot is randomly assigned to a server.
When a new server is added, some randomly selected
slots are transferred to the new server. When a server is
removed, its slots are transferred to the other randomly
selected servers.

To understand if each server maintains the responsi-
bility of approximately the same number of slots, we
have considered, for each interval, the minimum and the
maximum number of assigned slots to each server, and
we have normalized them with the expected number of
slots per server. When there is just one server, clearly the
minimum and the maximum and the expected number of
slots are the same. In Figure 9 (left), we can see that each
server deviated from the expected number of slots by at
most 2.5%.

Similarly, we computed the number of misses per
server (minimum and maximum, normalized to the to-
tal number of misses divided by the number of servers).
Here the distribution among server is more spread, with
servers that sometimes get 10% more misses than the
expected average. In addition, we have considered the
number of requests per server. The load balancer tries
to achieve distributed evenly the keys among the servers,
but the actual number of requests depends on the pop-
ularity of a key. Figure 9 (right) shows that sometimes
servers need to respond to 30% more traffic than the aver-
age. Rebalancing the server load can be done with known

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 2 3 4 5

#
sl

o
ts

 (
n

o
rm

al
iz

ed
 a

v
g

)

Time (day)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 2 3 4 5

#
m

is
se

s
p

er
 s

lo
t

(n
o

rm
al

.
av

g
)

Time (day)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1 2 3 4 5

#
re

q
s

p
er

 s
lo

t
(n

o
rm

al
iz

ed
 a

v
g

)

Time (day)

Figure 9: Normalized mean number of slots per server,
misses per slot and requests per slot.

techniques that keeps track of the highly loaded slot and
balance them among the servers, such as the ones pre-
sented in [23] and [17].

We conclude our evaluation by observing that our re-
sults hold for a single-server trace collected by Akamai
in a 30 days period. It is thus tempting to project our
results to the current scale of a major CDN provider, for
a yearly timeframe. According to the trend we measure
in Fig. 6, our approach can potentially save millions of
dollars, when compared to a best practice static configu-
ration.

7 Conclusion

Dynamic sizing of cloud caches allows cloud users to
adapt the cache size to the traffic pattern and minimize
their total cost, which is given by the cost of the storage
and the cost of the misses. We studied a TTL-based so-
lution to dynamically track the required cache size. We
provided a theoretical lower bound for the cost achiev-
able by TTL solutions: in fact we characterize the opti-
mal TTL policy (TTL-OPT) when the sequence of future
requests is known. Moreover, we discussed a practical
low-complexity implementation of a TTL solution, and
evaluated it using real-world traces. Our experiments
shows that our solution obtains up to 17% cost savings
compared to a baseline static setting. Our results also
suggests that, at least for typical CDN applications, there
is no need for finer-grained billing periods or cache sizes,
but most of the potential improvement is already achiev-
able with the current offer.

Encouraged by the experimental results related to a
practical TTL cache implementation, we are exploring,
from a theoretical point of view, the impact of the up-
date delay on the convergence of TTL stochastic update
rule. Moreover, our comparison with TTL-OPT suggests
that there are possibilities for significant additional cost
savings (up to 66%), if TTL values can be adapted on
a per-content basis as a function of the specific arrival
pattern.

12

References
[1] Amazon Web Service ElastiCache. https://aws.amazon.

com/elasticache/. Accessed: Jan. 2018.

[2] Amazon Web Service ElastiCache Pricing. https://aws.

amazon.com/elasticache/pricing/. Accessed: Jan. 2018.

[3] Facebook mcrouter. https://github.com/facebook/

mcrouter. Accessed: Jan. 2018.

[4] How Loading Time Affects Your Bottom Line. https://blog.
kissmetrics.com/loading-time/. Accessed: Jan. 2018.

[5] Memcached. https://memcached.org/. Accessed: Jan. 2018.

[6] Microsoft Azure Redis Cache. https://azure.microsoft.

com/en-us/services/cache/. Accessed: Jan. 2018.

[7] Redis. https://redis.io/. Accessed: Jan. 2018.

[8] Redis Cluster Specification. https://redis.io/topics/

cluster-spec. Accessed: Jan. 2018.

[9] SNIA iotta repository block I/O traces. http://iotta.snia.

org/tracetypes/3. Accessed: Jan. 2018.

[10] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,
AND PALECZNY, M. Workload analysis of a large-scale
key-value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Mea-
surement and Modeling of Computer Systems (2012).

[11] BASU, S., SUNDARRAJAN, A., GHADERI, J., SHAKKOTTAI,
S., AND SITARAMAN, R. Adaptive ttl-based caching for con-
tent delivery. In Proceedings of the 2017 ACM SIGMET-
RICS/International Conference on Measurement and Modeling
of Computer Systems (2017), pp. 45–46.

[12] BELADY, L. A. A study of replacement algorithms for a virtual-
storage computer. IBM Systems journal 5, 2 (1966), 78–101.

[13] BERGER, D. S., SITARAMAN, R. K., AND HARCHOL-BALTER,
M. Adaptsize: Orchestrating the hot object memory cache in a
content delivery network. In NSDI (2017), pp. 483–498.

[14] CAO, P., AND IRANI, S. Cost-aware www proxy caching algo-
rithms. In Usenix symposium on internet technologies and sys-
tems (1997), vol. 12, pp. 193–206.

[15] CARRA, D., AND MICHIARDI, P. Memory partitioning in mem-
cached: An experimental performance analysis. In Communi-
cations (ICC), 2014 IEEE International Conference on (2014),
IEEE, pp. 1154–1159.

[16] CHE, H., TUNG, Y., AND WANG, Z. Hierarchical Web caching
systems: modeling, design and experimental results. Selected
Areas in Communications, IEEE Journal on 20, 7 (Sep 2002),
1305–1314.

[17] CHENG, Y., GUPTA, A., AND BUTT, A. R. An in-memory ob-
ject caching framework with adaptive load balancing. In Pro-
ceedings of the Tenth European Conference on Computer Systems
(2015), p. 4.

[18] CIDON, A., EISENMAN, A., ALIZADEH, M., AND KATTI, S.
Dynacache: Dynamic cloud caching. In HotStorage (2015).

[19] COFFMAN, E. G., AND DENNING, P. J. Operating systems the-
ory, vol. 973. Prentice-Hall Englewood Cliffs, NJ, 1973.

[20] DEHGHAN, M., MASSOULIÉ, L., TOWSLEY, D., MENASCHE,
D., AND TAY, Y. C. A utility optimization approach to network
cache design. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications (April
2016), pp. 1–9.

[21] FOFACK, N. C., NAIN, P., NEGLIA, G., AND TOWSLEY, D.
Performance evaluation of hierarchical TTL-based cache net-
works. Computer Networks 65 (2014), 212 – 231.

[22] GARETTO, M., LEONARDI, E., AND MARTINA, V. A unified
approach to the performance analysis of caching systems. ACM
Trans. Model. Perform. Eval. Comput. Syst. 1, 3 (May 2016),
12:1–12:28.

[23] HONG, Y.-J., AND THOTTETHODI, M. Understanding and mit-
igating the impact of load imbalance in the memory caching tier.
In Proceedings of the 4th annual Symposium on Cloud Comput-
ing (2013), ACM, p. 13.

[24] HOSSEINI-KHAYAT, S. On optimal replacement of nonuniform
cache objects. IEEE Transactions on Computers 49, 8 (2000),
769–778.

[25] HU, X., WANG, X., LI, Y., ZHOU, L., LUO, Y., DING,
C., JIANG, S., AND WANG, Z. Lama: Optimized locality-
aware memory allocation for key-value cache. In Proceedings
of USENIX Annual Technical Conference (USENIX ATC) (2015),
pp. 57–69.

[26] HU, X., WANG, X., ZHOU, L., LUO, Y., DING, C., AND
WANG, Z. Kinetic modeling of data eviction in cache. In
USENIX Annual Technical Conference (2016), pp. 351–364.

[27] KUSHNER, H., AND YIN, G. Stochastic Approximation and Re-
cursive Algorithms and Applications. Stochastic Modelling and
Applied Probability. Springer New York, 2003.

[28] LEE, D., CHOI, J., KIM, J.-H., NOH, S. H., MIN, S. L., CHO,
Y., AND KIM, C. S. On the existence of a spectrum of policies
that subsumes the least recently used (lru) and least frequently
used (lfu) policies. In ACM SIGMETRICS Performance Evalua-
tion Review (1999), vol. 27, ACM, pp. 134–143.

[29] LIM, H. C., BABU, S., AND CHASE, J. S. Automated control for
elastic storage. In Proceedings of the 7th international conference
on Autonomic computing (2010), ACM, pp. 1–10.

[30] LORIDO-BOTRAN, T., MIGUEL-ALONSO, J., AND LOZANO,
J. A. A review of auto-scaling techniques for elastic applications
in cloud environments. Journal of Grid Computing 12, 4 (2014),
559–592.

[31] MATTSON, R. L., GECSEI, J., SLUTZ, D. R., AND TRAIGER,
I. L. Evaluation techniques for storage hierarchies. IBM Syst. J.
9, 2 (June 1970), 78–117.

[32] MEGIDDO, N., AND MODHA, D. S. Arc: A self-tuning, low
overhead replacement cache. In FAST (2003), vol. 3, pp. 115–
130.

[33] NEGLIA, G., CARRA, D., FENG, M., JANARDHAN, V.,
MICHIARDI, P., AND TSIGKARI, D. Access-time-aware cache
algorithms. ACM Trans. Model. Perform. Eval. Comput. Syst. 2,
4 (Nov. 2017), 21:1–21:29.

[34] OU, J., PATTON, M., MOORE, M. D., XU, Y., AND JIANG, S.
A penalty aware memory allocation scheme for key-value cache.
In Proceedings of International Conference on Parallel Process-
ing (ICPP) (2015), pp. 530–539.

[35] SAEMUNDSSON, T., BJORNSSON, H., CHOCKLER, G., AND
VIGFUSSON, Y. Dynamic performance profiling of cloud caches.
In Proceedings of the ACM Symposium on Cloud Computing
(2014), ACM, pp. 1–14.

[36] SHEN, Z., SUBBIAH, S., GU, X., AND WILKES, J. Cloud-
scale: elastic resource scaling for multi-tenant cloud systems. In
Proceedings of the 2nd ACM Symposium on Cloud Computing
(2011), ACM, p. 5.

[37] WALDSPURGER, C., SAEMUNDSSON, T., AHMAD, I., AND
PARK, N. Cache modeling and optimization using miniature sim-
ulations. In Proceedings of USENIX ATC (2017), pp. 487–498.

[38] WALDSPURGER, C. A., PARK, N., GARTHWAITE, A. T., AND
AHMAD, I. Efficient mrc construction with shards. In FAST
(2015), pp. 95–110.

13

[39] WANG, C., URGAONKAR, B., GUPTA, A., KESIDIS, G., AND
LIANG, Q. Exploiting spot and burstable instances for improving
the cost-efficacy of in-memory caches on the public cloud. In
Proceedings of the Twelfth European Conference on Computer
Systems (2017), ACM, pp. 620–634.

[40] WIRES, J., INGRAM, S., DRUDI, Z., HARVEY, N. J.,
WARFIELD, A., AND DATA, C. Characterizing storage work-
loads with counter stacks. In OSDI (2014), pp. 335–349.

[41] XU, Z., STEWART, C., DENG, N., AND WANG, X. Blending on-
demand and spot instances to lower costs for in-memory storage.
In Computer Communications, IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on (2016), IEEE, pp. 1–9.

[42] ZHONG, Y., SHEN, X., AND DING, C. Program locality analysis
using reuse distance. ACM Trans. Program. Lang. Syst. 31, 6
(2009), 1–39.

14

