2nd IEEE Workshop on Signal Processing Advances in Wireless Communications, May 9-12, 1999 - Annapolis, MD, USA, pp-275-27¢

A DETERMINISTIC SCHUR METHOD FOR MULTICHANNEL BLIND IDENTIFICATION

Luc Deneire and Dirk TM. Slock

{deneire, slock }@eurecom.fr
Institat EURECOM, 2229 route des Crétes, B.P. 193, F-06904 Sophia Antipolis Cedex, FRANCE

ABSTRACT

We address the problem of blind multichannel identification
in a communication context. Using a deterministic model
for the input symbols and only second order statistics, we
develop a simple algorithm, based on the Generalized Schur
algorithm to apply LDU decomposition of the covariance
matrix of the received data. We show that this method leads
to identification of the channel, up to a constant. Farther-
more, the identification algorithm is shown to yield similar
performance as the subspace method {7). This paper com-
plements [2] where we developed a stochastic Schur algo-
rithm.

1. INTRODUCTION

Blind multichannel identification has received considerable
interest over the last decade. In particular, second-order
methods have raised a lot of attention, due to their ability
to perform channel identification with relatively short data
bursts. Among these methods, we can distinguish the deter-
ministic methods, where the input symbols are considered
deterministic and the stochastic methods, where the input
symbols are considered stochastic. In a multiuser environ-
ment, using the deterministic model leads to a dynamical in-
determinacy [3, 5] as opposed to the stochastic model which
leads to the identification of the channel up to a unitary static
mixture matrix [3]. Subsequent source separation can then
be performed by other classical methods or by resorting to
known symbols (i.e. performing semi-blind identification).
On the other hand, use of deterministic methods lead to con-
sistency in SNR, which can be an interesting feature.

We show that LDU decomposition of the covariance
matrix leads to the identification of the channel (up to a
scalar) and that performing this decomposition with a Schur
algorithm yields good performance,
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2. DATA MODEL AND NOTATIONS

Consider linear digital modulation over a linear channel with
additive Gaussian noise. Assume that we have 1 transmit-
ter at a certain carrier frequency and m antennas receiving
mixtures of the signals. We shall assume that m > 1. The
received signals can be written in the baseband as

wlt) = Y okt - kT) +w(t), i=1,---,m (1)
k

where the a(k) are the transmitted symbols, T is the com-
mon symbol period, h;(t) is the (overall) channel impulse
response from the transmitter to receiver antenna #. As-
suming the {a{k)} and {v:(t)} to be jointly (wide-sense)
stationary, the processes {yi(t)} are (wide-sense) cyclosta-
tionary with period 7. If {y;(#)} is sampled with period T',
the sampled process is (wide-sense) stationary.

We assume the channels to be FIR, In particular, after
sampling we assume the (vector) impulse response from to
be of length N. The discrete-time received signal can be
represented in vector form as

N1
y(k) = Y h(ia(k—i) + v(k) @
i=0
= HApn(k)+v(k);H=[H, - --H,]
We consider additive temporally and spatially white Gaus-

sian circular noise v (k) with Ry, (k—i) = E {v(k)v¥ (i)} =
021,0i. Assume we receive M samples : '

Y (k) = Tar (H) Angpiu-1)(k) +Vm(k) ()

H " H
where Yar(k) = [Y#(k) - Y (k= M +1)| and Var (k)
is defined similarly whereas 7p(H) is the multichannel
convolution matrix of H, with M block lines and 737 (H')
is block Toeplitz. The input symbols are deterministic.

3. LDU FACTORIZATION OF A COVARIANCE
MATRIX

From Ryy = E{YY#}, under the identifiability condi-
tions, we can identify o2 as the singular vector correspond-
ing to the minimum singular value of Kyy. Let Y be the



prediction error, then, as ¥ can be perfectly predicted in the
absence of noise, the covariance of the error can be written
as

Ryy — Ryp RE,Ryy =0=> Ryp RE Ry, =U¥ DU
(4)

where # denotes a generalized inverse.
Consider we perform a block triangularization, exami-

nation of the rank of Ryy ~ o7 = T(H)TH(H)o} leads
to, for block ¢

=1 yi2L
rank(D;) ={ =m-me{2,...,m} ,i=L-1
= m ,i<£—1
(5)
wherem = (m—-1)L-N—-1€{0,1,...,m}and L =

m—1
As the prediction of Y = Yz (k) is perfect from instant
L+ 1on,int > L, g(k — t) contains the emitted symbols,
apart from a unitary matrix, which is consistent with the
rank profile of D;. Furthermore, denoting U/ (i, j) as the
(#,5) block of U, UH = R, implies:

UH(i,j) = E{y(k—i)'gﬂr(k"j)}
N-1
= S H®OE{a(k—i-)T a¥ (k- j)}
£=gorz',j >L
= aH(j-—-i)O'g

(6)
where « is a constant scalar. Hence, we can identify the

channel, up to a constant, by triangularization of the covari-
ance matrix of the received signal.

4. APPLYING THE GENERALIZED SCHUR
ALGORITHM TO LDU FACTORIZATION OF Ryy

In [2], we used the so-called "biased estimator™ of the cor-
relation sequence

Ryy(i = Z‘y

because the matrix formed wuh these estimators is, by con-
struction, block Toeplitz and definite positive. Use of this
estimator leads to a stochastic method, which has the ad-
vantage of being robust to the overestimation of the order
and, in a multiuser environment, to give the channel up to
an unijtary constant matrix.

In thls paper we use the "sample covariance matrix”
(Ryy = 4 2M 1Y (t)Y # (¢), where y(k) = Ofork =>
M), which has a displacement rank of 2(m-1), having thus
a different structure as the true covariance matrix.

vt +1),

5. USE OF THE GENERALIZED SCHUR
ALGORITHM

5.1. Some basics

The displacement of a n x n Hermitian matrix is defined
as VR 2 R— Z,RZY, where Z, is a n x n lower shift
matrix with ones on the ™ sub-diagonal !. The rank r of
V R is called the displacement rank and can be shown to be
equal to 2m for the covariance matrix Ryy (—c'21). More-
over, we can factor VRyy as VRyy = GEGH where
E = (Im ® —1I,s) is called the signature matrix and G the
generator of Ryy. One can easily check that, denoting the
blocs r; 2 Rys/*(0) Ryy (i), Ryy of size Km x Km and
Ryy = [ri—jli ;- '

To 0
g1 1 I 0
VRyy = : : [ 0 —Im]
| "K-1 TK-1 | "
- ro 0
Lif] 1

| TK—-1 TK-1 |

Proceeding by block, the generalized Schur algorithms
starts with the generator G(°) = G, forms

o = s |0 ) )
R I O [

0 i) o ef)

o o &Y ... 7

™

‘where S(1) is a block hyperbolic Honseholder transforma-

tion (such that it is = unitary : i.e. SUESMY = ¥). Then
G is the generator of the Schur complement of Ryy

with respect to rg. Continuing this process further, we get
(0) ,.(0) (0}
r r o

“ ¢ 1 TR-1
® .. L

Ryy = UFDU where 7 = | © "o T Tk-2
: : . K;-

0 o0 ... fEY

broader definitions can be found in [8, 1).



5.2. Applying it to LDU factorization of Ryy

We can write Ryy = YY¥ where

y(0) v(1) y(M-K+1)
po| YO K
wEK-1) yE) - y(M)

and Y can be written as 7 (H ).A for some Toeplitz matrix
A. Hence, Ryy = T(H)AA? T(H)" which implies that
Ryy has a displacement rank 2m+ 2 and it’s generators are

o yM-K4+1) 0 0
n Yy M-K+2) n y(0)

v(M) ke p(K —2)

TK-1
Partitioning the received signal matrix as
M| _|Th | 0 Ay
Bl e

we can express the estimation error on Y, as Y, = Vs —
WY OhYH )_1 Y= szﬁq , where P;P- is the orthog-
onal projection on the span of J;. From 8, P;:‘ = Pf;‘{.;,
hence

Vo If = TaAsP i AY TS ©)

where 3, ¥ is the Schur complement of the lower block in
M ﬁyy .

The Toeplitz nature of .4 shows that the displacement
rank of A;P%nAfl is 4, hence the displacement rank of

¥, ¥ is also 4, provided the size of 7; is biggerthan L x L
blocks.

From this structure, one can write the Schur comple-
ment in the displacement form as

4
VY5 =3 (TL)TL)®

i=1

and the generators can be seen as the convolution of the
channel with the prediction filter of the data. Hence, once
we have found the generators, it suffices to take the gener-
ator corresponding to the maximum positive eigenvalue of
the generator matrix and separate the channel part from the
prediction part, by any suitable mean (g.g. subspace fitting
or less complex methods). This completes the deterministic
Schur algorithm we implemented.
Remarks

This displacement structure could lead to more involved
algorithms, using the 4 generators to find the channel, lead-
ing to marginally better performance. From the structure
here above, it can be clearly seen that the extension to the
multiuser case is “trivial”, as the displacement rank of
AszFAgf is then 2p + 2, where p is the number of users.
But the very deterministic nature of the method leads then
to identifiability up to a dynamical matrix (see [3]). An-
other way of performing a stochastic Schur channel identi-
fication is then to assume that A;P% nAf' = I, which leads

toL; = IJ('E).

SCHUR ESTIMATION PROCEDURE

1. Calculate the sample covariance matrix ﬁyy then
Ryy — Amin(Ryy )/

2. Calculate ﬁyﬁ .

3. Proceed with the Schur iterations as in (7) until the
L™ jteration.
4. Either

« collect the first columns of the generator.

o calculate the g, the eigenvector of the generator
corresponding to the maximum eigenvalue.

¢ calculate the channel by any deterministic
method from g.

6. SIMULATIONS

In order to evaluate the performance of the algorithms, we
have computed the Normalized MSE (NMSE) on the esti-
mated channels, averaged over 100 Monte Carlo runs. We
have used a randomly generated channel with channel length
N = 5, and m = 3 sub-channels. The symbols are i.id.

BPSK and the data length is M/ = 100. The constant scalar
H
has been estimated afterwards as o = % where H; =
¢ ]
[R(0)T ... A(N — 1)7]

We evaluate the performance of the deterministic and
stochastic Schur algorithms and of the subspace algorithm
7. -

For the stochastic Schur algorithm, we used the proce-
dure detailed in [2]. For the deterministic algorithm, we
explicitly calculated the displacement matrix of the Schur
complement in the sample covariance matrix, faster algo-
rithms can be found in [8, 4]. Further on, we computed the
maximum eigenvector of this matrix and performed a sub-
space fitting on this vector to get the actual channel.
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Comparison between Schur and subspace algorithms
Curves show that the deterministic Schur algorithm gives

results comparable to the subspace algorithm, while the stochas-

tic Schur algorithm suffers from the well known flooring
effect at high SNR.

7. CONCLUSIONS

We have introduced a deterministic Schur method to iden-
tify multichannels blindly. Using the generalized Schur al-
gorithm to find the generators of a Schur complement of the
sample covariance matrix, we find these generators to be the
convolution between the channel and the source prediction
filters. Hence, we can deduce the channel exactly in the
noiseless case.

This algorithm is recursive in order, when using the gen-
eralized Schur algorithm adapted for singuilar matrices, and
can be coupled to a channel length estimator (and source
detector in the multiuser case) by examining the diagonal of
the LDU of Ryy — o2 1. The performance of this algorithm
is shown to be close to the subspace method, which is near
optimal (7].

Extension to the multiuser case can easily be done, but
lead to indeterminacy problems [3] (i.e. there remains a
convolutive mixture). Hence, further work should lead to in-
troduce some mix between the deterministic algorithm and
the stochastic one, using a softer conditionthan AP35 A =
1, in the form on a soft condition on the generators of this
matrix.
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