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Abstract—We study the user association problem in the context
of dense networks, where standard adaptive algorithms become
ineffective. The paper proposes a novel data-driven technique
leveraging the theory of robust optimization. The main idea is
to predict future traffic fluctuations, and use the predictions
to design association maps before the actual arrival of traffic.
Although the actual playout of the map is random due to
prediction error, the maps are robustly designed to handle
uncertainty, preventing constraint violations, and maximizing
the expectation of a convex utility function, which allows to
accurately balance base station loads. We propose a generic
iterative algorithm, referred to as GRMA, which is shown to
converge to the optimal robust map. The optimal maps have the
intriguing property that they jointly optimize the predicted load
and the variance of the prediction error. We validate our robust
maps in Milano-area traces, with dense coverage and find that
we can reduce violations from 25% (achieved by an adaptive
algorithm) down to almost zero.

I. INTRODUCTION

The explosion of wireless traffic is driving network opera-
tors to deploy heterogeneous sites and constantly increase base
station (BS) density, in an effort to improve the spectrum reuse
[1]. This trend is expected to culminate with the emerging
Ultra Dense Networks (UDNs) in the 5G and beyond era,
where a user located in an urban area will be surrounded by
hundreds of sites, while the available cells may be more than
the number of active users [2], [3]. Nevertheless, providing a
copious amount of resources is only the first step. A second
equally important step is to develop efficient resource man-
agement mechanisms in order to balance BS loads, under the
high spatio-temporal traffic variability resulting from the small
number of users per BS [4]. In the demanding environment of
dense 5G networks, user association (choosing a BS for each
user among a large number of candidates) and traffic steering
(serving a traffic flow from the right BS, carrier, etc.) must be
surgically engineered for proper exploitation of the increased
density [4].

A number of recent works attempt to formalize the problem
and find an optimal solution [4]–[8]. Nevertheless, these
frameworks are not ideal for Ultra-Dense Networks for two
main reasons:
• Spatio-temporal variability: Due to smaller user/site ratios,

the traffic demand will vary significantly more over time and
space, giving rise to unpredictable traffic spikes.

• Increased QoS requirements: With the rise of vertical ap-
plications, 5G networks are expected to support slices that
provide guaranteed Quality of Service (QoS). Unexpected
traffic spikes combined with dynamic association decisions
reacting to them, might lead the system to oscillations,
instability, and violation of QoS requirements.

Towards addressing these issues, this paper proposes a radi-
cally different approach based on two main components:

Data-driven user association maps pre-calculated for each
day and time period (e.g. per hour), based on estimates of
average traffic demand for that time, day, and location; these
maps proactively associate users/flows from certain locations
to certain BSs, rather than constantly oscillating association
decisions due to traffic spikes;

A robust optimization framework for user association that
takes into account the prediction error and protects system QoS
from traffic spikes. To our best knowledge, this is the first work
to propose such robust pre-calculated user association maps
for dense heterogeneous networks. Moreover, our work is the
first to explore an interesting new user association tradeoff
between facilitating traffic prediction vs. improving network
performance. These two goals are not always aligned, as it
will become clear in our analysis.

A. Related Work and our Contribution

Selecting the association rule vector π, that assigns each
new user to a base station, can be formulated as an opti-
mization problem that targets to maximize a utility function
of the resulting base station loads [5]–[8]. Such optimization
problems are usually difficult to solve, due to the coupling
of the user association decisions; adding a user alters the
base station load and affects the performance for all the users
connected to it. In the context of UDNs, the size of the problem
grows (100s of BSs in small areas with many locations or
users to be associated) and mounts an extra difficulty. Complex
optimization approaches fall short, since practical systems
require fast and lightweight solutions.

The integral user association problem is a combinatorial
problem [6], but in [7] the authors show that the solution of
their convex relaxation problem is indeed integral, enabling in
this way optimization of a general class of objective functions.
Later, [8] introduced backhaul constraints in the model. A
dynamic biasing scheme is proposed in [5] to load balance
heterogeneous wireless cells. All these algorithms and the
majority of prior work, assume that traffic characteristics are
known at a fine spatiotemporal granularity, which as explained
above is a key challenge in UDNs. Although not explicitly
addressed in the literature, the above schemes are adaptive
and can be used as heuristics in a scenario with unpredictably
fluctuating traffic, but it is clear that they can not guarantee
satisfaction of QoS requirements in this case. The goal of this
paper is to fill this gap in the literature.

A modern trend in networking problems is to tap into
the power of available data to deal with uncertainty [9]. For



wireless traffic, many prior works identify structure, like the
diurnal pattern during the day or the similarity of traffic during
the weekdays and weekends/holidays [10], [11]. However, up
to now it is far from clear how to best utilize the data and
the observed patterns for improving the performance of user
association. Our contributions in this paper are the following:
• We propose the idea of precomputing maps, that can be used

later to determine user association in real-time.
• To study the map performance we propose an analytical

data-driven framework for user association in the context of
dense wireless networks with unpredictable traffic spikes.
This leads us to the formulation of the robust user associa-
tion map (RUAM) problem.

• We then propose an efficient generic algorithm (GRMA) that
provably produces the optimal robust maps, for a large class
of objective functions.

• Finally we demonstrate the efficiency of our framework on
real data [12], compared to an adaptive version of a popular
user association algorithm [7]. Our simulations show that
we achieve more stability (up to 25% improvement) and
decreased average latency, especially in periods of high
traffic activity. Our framework can adapt to design choices,
balancing trade-offs in stability and cost, by tuning the SLA
guarantees.

II. ARCHITECTURE

A. System Model

We consider a region L ⊆ R2 with ultra dense cellular
coverage from a set of B (possibly heterogeneous) base
stations. This region we envision it as a 2D representation of
a dense urban environment with fixed base station positions.

Spatial traffic. Users at location x ∈ L, generate flow
requests according to an inhomogeneous Poisson point pro-
cess with spatial intensity λ(x) and have independently and
generically distributed file sizes with mean 1

µ .
Service Rate. The flows generated at a point x ∈ L that are

associated to a base station i ∈ B are served with rate Ci(x).
In our paper, Ci(x) is a location-dependent metric that depicts
the wireless signal degradation due to distance of x from the
base station i ∈ B.

Ci(x) = W log(1 + SINRi(x)), (1)

where W is the available frequency bandwidth, and SINRi(x)
is given by:

SINRi(x) =
PiGi(x)∑

j 6=i PjGj(x) +N0
. (2)

Pi denotes the transmission power of base station i, N0 denotes
noise power and Gi(x) is the path loss between the antenna
and the UE. This model has been shown to accurately capture
the average behavior of wireless systems including shadowing,
interference, and path-loss [5], [7], [8], [13].

Association Rules. Let πi(x) ∈ [0, 1] be the association
rules, indicating the fraction of traffic of location x associated
to base station i. To associate the total traffic of location x
we enforce the constraint

∑
i∈B πi(x) = 1. The association

Fig. 1. Representation of an association map.

variables πi(x), ∀x ∈ L will be the means to control the
performance of the system.

Base Station Load. The load ρi is the fraction of time
base station i is busy. The load contribution from a specific
location depends on the association rules, and it is equal to
λ(x)
µCi(x)

πi(x). Therefore, considering the area L:

ρi =

∫
L

λ(x)

µCi(x)
πi(x)dx. (3)

The vector of base station loads ρ = (ρi) is an important
performance metric of the system. For example, [14] suggests
that assuming a temporal fair scheduler (e.g. round robin,
proportional fair) the dynamics of the base station queues can
be accurately described by an M/G/1 processor sharing system,
where the expected number of active users at base station i is
given by E[Ni] = ρi

1−ρi . This is tightly related with average re-
sponse time for a flow in base station i, which from Little’s law
is E[Ti] = 1

λi

ρi
1−ρi , and with the average delay experienced

at a location x ∈ L: E[T |X = x] =
∑
i∈B

1
µCi(x)(1−ρi)πi(x),

which is derived from the flow throughput equation in [14].
In the following sections we will focus on how to choose

association rules πi(x),∀x ∈ L to achieve specific vectors
ρ that correspond to important network-wide objectives, e.g.
total throughput, average queuing delay, or balancing base
station loads.

B. User Association Maps

In this paper we are interested in precalculated association
rules π, which we call user association maps. When a request
is generated at a given location, the map probabilistically
determines the base station that will serve the user. A feasible
map π must (a) associate to base stations the entire traffic of
every location x and (b) ensure through Eq.(3) that the base
station loads are limited to < 1 (since ρi > 1 means that base
station i is unstable).

Definition 1 (Feasible user association map).
F = {ρi ≤ 1− ε, ∀i ∈ B∑

i∈B
πi(x) = 1, ∀x ∈ L

πi(x) ∈ [0, 1], ∀i ∈ B,∀x ∈ L}.

(4)

As given in Def.1, F includes only the most generic and
necessary constraints. Our model can be extended to include



application-specific constraints. For example, in the context of
UDNs user experience can be improved in crowded locations
by further restricting the load of certain base stations, e.g.,
ensuring ρi < ci < 1 for some i; this constraint is handled
in this paper. In the context of network slicing, it is useful to
define multiple classes of users and design a different map per
class such that a user can enjoy a slice-specific QoS level. For
clarity of exposition, this extension is left for future work.

Definition 2 (Objective Function). φ(π) is a generic differ-
entiable and seperable convex function.

Problem 1 (P1: Generic User Association Problem).
minimize
π∈F

φ(π). (5)

The goal of this paper is to provide an algorithm that
optimally solves the generic optimization P1 for any choice
of φ(π). We can later tune the shape of φ(π) to drive the
system performance according to our objective. We give here
some examples: (i) choosing φ(π) =

∑
i ρi maximizes the

total system throughput, (ii) choosing φ(π) =
∑
i ρ

2
i balances

the base station loads, (iii) choosing φ(π) =
∑
i ρ
α
i , α→∞

makes base station loads as equal as possible. In fact, it can
be shown that φ(π) as given in Definition 2 can be tuned to
yield as solution any Pareto-efficient vector π, and therefore
we do not need more generic functions.

Definition 3 (Optimal User Association Map). A solution of
P1 π? is called the optimal user association map.

Observe that the optimal solution of P1 strongly depends on
knowing the demand λ(x) (through Eq.(3)) at a fine spatial
granularity x. A number of related works take these as known
assuming that they can be estimated from data, cf. [7] and
followups. In practice, due to the natural demand fluctuations
(especially related to non-stationary phenomena) there will al-
ways be discrepancies between actual and estimated demand,
even with the best estimators.

In the context of UDNs, this poses a great threat to user
association, as due to the small number of users per BS,
the discrepancies are expected to be larger. To this end, we
introduce next our proposed estimators, and then describe how
to rigorously treat these unpredicted discrepancies, to avoid
violating Service Level Agreements (SLAs).

C. Statistical Methods for Mobile Traffic Prediction
Mobile traffic exhibits strong diurnal patterns, which make

it predictable; the interested reader is referred to [10], [11]
and [15] for extensive analyses. We use a publicly available
dataset collected in the Milano area, analyzed in [11], wherein
it has been observed that the daily pattern is stronger when
considering each day of the week and each location on the
Milano grid separately. Motivated by this we propose the
following traffic predictor.

Definition 4 (Traffic Predictor). Let Xt,d
i (x) denote the mea-

sured intensity (#of arrivals/h) at location x, hour t, and day
d of the week, i weeks before the current. The predicted spatial
intensity is based on the data of the last n weeks:
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Fig. 2. Traffic Prediction based on Eq.(7) for 3 different areas of Milano
from Monday 2/12/2013 to Friday 6/12/2013 and comparison with the actual
traffic (a) Duomo Area (b) Navigli District (c) Bocconi University.

λ̄t,d(x) =
1

n

n∑
i=1

Xt,d
i (x). (6)

Hereinafter, we focus on a single hour/day slot of the week
and drop the notation t, d. The actual value of traffic intensity
is modeled to be equal to the predicted one λ̄(x), plus a zero-
mean Gaussian prediction error:

λ̂(x) = λ̄(x) +Nn(x), (7)
where Nn(x) ∼ N(0, σ2

n(x)), and σ2
n(x) is the sample

variance, which is given by

σ2
n(x) =

1

n

n∑
i=1

(Xi(x)− λ̄(x))2.

In Eq.(7) we have implicitly assumed that the observed data of
a specific hour of a week are drawn from the same distribution
across different weeks, in which case Eq.(7) follows from
Eq.(6) and the central limit theorem.

In Fig.2 we evaluate our simple predictor on the Milano
dataset [12]. We have trained the predictor for the whole
November and used it to predict the first week of December
(2-6/12/2013). We see that our model predicts accurately the
traffic in most situations for three areas with heterogeneous
behavior: 1) the Duomo, with tourist activity 2) the Navigli
District, with nightlife activity and 3) the Bocconi University,
with working hours activity. More advanced techniques like
the ARIMA model [16] can be used for improved predictions,
but this is left for future work.

Although the described traffic prediction is fairly accurate,
there are spikes in the traffic which are non-stationary and
cannot be predicted based on past data, for example see in



Fig.2 at the peak hour on Friday at Duomo (108 hour). If we
design the association map disregarding the prediction error,
these unpredictable spikes can lead to constraint violations.
The next lemma characterizes the behavior of the base station
load as a function of the prediction error.

Lemma 1. Fix (t, d), and let the hourly spatial intensity of
traffic λ̂(x) be related to the predicted one as explained in
Eq.(7). Fix the user association vector π. The actual load ρ̂i
of base station i is related to the estimated one ρi as follows:

ρ̂i = ρi(π) + Yi(π), (8)
where Yi is the base station load prediction error, it is zero
mean Gaussian random variable with variance:

S2
i (π) =

∫
L

π2
i (x)

µ2C2
i (x)

σ2
n(x)dx. (9)

Proof. Analytically, starting from the estimate of λ(x):
λ̂n(x) = λ(x) +Nn(x)

λ̂n(x)

µCi(x)
=

λ(x)

µCi(x)
+
Nn(x)

µCi(x)∫
x∈L

λ̂n(x)

µCi(x)
πi(x)dx = ρi +

∫
x∈L

Nn(x)

µCi(x)
πi(x)dx

ρ̂i = ρi + Yi.

(10)

The aggregate noise that is generated from all the locations
x ∈ L associated with a base station i is described by
the random variable: Yi =

∫
x∈L

Nn(x)
µCi(x)

πi(x)dx and Yi ∼
N(0,

∫
L

π2
i (x)

µ2C2
i (x)

σ2
n(x)dx), since Nn(x) ∼ N(0, σ2

n(x)).

We emphasize that the variance of the error of the pre-
dicted load S2

i (π) depends on the association rule π, Eq.(9).
Intuitively, the less predicted traffic we associate to a base
station, the less confident we are that the actual load will
match the predicted, and thus the more conservative we need
to be to avoid the violation of its load constraint. This leads
us to an interesting observation: to optimize user association
maps under uncertainty we must select the rules π considering
jointly their impact on the prediction error and the base station
load objective. To capture this tradeoff accurately we introduce
the concept of RUAM.

D. Robust User Association Maps

In order to optimize user association maps under uncer-
tainty, we will reformulate P1 using the theory of robust
optimization [17],[18]. In terms of objective function, we seek
to optimize E [φ (ρ̂i)], where φ is the objective function of
Definition 2, and the expectation is taken with respect to the
Gaussian prediction error. In terms of constraints, we require
that the actual BS load does not exceed a tunable parameter
ci with a selected probability ε:

Prob(ρ̂i ≥ ci) ≤ ε. (11)
Therefore, the robust feasibility set Fr contains association

maps π, such that the predicted base station load ρ(π) and
the prediction error variance S(π) satisfy certain conditions
as explained below.

Problem 2 (P2: Robust User Association Problem).
minimize
π∈Fr

E [φ (ρ(π) + Y (S(π)))] , (12)

where Fr:
Fr = {Prob(ρ(π) + Y (S(π)) > ci) ≤ ε∑

i∈B
πi(x) = 1

πi(x) ∈ [0, 1]}.

(13)

Definition 5 (Robust User Association Map). The solution of
P2 π? is called the robust user association map.

The robust user association map is our novel proposition in
this paper. Using past data, we propose to precompute robust
maps that will be played out with actual traffic to determine
the association at runtime. The maps are easy to use, while at
the same time they provide minimum expected cost, and allow
us to control the probability of constraint violation. Hence, it
is a disciplined and practical approach to optimize the system
using data.

Solving P2 is challenging. There is a great number of opti-
mization variables, increasing with the quantization accuracy
for area L. Also, in its current form, Eq.(12) is a stochastic
program. In the next section we will present an optimal
generalized algorithm that overcomes these challenges.

III. GENERALIZED ROBUST MAP ALGORITHM

We present GRMA: a generalized algorithm for solving the
Robust User Association Problem P2 when φ(π) is a differen-
tiable and convex objective function. First, we transform the
problem into a convex program by replacing the stochastic
constraint Eq.(11) with an equivalent convex constraint. Next,
we relax the new constraint; the feasibility set of the relaxed
problem is a simplex and we can solve it with an efficient
projected gradient algorithm. Finally we present the GRMA
algorithm, which is based on a dual subgradient method with
averaging on the primal sequence π(k) and show that it
converges to the optimal robust map.

A. Convex Formulation

To make P2 a convex program, we will replace the stochas-
tic constraint Prob(ρ̂i ≥ ci) ≤ ε in Fr with an equivalent
convex constraint that guarantees protection with ε probability.

Lemma 2. The inequality Prob(ρ̂i ≥ ci) ≤ ε is equivalent
to ρi + αSi ≤ ci, when ρ̂i = ρi + Yi is taken according to
Eq.(8), where Yi is normally distributed with zero mean and
variance and α = Q−1(ε), where Q(·) is the tail probability
of the standard normal distribution.

Proof. Starting by the probabilistic constraint we have:
Prob(ρ̂i ≥ ci) ≤ ε⇔ Prob(Yi ≥ ci − ρi) ≤ ε,

Yi is normally distributed with Yi ∼ N(0, S2
i ). If Q is the Q-

function (tail probability of the standard normal distribution),
we can rewrite the above equation as:

Q(
ci − ρi
Si

) ≤ ε.



The inequality is satisfied for all ci−ρi
Si

that:
ci − ρi
Si

≥ Q−1(ε)⇔ ρi +Q−1(ε)Si ≤ ci.

From Q−1(ε) it is evident that ε is a design parameter that
affects the feasibility region Fr. Small values of ε protect from
violations, but can lead to very inefficient association vectors.

Now, we can define the new set Fc and prove it is convex.

Definition 6 (Convex Feasibility Set Fc).
Fc = {ρi + αSi ≤ ci∑

i∈B
πi(x) = 1

0 ≤ πi(x) ≤ 1}.

(14)

Lemma 3. The constraint ρi + αSi ≤ ci is convex.

Proof. Consider two vectors π1,π2 ∈ Fc. We first show that
Si(θπ1 + (1 − θ)π2) ≤ θSi(π1) + (1 − θ)Si(π2), where
θ ∈ [0, 1]. Denote w(x) = Sn(x)

µCi(x)
We begin by:

S2
i (θπ1+(1−θ)π2) =

∫
w2(x)(θπ1(x)+(1−θ)π2(x))2dx

= S2
i (θπ1)+S2

i ((1−θ)π2)+2θ(1−θ)
∫
w2(x)π1(x)π2(x)dx

and

(Si(θπ1) + Si((1− θ)π2))2 =

S2
i (θπ1) + S2

i ((1− θ)π2) + 2Si(θπ1)Si((1− θ)π2)

From the Cauchy-Swartz1 inequality we have that: 2θ(1 −
θ)
∫
w2(x)π1(x)π2(x)dx ≤ 2Si(θπ1)Si((1− θ)π2), hence:

S2
i (θπ1 + (1− θ)π2) ≤ (Si(θπ1) + Si((1− θ)π2))2 ⇔
Si(θπ1 + (1− θ)π2) ≤ Si(θπ1) + Si((1− θ)π2)⇔
Si(θπ1 + (1− θ)π2) ≤ θSi(π1) + (1− θ)Si(π2).

We have proven that Si is convex, by inspection ρi is also
convex, and since the sum of positive weighted convex terms
is also convex, it follows that the constraint is convex.

The set Fc is convex because the constraints in Eq.(14)
are convex. Based on Lemmas 2 and 3, and the fact that the
expectation of a convex function of a random variable is also
convex, we can now recast P2 as a convex program:

Problem 3 (P3: Convex Robust User Association Problem).
minimize
π∈Fc

E [φ (ρ(π) + Y (S(π)))] . (15)

Hence, in the next subsections we focus on resolving the
issue of high dimension (great number of variables) optimiza-
tion with the coupled constraints.

B. Partial Lagrangian Relaxation

The feasiblity set Fc is convex, but the constraints couple
locations and base stations for every association vector and
make the implementation of an efficient algorithm challeng-
ing. To efficiently solve this, we propose to relax the load

1Define f(x) = w(x)π1(x) and g(x) = w(x)π2(x), then we have that
|
∫
f(x)g(x)dx|2 ≤

∫
|f(x)|2dx

∫
|g(x)|2dx

constraint. The remaining feasibility set after the relaxation
is the simplex F ′ = {π|

∑
i∈B πi(x) = 1, πi(x) ∈ [0, 1]},

and there is rich literature on how to apply projected gradient
algorithms in simplices, cf. [19],[20]. Our idea here is to keep
as many constraints as possible as long as we know how to
project infeasible solutions on them, while we relax the rest.
Notice that if we would relax all the constraints, we would get
an easy unconstrained convex problem, but the coordination of
a large number of Lagrangian multipliers would prohibitively
delay the solution.

Let us consider the following partial dual maximization,
which will be instrumental in solving our problem:

Problem 4 (P4: Partial Dual Robust Problem).

maximize
γ≥0

{
min
π∈F ′

{Φ(π,γ}
}
, (16)

where the partially relaxed Lagrangian is:
Φ(π,γ) = E[φ(π)] +

∑
i∈B

γi(ρi + αSi − ci). (17)

In Eq.(17) the vector γ contains the Lagrangian multipliers.
The multipliers penalize association maps which violate the
load constraint with extra cost (γi ≥ 0), which increases
linearly the more overloaded a base station gets. Henceforth
we assume that the Slater’s Condition holds, which we expect
to be the case for all practical purposes in our problem;
therefore, the optimal solution of P4 has equal cost with the
optimal primal for the P3 (Strong duality [21]).

C. Projected Gradient Descent

In this subsection we design an algorithm to efficiently solve
the inner minimization subproblem in Eq.(16). For a given γ?,
we have to find the map that minimizes the cost:

minimize
π∈F ′

{Φ(π,γ?)} . (18)

We design the Projected Gradient Descent (PGD) algorithm
to solve this problem motivated by the fact that gradient algo-
rithms have been shown in the literature to have independent
convergence rate from the dimension (number of variables) of
the problem [22, Ch. 3]. Also, the projection onto F ′ (simplex)
can be solved exactly and efficiently. The algorithm is:

Projected Gradient Descent (PGD) on F ′

Initialize: π(0) (can be infeasible), γ?.
Iterate: over n, until convergence
y(n+1) = π(n) − s(n)∇πΦ(π(n),γ?) (19)
π(n+1) = Πsplx[y(n+1)] (20)

Where Πsplx is the projection on F ′:
Sort y(n+1) in descending order (y1 ≥ y2 ≥ . . . ≥ y|B|)
Select m = argmax

j∈B
{j | yj + 1

j (1−
∑j
i=1 yi) > 0}

π
(n+1)
i =

[
yi + 1

m (1−
∑m
i=1 yi)

]+
, i = 1, . . . , |B|

Eq.(19) implements the gradient update of the user associa-
tion π(n) one step along the direction of the gradient with fixed
step size s(n). Eq.(20) is the orthogonal projection of y(n+1)



onto the set F ′, which is a simplex. Πsplx, as described here,
is shown in [20] to give an exact solution to the projection in
O(|B| log |B|).

Proposition 1 (Convergence Rate of PGD). Let π(n) be the
projected output of PGD algorithm at iteration n, and π? be
an optimal solution of (18), it is shown in [22, Ch. 3.2]:

||π(n) − π?|| = O(1/n).

D. Dual Subgradient Method

We return to the task of solving P4. The objective of
this problem D(γ) = min

π∈F ′
{Φ(π,γ)} is not γ-differentiable

everywhere, hence we will resort to a subgradient method
[23],[24] for updating the value of the multipliers.

Proposition 2 (Subgradient Vector). The vector:
g(k) = ρ(π(k)) + αS(π(k))− c,

where

π(k) ∈ argmin
π∈F ′

{
E[φ(π)] +

∑
i∈B

γ
(k)
i (ρi + αSi − ci)

}
, (21)

satisfies
||D(γ(k+1))−D(γ(k))|| ≤ g(k)||γ(k+1) − γ(k)||

as shown in[23, Ch. 6.1], hence is a subgradient of D(γ) at
γ(k).

We now show that the norm of the subgradients is bounded;
a necessary property for the convergence of the method.

Lemma 4 (Bounds on the Subgradient). The subgradient
sequence {g(k)} is bounded:

||g(k)|| < L, (22)
where

L =

√√√√∑
i∈B

(∫
x∈L

λ(x)

µCi(x)
dx+ α

∫
x∈L

σ2
n(x)

µ2Ci(x)2
dx

)2

.

(23)

Proof. The set F ′ is a simplex (compact). The constraints
gi, i ∈ B are convex over Rn, hence they are continuous
over Rn. The norm of the subgradients is upper bounded by
max
π∈F ′

||g(π)||. This is smaller than assigning all the locations
x ∈ L to all base stations, hence the norm of the subgradients
is bounded by the easy to calculate Eq.(23).

The subgradient method updates the multipliers γ(k) by
making a step along the direction of the subgradient vector:

γ(k+1) = [γ(k) + s(k)g(k)]+. (24)

For dual problems with a unique solution, the above algo-
rithm converges to the unique optimal dual vector γ?, and with
this we can calculate the optimal robust map π? by a single
run of PGD algorithm. However, P4 is not strictly convex, and
therefore its dual may have multiple solutions. The subgradient
method may converge to a solution (π,γ) which does not
satisfy complementary slackness and hence π is not feasible
in P3 (it will violate the load constraint). To alleviate this

issue we will use the technique of averaging: the idea is to
output as a solution the average of the primal iterates π(k)

(feasible or not). We will show that the sequence of averages
π̄(k) converges to the optimal solution of P3.

Generalized Robust Map Algorithm (GRMA)

Initialize: π(0) (e.g. max-SINR, can be infeasible), γ(0).
Iterate: over k, until convergence
γ(k+1) = [γ(k) + s(k)g(k)]+

π(k+1) ← PGD(γ(k+1))

Keep the running average of the π(k) (Eq.(21)):
π̄(k) = 1

k

∑k−1
i=0 π

(i)

Theorem 1 (Convergence to Primal Optimal). The average of
the primal iterates π̄(k) = 1

k

∑k−1
i=0 π

(i), where

π(i) ∈ argmin
π∈F ′

E[φ(π)] +
∑
j∈B

γ
(i)
j (ρj + αSj − cj)

 ,

(25)
asymptotically converges to (or approximates) the optimal
robust association map π?, i.e.:

lim
k→∞

||g(π̄(k))+|| → 0 and lim
k→∞

φ(π̄(k)) = φ(π?).

Proof. We use a constant step size, hence s(k) = s. We also
denote γ? as the optimal multipliers and

d? = max
γ≥0

{
min
π∈F ′

{Φ(π,γ}
}

is the optimal value of the dual problem. First we prove that the
load constraint violation for the vector π̄(k) is upper bounded
as follows:

||g(π̄(k))+|| ≤ ||γ
(k)||
ks

. (26)

By updating the dual as described in Eq.(24), we have:
sg(π(k)) ≤ γ(k+1) − γ(k), ∀k ≥ 0.

Summing telescopically for i = 0, 1, . . . , k − 1 we get:
k−1∑
i=0

sg(π(i)) ≤ γ(k) − γ(0) ≤ γ(k), ∀k ≥ 1. (27)

Also, since g(π̄(k)) is convex, we have that:

g(π̄(k)) = g(
1

k

k−1∑
i=0

πi) ≤ 1

k

k−1∑
i=0

g(π(i))

=
1

ks

k−1∑
i=0

sg(π(i))
Eq.(27)
≤ γ(k)

ks
.

Taking norms for the active constraints (g(π̄(k)) ≥ 0) gives
Eq.(26). Since the Lagrangian multipliers are bounded [24,
Lem.3], the first result follows. Next, we will prove that the
objective function for the vector π̄(k) is upper bounded by:

φ(π̄(k)) ≤ d? +
||γ(0)||2

2ks
+

s

2k

k−1∑
i=0

||g(π(i))||2. (28)



(a)
Iterations

0 200 400 600

C
os

t

11.2

11.4

11.6

11.8

12

12.2
Maximum Rate Map

C
on

st
ra

in
t 

V
io

la
ti
on

0

0.1

0.2

0.3

0.4

0.5
Cost
Violation

(b) (c)
Iterations

0 200 400 600

C
os

t

8.2

8.4

8.6

8.8
Proportional Fairness Map

C
on

st
ra

in
t 

V
io

la
ti
on

-0.1

0

0.1

0.2
Cost
Violation

(d) (e)
Fig. 3. Association Maps (a) Voronoi Cells (b) GRMA convergence for max rate (c) robust maximum rate map (ε = 0.05) (d) GRMA convergence for
proportional fairness (e) robust proportional fair map (ε = 0.05).

From Eq.(24):
||γ(i+1)||2 ≤ ||γ(i)||2 + s2||g(π(i))||2 + 2sγ(i)g(π(i))⇔

− γ(i)g(π(i)) ≤ ||γ
(i)||2 − ||γ(i+1)||2 + s2||g(π(i))||2

2s
.

By taking the telescoping sum we have:

−1

k

k−1∑
i=0

γ(i)g(π(i)) ≤ ||γ
(0)||2 − ||γ(k)||2

2ks
+

s

2k

k−1∑
i=0

||g(π(i))||2

≤ ||γ
(0)||2

2ks
+

s

2k

k−1∑
i=0

||g(π(i))||2.

(29)
As before, since φ(π) is convex:

φ(π̄(k)) = φ(
1

k

k−1∑
i=0

π(i)) ≤ 1

k

k−1∑
i=0

φ(π(i))

Eq.(30)
≤ 1

k

k−1∑
i=0

D(γ(i))− 1

k

k−1∑
i=0

γ(i)g(π(i))

≤ d? − 1

k

k−1∑
i=0

γ(i)g(π(i))

Eq.(29)
≤ d? +

||γ(0)||2

2ks
+

s

2k

k−1∑
i=0

||g(π(i))||2.

The second inequality is true because π(i) is a minimizer of
the Lagrangian Eq.(25) and:

φ(π̄(k)) ≤ 1

k

k−1∑
i=0

Φ(π(i),γ(i))− 1

k

k−1∑
i=0

γ(i)g(π(i)). (30)

By taking k →∞ on Eq.(26) shows that π̄(k) is feasible and
on Eq.(28) shows that φ(π̄(k))→ d?. The result follows.

E. Example Applications of GRMA

First, we consider the maximum expected rate objective,
where the optimal map will associate every location x to the
base stations that provide the highest physical rate Ci(x). This,
according to Eq.(3) is identical to minimizing the sum of loads.
Hence, taking expectation of the cost of the predicted ρ̂:

E

[∑
i∈B

ρ̂i

]
=
∑
i∈B
E[ρi + Yi] =

∑
i∈B

ρi.

Robust Map 1 (RM1: Maximum Expected Rate Map). The
optimal maximum expected rate map π? is the solution of:

minimize
π∈Fc

{
∑
i∈B

ρi}. (31)

TABLE I
SIMULATION PARAMETERS [27]

Parameter Variable Value

Transmission Power Macro BS PM 43 dbm

Transmission Power Micro BS Pm 33 dbm

System Bandwidth W 10 MHz

Noise Density No -174dbm/Hz

Path Loss Exponent Plo 3

Next we consider the penalty proportional fairness associ-
ated to the objective φ(π) =

∑
i
ρ2i
2 [25], [26]. This condition

leads to a load balancing trade-off, where base stations in high
traffic areas are allowed to be more loaded in the benefit of
higher total throughput. Taking expectation:

EY

[∑
i∈B

(ρi + Yi)
2

2

]
=
∑
i∈B

E[ρ2i + S2
i + 2ρiSi]

2

=
∑
i∈B

ρ2i + S2
i

2
.

Robust Map 2 (RM2: Proportional Fair Map). The optimal
proportional fair map π? is given by:

minimize
π∈Fc

{∑
i∈B

ρ2i + S2
i

2

}
. (32)

Figure 3 shows the progress in iterations towards conver-
gence and feasibility of GRMA and an illustration of the
optimal robust map produced when applied on a network
setup of heterogeneous base stations in an area with highly
variable and dense traffic. In Fig.3b and 3d, we can see
that for both objectives GRMA, after 200 iterations, produces
feasible solutions with almost optimal cost. In the maximum
rate map 3c, we can see the similarities with Voronoi cells
3a, at locations where the expected traffic is low, while at
heavy traffic locations we have curved boundaries, enforced
by the load protection constraint. In proportional fair map 3e,
the cells are very different from the other two cases.

IV. NUMERICAL EVALUATION

A. Simulation Setup

Here, we will compare the proposed robust user association
maps to an adaptive version of a popular user association
algorithm from the literature [7], with the same optimization
objective. At every network update (10 minutes), the adaptive
algorithm calculates the average load experienced on the



previous slot and settles to a new association vector, while
on the other hand we apply our precalculated map for every
hour. The accrued cost is the value of the objective function,
based on the actual input at that time slot and on the user
association policies currently active. The average delay is the
average response time for a flow in the network. Finally, we
count violations as the percentage of time in which the system
has an or some overloaded base stations; this happens when
either an SLA with a load threshold ci is violated or when
some of the base stations are overcumbered by traffic (ρi > 1).

We will experiment on the Milano dataset [12], which pro-
vides spatially aggregated data about the telecommunication
activity. The data are grouped on a regular grid overlaying
the territory of Milano with 100× 100 squares. Consequently,
the grid designates the area L and every square is a location
x ∈ L to be associated with base stations. For every square of
this grid the data set contains the aggregate per ten minutes
telecommunication events in the period of 01/11/13-01/01/14.
In this work we consider weekdays (Monday to Friday)
which are non-holidays, since then the volume of traffic
is increased. We want to emphasize that our framework is
especially effective for holidays, and other rare but predictable
occasions, like a football match or a concert, for which
network operators can reserve a special map, tuned to an
exceptional increase/decrease in predicted traffic.

We choose an architected setup of 40 base stations with
fixed positions, spread over the area, with higher density on
the area that is the city center. We specifically design this
subset of base stations, to accurately simulate a simplified
environment of a UDN, bringing in the front all the aspects of
the user association problem. In the simulations scenarios we
will consider two alternative base station setups. One, in which
all the traffic is served by the small cells, as envisioned for
future 5G UDNs, cf. [1], and one is with the two tier structure,
which is dominant in current networks. The LTE parameters
used in the simulation are given in table I.

B. Robust Maps vs Adaptive Algorithm

In the first experiment we focus on the choice of ε and the
effect it has to the performance of a robust map. In theory
the choice of smaller ε shrinks the feasibility space, allowing
only maps that provide an ε probability protection guarantee
(Eq.(11)). This should correlate with the violation metric in
the results and also we expect slightly increased cost due
to eliminating cheaper but more risky configurations. This
behavior is well observed in the results.

In tables II, III, we present performance results for different
values of ε during rush hours and in general. We observe that
the robust maps typically incur a small increase of cost (<
10% in average, and < 18% during peak hours) with respect to
the adaptive algorithm. On the other hand, the robust approach
provides extraordinary guarantees against traffic fluctuations.
In particular, we observe a significantly better average delay
(≈ 30% better) and much less violations (0 instead of 25%
of the adaptive algorithm). We also observe that selecting a
more relaxed ε = 5%, 10%, reduces the cost, but deteriorates

TABLE II
AGGREGATE RESULTS 1ST WEEK OF DECEMBER MICRO SETUP

ε Average Cost Average Delay (s) Violations (%)

Adaptive 6.001 1.700 13.1

10% 6.462 1.353 2.3

5% 6.485 1.319 1.6

0.1% 6.596 1.267 0

TABLE III
PEAK TRAFFIC 1ST WEEK OF DECEMBER MICRO SETUP

ε Average Cost Average Delay (s) Violations (%)

Adaptive 9.671 2.858 24.6

10% 10.911 2.251 7.7

5% 11.000 2.140 3.1

0.1% 11.415 2.030 0

the performance with respect to average delay and violations
of the max load in the duration of the simulation.

Moreover, in Fig.4 we depict the time evolution of the
system under the two considered approaches (the robust map
and the adaptive algorithm). Comparing the two approaches in
this scenario, we see that the robust maps yield 0% violations
vs 13% of the adaptive algorithm, this improvement leads
to a much better delay performance. Notice, that the spikes
in average delay in Fig.4(b) correspond to load constraint
violations in Fig.4(a). Additionally, the improvements in the
performance guarantees come at a very small cost increase
Fig.4(c). Remarkably our scheme incurs no extra cost when
the traffic is low, a benefit that arises from using different maps
per hour and exploiting the past data for prediction.

Last, Fig.5 presents a scenario in which we enforce SLAs,
in the form of a cap on the base station loads (ρi ≤ 0.9). In
practice, SLA violations are extremely important and must be
avoided at all costs. The results of Fig.5 show how our robust
maps (ε = 5%) protect the SLA from violations, resulting in
only 4% violations instead of 15% of the adaptive algorithm;
this would be further improved by a more conservative ε.

In both time evolution figures we can see that the adaptive
algorithms have a natural way of adapting to fluctuations,
however this takes a lot of time and in the meantime the system
tends to exhibit unstable behavior. Finally, the robust maps pay
an increased optimization cost (we have already argued that is
of lesser significance than SLA failures) for being conservative
against these failures. This is more evident during peak traffic
hours, where the more conservative handling of the robust
maps infers greater cost, but also improved delay performance
and protection against the fluctuating traffic, for example see
Fig.4b and Fig.4a arround hour 36.

V. CONCLUSION

The problem of user association in dense networks becomes
challenging due to frequent unexpected traffic fluctuations.
We showed that past traffic data can be exploited towards
precalculating association maps, which are designed to be
robust and can be tuned to protect the base stations from
overload. Accordingly, we proposed a theoretical framework
for efficiently computing the optimal robust map, parametrized
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to a large class of utility functions that allow the system
designer to tune the base station load. Finally, we evaluated our
approach in Milano dataset, and found that our methodology
is very effective at protecting UDNs from unexpected spikes,
allowing the offering of premium wireless service.
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[20] W. Wang and M. Á. Carreira-Perpiñán, “Projection onto the Probability

Simplex: An Efficient Algorithm with a Simple Proof, and an
Application,” 2013. [Online]. Available: http://arxiv.org/abs/1309.1541

[21] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[22] S. Bubeck et al., “Convex Optimization: Algorithms and Complexity,”
Foundations and Trends in Machine Learning, 2015.

[23] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1995.
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