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Résumé

1 Introduction

Il peut étre surprenant de s’interroger sur la différence méme entre logiciel et matériel d’un point
de vue théorique. En effet, & l'inverse d’un langage de modélisation, un code logiciel n’a pas
de sens intrinséque. Son utilité finale est d’étre exécuté par une machine physique et son effet
sensible est indissociable de l'objet matériel qui ’a interprété. Le terme interprétation reléve
cette spécificité : le code logiciel n’a pas de sens en soi, il doit étre interprété. Et interprété par
quelque chose.

Inversement une implémentation matérielle, en tant qu’objet physique, a un comportement
que l'on peut considérer déterministe et qui découle des lois fondamentales de la physique. Son
état actuel est déterminé par une fonction plus ou moins chaotique de son état précédent et de
son environnement. Certaines classes de matériel (que I’on nomme processeur ou controleur) ont
cependant un comportement paramétré par un ensemble de régle stockées dans un médium spé-
cifique (RAM, ROM, mémoire flash, etc.). Leur comportement observable change complétement
en fonction de ’état de ce médium. Décrire un tel objet matériel en omettant ces régles (que 'on
nomme logiciel), ne donne alors que peu d’indications quant & 1’évolution de 'objet.

Afin de donner un sens a cette distinction entre logiciel et matériel, il nous faut y intégrer une
autre composante. En effet, un code logiciel n’est probablement jamais écrit par un développeur
qui ’envisagerait comme un ensemble de paramétres d’'une machine complexe car cela requerrait
d’imaginer toute la logique implémentée par le processeur chaque fois qu’une instruction logi-
cielle est écrite. Un développeur logiciel voit dans chaque instruction une action opérant sur une
machine abstraite que I’on pourrait appeler un modéle abstrait du matériel.

Systémes embarqués, sécurité et vérification formelle

Cette distinction entre logiciel et matériel est particuliérement apparente dans le domaine de la
conception des systémes embarqués. En effet, la séparation des fonctionnalités du systéme entre
composants logiciels et composants matériel impacte fortement la suite du processus de concep-
tion en termes de méthodologie, de langage et de méthodes de vérification (tests ou vérifications
formelles). Cette divergence complexifie analyse formelle de systémes composés d’éléments lo-
giciels et matériels.

La sécurité des systémes embarqués est cependant un probléme central du développement
de 'Internet des objets tel qu’il est percu aujourd’hui. Comme ’a montré récemment le botnet
Mirai [152], des attaques d’envergures peuvent exploiter ces systémes qui sont de plus en plus
nombreux et ne bénéficient historiquement pas de standards de sécurité a la hauteur des autres
systémes informatiques alors qu’ils sont de plus en plus connectés et en charge de taches de plus
en plus critiques (dans la santé ou les transports par exemple).

Bien que les méthodes d’analyse formelle soient en mesure d’ameéliorer considérablement la



confiance que l'on accorde & un systéme informatique, leur application dans le cadre de la concep-
tion de systémes embarqués se heurte a des défis théoriques (algorithmiques dans le cas ou l'in-
trication entre logiciel et matériel est étroite) et pratiques (leur intégration a un processus de
conception). La question & laquelle nous nous intéressons dans cette thése est donc la suivante :
comment les méthodes de vérification formelle automatiques peuvent elles aider les développeurs
de systémes embarqués a évaluer I'impact d’une architecture ou d’un composant matériel per-
sonnalisé sur la sécurité d’un systéme embarqué lors de sa conception ?

Contributions

Pour répondre & cette question, nous avons proposé durant cette thése différents éléments de
solution.

Premiérement nous nous sommes intéressés a la fagon dont les modifications matérielles sont
4 méme de garantir la sécurité d’un systéme de sorte qu'une évaluation purement logicielle
du systéme ne permettrait pas d’en déduire la correction. Nous avons travaillé pour cela sur
un prototype exploitant des modifications matérielles afin d’établir un canal de communication
sécurisé entre un périphérique et une application protégée par la technologie Intel Software Guard
eXtension (SGX).

Dans un second temps, nous nous sommes intéressés a 'intégration de méthodes de vérifica-
tion formelle automatiques & une méthodologie de conception de systémes embarqués basée sur
des modéles. Nous nous basons pour cela sur un langage de modélisation ciblant spécifiquement
la conception de systémes embarqués et présentant des capacités spécifiques & la modélisation de
propriétés de sécurité. La méthode proposée [166] donne au concepteur la possibilité de vérifier
formellement et automatiquement des propriétés lors des phases d’analyse [167], de partitionne-
ment [165] et de conception logicielle [179].

Cette méthode de vérification permet d’analyser des systémes décrits en termes de composants
interagissant entre eux au moyen d’une interface simple (envoi et réception de messages). Afin de
permettre la vérification de systémes ot composants logiciels et matériels interagissent de maniére
plus complexe, nous avons proposé une nouvelle méthode [177,178] permettant & un développeur
logiciel d’intégrer 'effet de modifications matérielles dans un algorithme de vérification de code
logiciel. Cette méthode repose sur un outil qui traduit la spécification d’un systéme décrit par
une représentation bas niveau du logiciel (code assembleur) et une représentation haut niveau de
I’architecture matérielle en un modéle vérifiable par un outil externe. Cette transformation a été
pensée de maniére a laisser a ’utilisateur la possibilité d’ajouter de nouveaux modules exprimant,
Peffet d’un composant matériel sur 'algorithme de vérification.

2 Logiciel /Matériel et sécurité

Les composants matériels jouent un role important dans de nombreuses solutions garantissant
la sécurité d’un programme logiciel ou ils peuvent étre utiles pour améliorer les performances ou
pour ancrer la racine d’une chaine de confiance dans un élément matériel. Nous proposons dans
ce chapitre d’étudier un exemple de systéme permettant d’établir un canal de communication
sécurisé entre une application et un périphérique. Ce systéme s’appuie sur I’architecture proposée
par Intel SGX et sur quelques modifications matérielles afin de protéger les entrées/sorties d’une
application contre un attaquant contrélant ’ensemble de la pile logicielle et ayant un accés
physique au bus qui connecte ’application et le périphérique.



L’architecture Intel SGX

Dans un environnement virtualisé, il existe deux classes de méthodes permettant & une ma-
chine virtuelle d’accéder & des données traitées par une autre machine virtuelle colocalisée :
les méthodes qui n’utilisent que des données directement accessibles par la machine virtuelle et
celles qui présupposent 'exploitation d’une vulnérabilité dans I’hyperviseur. Ces vulnérabilités,
malheureusement existantes [205], ont motivé la recherche de solutions permettant d’isoler une
machine virtuelle d’un hyperviseur potentiellement corrompu. C’est en partie pour répondre & ce
probléme que la technologie Intel SGX a vu le jour. Celle-ci garantit la stricte isolation d’enclaves
en se reposant sur une extension au jeu d’instruction et un contréle des accés mémoire lorsqu’une
entrée est ajoutée au Translation Lookaside Buffer. De plus, les données stockées dans la mé-
moire sont chiffrées par le controleur mémoire, ce qui protége une application contre un attaquant
controlant physiquement tout I’environnement du processeur (mais ne pouvant pas accéder aux
signaux internes au processeur).

Canal de communication avec un périphérique sécurisé

Cette protection n’est cependant valable que si ’enclave ne se sert que de données présentes en
mémoire. Si l'interaction avec un périphérique est nécessaire, le modéle d’attaquant doit étre
considérablement affaibli ou bien ’enclave doit mettre en ceuvre une protection cryptographique
(logicielle) et transmettre les données chiffrées directement au périphérique (MMIO) ou les ré-
écrire en mémoire afin d’initier un transfert DMA. Nous proposons une addition a ’architecture
Intel SGX qui permettrait d’établir un canal sécurisé entre une enclave et un périphérique pour
un coGt en performance limité.

Afin de décharger le processeur, le chiffrement de la communication avec le périphérique est
délégué & une unité matérielle. Pour ne pas diminuer considérablement le modéle d’attaquant,
cette unité matérielle devra se situer sur le die du processeur. Cela impose de fortes contraintes
concernant la taille de I'unité (et donc concernant la logique qu’elle peut implémenter). Cepen-
dant, il est nécessaire que 'unité de chiffrement puisse différentier les zones mémoire des enclaves
afin d’utiliser du matériel cryptographique différent d’une enclave a l'autre. L’unité de chiffre-
ment doit donc implémenter une logique lui permettant de choisir une clé de chiffrement adaptée
a l'enclave ciblée par un accés mémoire. Afin de minimiser la taille de cette unité, nous avons
décidé de réutiliser le composant matériel (appelée DMA remapping unit dans les architectures
Intel) qui est chargé de parcourir la table des pages d’entrée/sortie. Cette table est cependant
controlée par le systéme d’exploitation (ou hyperviseur) qui est considéré comme potentiellement
malveillant. Le matériel cryptographique utilisé par la DMA remapping unit ne peut donc pas
étre stocké dans cette table. Pour stocker la clé de chiffrement, nous proposons donc d’y consacrer
un champ dans chaque entrée de I’Enclave Page Cache Map (EPCM). Ces entrées sont utilisées
par SGX pour stocker des informations concernant les pages de mémoire protégées par SGX : a
chaque page protégée est associée une entrée de 'EPCM (stockée dans la mémoire) dont 1’adresse
est calculée a partir de ’adresse de la page.

Cette architecture permet & une enclave d’autoriser les transferts DMA ciblant une de ses
pages en utilisant la procédure suivante :

1. L’enclave utilise une instruction nouvellement créée afin de définir le matériel cryptogra-
phique a utiliser pour une page appartenant a ’enclave courante. Ce matériel (clé et numéro
de séquence) est sauvegardé dans l’entrée de 'EPCM correspondant & la page ciblée.

2. Le systéme d’exploitation peut alors ajouter une entrée dans la table des pages d’entrée/sor-
tie faisant correspondre une adresse périphérique a ’adresse physique de la page protégée.



3. Lorsque le périphérique cherche a accéder a cette page, la DMA remapping unit parcourt la
table des pages d’entrée/sortie afin de déterminer ’adresse physique associée a cette page.

4. Puisque cette adresse appartient & la plage réservée au processeur, la DMA remapping unit
récupére le matériel cryptographique correspondant stocké dans I’entrée de 'EPCM. Si une
clé a été définie, la correspondance entre adresse périphérique et adresse physique, la clé
et le numéro de séquence sont inscrits dans 1'I/O Translation Lookaside Buffer (I/O TLB).
L’accés mémoire est alors transmis au controleur mémoire.

5. Lorsque le contréleur mémoire retourne la donnée requise, celle-ci est sauvegardée dans le
cache L3.

6. La donnée et le numéro de séquence sont concaténés et chiffrés et un MAC est calculé par la
DMA remapping unit sur le MAC et ’adresse périphérique. La donnée chiffrée et le MAC
sont transmis au périphérique. Finalement, le numéro de séquence est incrémenté.

7. Si le périphérique cherche & accéder a cette méme page plus tard, I’adresse physique cor-
respondante, la clé et le numéro de séquence sont déja présents en cache.

Conclusion

Cette architecture permet de garantir un canal sécurisé entre un périphérique et une enclave. La
protection cryptographique envisagée garantie une protection plus compléte de ces communica-
tions que les approches traditionnelles focalisée sur un modeéle d’attaquant purement logiciel.

Bien que cette protection entraine un coiit non négligeable en termes de performance, I'im-
plémentation matérielle des algorithmes cryptographiques et la réutilisation des techniques de
caches présentes dans les processeurs Intel permettent d’atténuer les pertes en contrepartie de
modifications physiques limitées.

La vérification formelle des architectures composées d’éléments logiciels et matériels comme
celle présentée dans ce chapitre pose des problémes théoriques et pratiques dont la nature dépend
du degré d’interaction entre logiciel et matériel.

3 Vérification formelle de systémes embarqués a partir de
modéles de conception

Une des spécificités des problématiques de sécurité dans le domaine des systémes embarqués
réside dans la difficulté d’appliquer des correctifs de sécurité purement logiciels & une étape
avancée du développement du systéme, en particulier lorsque la vulnérabilité & corriger découle
d’un choix architectural. Intégrer ’évaluation de sécurité aux méthodologies de conception de
systémes embarqués dés leurs premiéres étapes est donc un des enjeux importants d’une meilleure
prise en compte de ces problématiques dans une industrie ol la sécurité a souvent été reléguée
au second plan.

Parmi les différentes approches cherchant a systématiquement prendre en compte les consi-
dérations de sécurité dans la conception de systémes, nous nous intéressons particuliérement
& celles permettant d’intégrer ces considérations & des modéles utilisés pour la conception. En
effet, ceux-ci rendent possible ’analyse des comportement des systémes et nous permettent de
confronter ces comportements & des objectifs de sécurité. Dans le cadre de cette thése, notre
choix s’est porté sur un langage de modélisation dédié & la conception de systémes embarqués
sécurisés : SysML-Sec.



SysML-Sec
SysML-Sec supporte trois phases principales de modélisation :

e Une phase d’analyse d’exigences qui détaille ce que le systéme doit réaliser et non comment
les comportements attendus sont implémentés.

e Une phase de partitionnement logiciel /matériel au cours de laquelle le concepteur décrit
une vue fonctionnelle et une vue architecturale du systéme, ainsi qu’une association des
éléments fonctionnels aux éléments architecturaux.

e Une phase de conception logicielle au cours de laquelle les comportements des éléments
fonctionnels modélisés dans la phase précédente sont détaillés.

Différentes méthodes de vérification permettent, durant chacune de ces phases, d’évaluer des
propriétés de sireté, de sécurité et de performance. De plus, ce langage et ces méthodes de
vérification sont supportées par un outil open source TTool qui nous a permis d’implémenter les
algorithmes présentés dans ce chapitre.

Vérification de propriétés de sécurité sur des diagrammes SysML-Sec de conception
logicielle

Dans le cadre de cette thése, mon travail s’est surtout porté sur la vérification de propriétés de
sécurité (confidentialité, authenticité) lors de la phase de conception logicielle.

Ce travail a consisté & implémenter un algorithme de transformation d’un modéle de concep-
tion logicielle SysML-Sec en un modéle décrit en pi calcul appliqué. Ce langage de description,
fondé sur les algébres de processus, permet la modélisation d’acteurs communicant au travers
de canaux formellement définis. Ce modéle est ensuite interprété par un outil de vérification
de protocoles cryptographiques (ProVerif) afin de prouver mathématiquement des propriétés de
sécurité sur cette description du systéme.

L’algorithme de traduction proposé transforme le modéle du systéme établi lors de I’étape de
conception logicielle et qui comporte des diagrammes d’architecture (blocs) et de comportements
(machines & états) en des processus correspondants. Les propriétés de sécurité spécifiées sur les
diagrammes de blocs au moyen de notes formelles (pragmas) sont également traduites et ’outil
ProVerif permet de vérifier formellement que ces propriétés sont valides sur la description du
systéme en pi calcul appliqué. Lorsque ProVerif exhibe une trace permettant de contredire une
de ces propriétés, cette trace est transformée par notre outil afin d’afficher un diagramme de
séquence illustrant les étapes qui ont mené & la violation de la propriété dans les diagrammes de
conception logicielle.

Cet algorithme a été implémenté dans ’outil TTool et nous a permis de vérifier formellement
des propriétés de sécurité intéressantes sur des modéles de systémes tels que le protocole d’échange
de clé décrit au chapitre précédent ou une implémentation de TLS.

Afin d’améliorer la fiabilité des preuves fournies par notre outil, nous avons décrit ’algorithme
de maniére formelle et avons prouvé mathématiquement la correction de notre transformation.
Cette preuve, présentée en annexe, s’appuie sur une expression formelle de la sémantique du pi
calcul appliqué et de la sémantique des diagrammes SysML-Sec afin de garantir qu'un modéle
SysML-Sec présentant une vulnérabilité engendre bien un modéle en pi calcul appliqué également
vulnérable.

Analyse de sécurité durant le partitionnement

Bien que la sécurité d’un systéme soit intimement liée aux détails d’implémentation, certaines
vulnérabilités architecturales peuvent découler de décisions prises durant I’étape de partitionne-



ment. Ces vulnérabilités sont alors trés compliquées a corriger. Cela nous a motivé & explorer la
possibilité d’intégrer des méthodes de vérification de sécurité dés la phase de partitionnement.

Pour cela, nous avons introduit des éléments graphiques appelés Cryptographic Configuration
qui permettent d’étiqueter les communications représentées dans les diagrammes fonctionnels afin
d’indiquer que cette communication sera en fin de compte protégée par un algorithme cryptogra-
phique. Cet artéfact de modélisation précise les propriétés de sécurité garanties par 'algorithme
cryptographique, son impact sur le temps de calcul et sur la taille des données échangées. De
cette facon, le concepteur peut prendre en compte I'impact sur les performances qu’auront les
mécanismes de sécurité implémentés.

Un algorithme de traduction vers un modéle en pi calcul appliqué est proposé afin de vérifier
formellement la validité des protections cryptographiques mises en place.

Conclusion

La technique de vérification proposée dans ce chapitre repose sur une claire définition de I'inter-
action entre modules matériels et modules logiciels (au travers de canaux bien définis). Dans le
cas ol cette interaction est plus complexe, une autre méthodologie doit étre envisagée.

4 Vérification formelle de matériel et logiciel imbriqués

Lorsque les modifications matérielles apportées a un systéme affectent la sémantique de la partie
logicielle, utiliser un outil de vérification générique pour analyser le code logiciel montre ses
limites.

Dans ce dernier chapitre, nous explorons la possibilité d’'une méthode de vérification de code
logiciel prenant en compte l'impact que des modifications matérielles peuvent avoir sur cette
preuve. Pour cela, nous proposons un algorithme de transformation d’un code assembleur en une
spécification ProVerif (en pi calcul appliqué). Cet algorithme (implémenté dans un outil appelé
SMASHUP) repose sur une architecture modulaire afin de proposer au concepteur d’adapter la
vérification a ’architecture matérielle du systéme.

Cette adaptation prend deux formes. Premiérement, l’algorithme de traduction repose sur une
description haut niveau de I’architecture matérielle du systéme afin de décider quels modules de
I’algorithme utiliser et comment les paramétrer. Deuxiémement, un concepteur qui cherche & vé-
rifier un systéme faisant intervenir un élément matériel pour lequel aucun module de ’algorithme
de vérification n’existe, peut créer un nouveau module afin de modifier comment la traduction
(et donc la vérification) se fera.

Bien que cette méthode ne permette pas de vérifier n’importe quel systéme, elle ouvre la
possibilité de prendre en compte un certain degré de personnalisation du matériel, tout en limitant
Peffort requis pour réécrire complétement un algorithme de vérification.

5 Conclusion

Dans cette thése, nous nous sommes intéressés au role des méthodes de vérification formelle au-
tomatiques dans le contexte de la conception de systémes embarqués. Nous avons montré que les
termes dans lesquels cette question se posait étaient trés différents selon le degré d’intrication des
éléments logiciels et matériels. En effet, lorsqu’il s’agit de vérifier un systéme composé d’éléments
logiciels et matériels, utiliser un outil de vérification logicielle existant n’est possible que lorsque
les modifications apportées par les éléments matériels au modéle du matériel envisagé par l'outil
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de vérification n’invalide pas la preuve que celui-ci fournit. Ces considérations nous ont permis
d’envisager le probléme de la vérification de systémes embarqués sous deux angles :

e Comment peut on intégrer la vérification automatique de propriétés de sécurité & un pro-
cessus de conception de systéme embarqué lorsque les fonctionnalités de haut niveau du
systéme peuvent étre clairement réparties entre composants logiciels et composants maté-
riels ?

e Comment peut on envisager une méthode de vérification formelle qui prendrait en compte
des modifications matérielles afin d’analyser un code logiciel destiné & étre exécuté par ce
matériel personnalisé ?

Résumé des contributions

Les contributions que j’ai faites durant cette thése s’organisent autour de ces deux probléma-
tiques.

Durant la conception de systémes embarqués, affectation d’éléments fonctionnels sur des
éléments architecturaux entraine, d’un point de vue de la sécurité du systéme, une différence en
termes de capacités de 'attaquant. Par exemple, la confidentialité de données échangées sur un
canal abstrait dépend de si ce canal sera implémenté par un bus matériel auquel 'attaquant a —
ou n’a pas — acceés, ou si il sera implémenté par un logiciel et si le concepteur a confiance dans la
capacité de ce logiciel & garantir la confidentialité des données transitant sur le bus. Dans cette
theése, nous avons proposé des méthodes permettant de vérifier formellement des propriétés de
sécurité durant les phases de partitionnement et de conception logicielle. Cette vérification se fait
sur des modéles & partir desquels des propriétés de streté et de performance peuvent également
étre vérifiées. Cette polyvalence limite les efforts et les risques inhérents & la réécriture de modéles
pour chaque type de propriété. Lorsqu’une propriété est démontrée fausse, la trace établie par
Ioutil de vérification est transformée afin d’étre lisible pour le concepteur, 'aidant ainsi dans la
compréhension et la correction de ’erreur.

Dans le cas ou les spécificités du matériel nécessitent d’adapter 1'outil de vérification, une
modification manuelle de 'outil (pour le porter sur une architecture différente par exemple)
représente un effort considérable, en particulier dans le cadre des systémes embarqués ou la phase
d’exploration de ’architecture repose sur une évaluation rapide des impacts dus & la modification
de D’architecture matérielle. Afin d’apporter une réponse a ce probléme, nous avons proposé
une méthode basée sur un algorithme de transformation d’un code logiciel en une spécification
ProVerif permettant d’intégrer un certain degré de modifications matérielles dans la vérification
du logiciel.

Perspectives

Le travail exposé ici ouvre des perspectives dans plusieurs des domaines abordés.

11 serait intéressant de faire le lien entre les propriétés prouvées sur des modéles haut niveau
tels qu’ils sont exposés dans la premiére partie de cette thése et des implémentation de ces mo-
déles afin d’augmenter la fiabilité des preuves. Pour cela, des méthodes classiques de vérification
(automatiques ou semi-automatiques) pourraient étre adaptées.

Dans le cadre de l'architecture proposée autour d’Intel SGX, nous avons fourni dans cette
thése une preuve de la confidentialité garantie par le protocole d’échange de clé proposé en
utilisant 'algorithme de traduction présenté précédemment. Une autre propriété qu’il serait
intéressant d’analyser formellement concerne la validité du protocole d’autorisation d’accés DMA
a la mémoire d’une enclave. Moyennant ’ajout & SysML-Sec de capacités & modéliser certains
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éléments tels que les tableaux, cette preuve pourrait également étre effectuée sur un modéle
SysML-Sec en utilisant ’algorithme proposé dans cette thése.

Bien que nous ayons proposé une évaluation théorique de I'impact sur les performances qu’au-
rait notre projet de sécurisation des communication dans une architecture Intel SGX, cette ana-
lyse théorique gagnerait & étre accompagnée de tests pratiques sur un prototype.

Un angle d’amélioration de I’évaluation de sécurité sur des modéles SysML-Sec, serait d’étu-
dier les possibilités de modélisation des propriétés de sécurité sur des diagrammes a un haut
niveau d’abstraction. En effet, certaines propriétés telles que ’authenticité ont une sémantique
relativement complexe et requiérent une bonne compréhension de 'outil de vérification, ce qui
rend D’analyse de sécurité plus difficile pour des concepteurs dont la vérification formelle n’est
pas la spécialité.

L’algorithme de traduction de modeéles SysML-Sec présenté ici a été congu dans l'idée de
prouver des propriétés de sécurité avec 'outil ProVerif. Cependant, la transformation resterait
valide pour d’autres outils acceptant des spécifications en pi calcul appliqué. Ces autres outils, du
fait des différentes stratégies et heuristiques implémentées, pourraient éventuellement conclure
sur des modéles pour lesquels ProVerif se montre incomplet. Permettre au concepteur de changer
d’outil de vérification serait donc une ameélioration intéressante de notre transformation. De
méme, dans le cadre de notre présentation de SMASHUP, il pourrait étre intéressant de varier
les outils de vérification afin d’éviter au mieux les cas ou l'outil ne permet pas de conclure.

Un autre sujet de réflexion autour de SMASHUP concerne la description du matériel. Notre
représentation comme ensemble de modules est trés haut niveau et la méthode bénéficierait
d’une expressivité plus fine. Dans le cas d’une représentation trés bas niveau (RTL par exemple),
exprimer comment chaque élément affecte la vérification du logiciel semble cependant complexe.
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Abstract

The recent Mirai botnet [152] has shown that the security vulnerabilities commonly found in
Internet of Things (IoTs) can be leveraged to mount practical, massive and threatening attacks.
As embedded systems become more connected and more involved in critical tasks (e.g., health,
driving), the question of how strict security analysis can be performed during embedded system
design needs to be thoroughly addressed.

Formal mathematical analysis of a system is the verification method that is able to provide
the most complete evaluation of a system as it does not rely on approximations to analyze its
behaviour. While formal verification usually requires specific skills and involves a lot human work,
it can be considerably reduced by automated formal verification algorithms. In this thesis, we
will study how automated formal verification can help embedded system designers in evaluating
the impact of hardware and software modifications on the security of the whole system.

One of the specificities of embedded system design—which is of particular interest for formal
verification—is that the system under design is described as interacting hardware and software
components. Formally verifying these systems requires to take both into account. To illustrate
this fact, we propose an example of a hardware/software co-design that would benefit from formal
security analysis. This design relies on customized hardware to provide a secure channel between
a peripheral and an application running on an untrusted software stack (named trusted path).
It leverages the Intel SGX technology which enables to build secure software enclaves on top
of an untrusted OS and includes a mechanism to secure the communication between an enclave
and a peripheral. Formal verification can be performed on this system at different levels: one
possibility is to verify that the key exchange protocol implemented by the various components
(enclave, peripheral, processor, trusted third party) is correct from a high-level view (without
describing the implementations). The other possibility is to verify that an all powerful software
(the OS) running on the customized hardware is not able to access the memory of the enclave.
These two cases differ in terms of how tightly coupled the hardware and software components
are.

In the first case, the components of the system can be abstracted behind the high-level
functionalities they provide. While the security of the system depends on its architecture as it
defines how the components will eventually communicate between each other, the fact that a
component will be implemented in software or hardware is not relevant for the proof. In order
to allow embedded system designers to evaluate the impact of architectural modifications on the
security of the system, we propose a methodology to perform formal security verification from
design models. To this end, we propose a translation algorithm which transforms embedded
system diagrams from the partitioning phase or from the software design phase to a specification
suitable for formal security analysis. Integrating formal security verification into a model driven
engineering method enables to transform a unique model (described in an extension of SysML in
our case) to multiple specifications to prove safety, performance or security properties (with the
ProVerif tool). This transformation relies on the similarities between the SysML-Sec software
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design modeling language and the ProVerif language. Indeed, in both languages, systems are
described as components communicating through channels.

In the second case, modeling the hardware and software components as communicating actors
using a defined channel is not possible. Indeed in this case, the customized hardware impacts how
software is executed. While it may be possible to model such tightly coupled hardware/software
co-designs with interacting entities, the description of the system would not be intuitive. We thus
propose a translation algorithm which takes as input a software implementation and a high-level
description of the hardware architecture and outputs a ProVerif specification. The hardware
description impacts how the software implementation is translated and thus how it is verified.
It is thus possible to include hardware customizations either as architectural specificities by
changing the hardware description or as custom hardware components by adding new modules
to the translation algorithm.

Both of these verification methods were implemented in the TTool toolkit and in the SMASHUP
compiler. They both aim at providing intuitive modeling and verification capabilities to integrate
automated and reliable security analysis during embedded system design.
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Chapter 1

Introduction

It may be surprising to even think about the discrepancy between hardware and software from a
theoretical point of view. Indeed, contrary to a modeling language, a piece of software does not
have any meaning in itself. Its purpose is to be executed by a physical machine and the result
of a procedure described in software is fundamentally tied to the actual hardware that will be
interpreting it. The term of interpretation does relay this specificity: the piece of software does
not have a meaning per se, it needs to be interpreted. And interpreted by something.

On the contrary, hardware—as a physical object—has a defined and arguably deterministic
behaviour that is implied by physical laws. The current state of a hardware is determined by
a—more or less chaotic—function of their previous state and of the environment. What we see
as an indetermination actually comes from the limits of our knowledge about the state of the
system or its environment (non initialized memory cells for instance). Some class of hardware—
that we call processors or controllers—are however heavily parameterized by a set of rules stored
in a specific medium (RAM, ROM, flash memory, etc.). Their observable behaviour changes
drastically depending on the state these media were earlier. Thus, describing such a piece of
hardware and omitting the rules (that we call software), leaves only few certitudes about the
future state of the object.

For the distinction between hardware and software to be relevant, we need something else.
Most likely, software developers do not see instructions as parameterizing rules for a specific piece
of hardware—which would require to picture the whole decoding and pipelining logic each time
an assembly instruction is written—but as abstract instructions which have a well-defined effect
on an abstract machine. We will call this theoretical machine an abstract model of the hardware.
This model is described by a set of objects and a set of properties that relate the software
instructions to these objects. Such a property could for instance be that given a description of
how an instruction a and an instruction b affect the objects, executing a list of instructions where
b follows a will have the same effect (as far as the objects are concerned) as if instruction a was
executed and then b was executed. Actually, if we conceptually match the abstract objects of the
model to physical parts of the hardware (a set of transistors in the register file for example), this
property may well prove to be wrong on most of the recent processors which often implement a
kind of out-of-order execution.

We should note that this abstract model could also encompass some of the software rules. It
could be an operating system (when an application makes a system call for instance), a library
(if the application uses a user-mode thread implementation) or a compiler (if the application
is described in a higher-level language). From this point of view, machine instructions are not
different from higher-level language instructions. The difference comes from the complexity of
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CHAPTER 1. INTRODUCTION

the physical machine that is implementing the model assumed by the software developers.

1.1 Embedded systems and formal security verification

The duality of hardware and software is particularly relevant for embedded system designers.
Contrary to most higher-level software designers, embedded system designers have to make early
architectural choices that will partition the system components into two very different cate-
gories (hardware and software). These categories will differ in terms of design methodologies,
implementation languages, testing and formal verification methods.

Due to this hardware/software discrepancy, formal security analysis of a system that is partly
described as a set of hardware components and a set of software components raises some theo-
retical and practical challenges.

These challenges have benefited from a growing interest from the academic and industrial
communities. We can give some reasons why this is the case. First, formal specification and
analysis has only recently started to be acknowledged by the industry as desirable for products
outside of the hardware and critical software design industry. This interest is illustrated by the in-
volvement of industrial groups with academic partners working on the subject. This can be either
as part of the advisory board of a research project (Microsoft, Amazon or Google in DeepSpec?),
by dedicating part of their work force to research in this field (e.g., Facebook integration of static
analysis into their development cycles [54]) or by commercializing products or services based on
an academic project (AbsInt? uses CompCert, CSIRO? advises industrial groups about sel4).
It is also notable that the first common criteria certification level EAL7/EAL7+ were awarded
in 2009%. Indeed, Common Criteria requires to apply formal verification to prove security func-
tional and assurance requirements on whole systems, as opposed to traditional hardware design
verification that targets logical equivalence or safety properties on specific parts of a design [144].

The second motivation that argues in favor of a better understanding of verification of hard-
ware and software components is the pertinence of low-level threats. The reality of widespread
malware exploiting low-level vulnerabilities in applications (e.g., shellshock®), libraries (e.g.,
HeartBleed®) or even kernel features (e.g., Dirty COW?) strengthened the claim that low-level
software (as present in embedded systems) should be submitted to thorough security analysis.

This last point leads to the following consideration: the ubiquity of software bugs argues in
favor of robust hardware guarantees. Indeed, many recent academic and industrial projects rely
on hardware features to mitigate or cancel the effects of software bugs. These features may take
the form of software isolation [10], trusted execution environment [77], software attestation [100]
or control flow integrity [85] for instance.

Last but not least, the considerable growth of embedded systems and low-energy, highly
specialized devices used in the internet of things (abbreviated as IoTs from now on) strengthens
the previous reasons by multiplying the potential targets. These systems are ever more present,
more complex (increasing their attack surface), more involved in critical tasks (cars, avionics,
health) and more connected (and thus more vulnerable).

'https://deepspec.org/main

’https://www.absint.com

3http://ts.databl.csiro.au/
Anttps://www.commoncriteriaportal.org/products/stats/
Shttps://nvd.nist.gov/vuln/detail/CVE-2014-6271
Shttps://nvd.nist.gov/vuln/detail/CVE-2014-0160
"https://nvd.nist.gov/vuln/detail/CVE-2016-5195
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CHAPTER 1. INTRODUCTION

1.2 The problem of accessible formal security verification in
embedded system design

While formal verification can increase the trust we put in embedded systems, its application
suffers from both theoretical (algorithms to verify systems described as tightly coupled hardware
and software) and practical (integrating formal verification to embedded system design process)
problems.

These considerations lead to the following question that we will address in this
thesis: how can automated formal verification help embedded system designers in
evaluating the impact of customized hardware architecture or components on the
security of a system during its design?

1.3 Contributions

This problem can be decomposed in multiple sub-questions: how could hardware customization
impact the security of a system as a whole? How does software and hardware interaction affect
the ability to perform formal verification? How can security properties be modeled and verified on
high-level design models? How is it possible to leverage automated formal verification techniques
to provide strong guarantees to untrained designers?

To answer these questions, we made the following contributions during the thesis:

An example of a hardware-assisted security solution

As an example of a design where customized hardware needs to be taken into account to verify
security properties on the whole system, we proposed to rely on an existing trusted execution
environment to provide a secure trusted path to a peripheral. We show how it is possible to
efficiently extend the protections provided by trusted execution environments to cover external
peripherals when the physical environment of a system is untrusted. We demonstrate this with
a system relying on limited hardware customization to enable Intel Software Guard eXtension
(SGX) enclaves to securely and efficiently communicate with a peripheral. Compared to similar
approaches [257], we assume a more powerful attacker model (close to the one assumed by SGX)
and focus on limiting the performance overhead incurred by the additional security features.

A formal security verification method for embedded system design models

Integrating security requirements to system design process has taken various forms depending
on whether they focus on assets [207], attacks [155] or design models [141]. In this thesis,
we show how model-based security approaches can be leveraged to perform automated formal
verification to provide real-time feedback to an embedded system designer. Formal verification
from models created during the conception of a system enables to reuse design diagrams to
verify safety, security or performance properties. We have presented a method to formally verify
security properties on extended SysML diagrams [166]. Verification happens during the analysis
[167], hardware/software partitioning [165] and software design [179] phases. This method was
implemented in a toolkit to enable designing and safety, security and performance verification
in the same environment. I personally focused on formal security verification from SysML block
and state machine diagrams.
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A verification method for tightly coupled hardware and software components

The aforementioned method relies on a high-level description of a system as communicating
hardware or software components. Likewise, all of the automated verification methods targeting
hardware/software co-designs rely, to our knowledge, either on a simple interface to compose
hardware and software components [71,157] or on a full simulation of the hardware [133]. The
former may not be suitable for verifying tightly coupled hardware and software while the latter
would greatly limit the size of the design to be verified. We have thus proposed a new method
[177,178] to show how automated formal verification can cope with hardware customization when
verifying tightly coupled hardware and software components. This method was implemented in
a tool which automatically translates a system described as a software implementation and
an abstract description of the hardware architecture to generate a specification suitable for
formal security verification. We designed it so that custom hardware architectures can be easily
described and new hardware components can be introduced as modules of the translation tool.

1.4 Plan

In this report, we will be first interested in how hardware is able to provide strong security
guarantees to a system, even against higher-level (as software) attacks. This will help us under-
stand why, for some systems, security analysis needs to take into account a description of the
hardware. We will propose an architecture which illustrates an example of such a system. This
design will be helpful both to motivate the work presented in the following sections and to test
the results of this work on a concrete example. In order to perform reliable security analysis of
such a system—and more generally of any system with hardware and software components—we
will then study how formal security verification can be integrated to the design process of embed-
ded systems. First, we will describe a method that leverages high-level design models to verify
security properties. This method is suitable to analyze systems where functional components
communicate through a simple and pre-defined interface. However, it fails at verifying tightly
coupled hardware and software components. This is why we present another method in the
last part of this work which targets verification of software and can be parameterized to take
hardware specificities into account.

More precisely, in chapter 2, we present a survey of existing techniques related to hardware
and software security and formal verification. This chapter shows that the problem we are
addressing in this thesis is involving various diverse fields. In chapter 3 we present an architecture
to extend trusted execution environments’ protection to a trusted peripheral relying on hardware
customization in order to illustrate how hardware and software can cooperate to guarantee the
security of a system. As verifying such systems is a difficult problem, we present, in chapter 4,
a method for formally verifying security properties on SysML software design diagrams. We
also explain why this method is only applicable if hardware and software components interact
through a well defined interface. In chapter 5, we thus show how formal security verification
can be achieved for tightly coupled hardware and software components. Finally, we conclude in
chapter 6 and discuss openings and perspectives of this work.
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Chapter 2

State of the art

Studying environments for formally verifying the security of hardware/software co-designs raises
many interrogations which we will split into two categories and address in the two parts of this
chapter:

e What is the role of the software abstraction in the security of a design? Indeed, a piece of
software always executes in the context of a specific hardware. How can the specificities of
the hardware endanger the security of the system? How can they help protecting it? In this
section, we will first present studies of attacks abusing the defects of hardware due to the
fact that it is implemented in a real physical machine. Secondly, we will present propositions
of hardware platform customizations aiming at providing software-level protections.

e How are hardware/software co-designs special when it comes to formally verifying their se-
curity properties? How does formal security verification integrate into the design method-
ologies of hardware/software systems? What are the technical challenges raised by the
formal verification of hardware/software co-designs? In this second section, we will discuss
design methodologies that propose to integrate security considerations into the modeling
steps. Then, we will present various formal verification methods and discuss their suitabil-
ity for verifying hardware/software co-designs.

Figure 2.1 gives an overview of this presentation and highlights the domains our main con-
tributions target.

2.1 Hardware role in software execution integrity

In this section, we are interested in the role the distinction between hardware and software may
play as far as security is concerned. This boils down to two main domains:

e First are attacks that take advantage of the fact that a piece of hardware does not guarantee
a property of the model that the software developer assumed to be true. Such an attack
would typically enable the attacker to redirect the execution flow of a program or make
secret data leak. This kind of erroneous assumption may come from a misunderstanding
of the hardware guarantees on the side of the software developer (e.g., cache timing side
channels or low-level characteristics abstracted away in the model of the hardware [22]), or
from an undocumented behaviour of the hardware (e.g., rowhammer [147]).
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Figure 2.1 — Our contributions and their context: establishing new links.

e Then, some other works present new models (and potentially physical machines that con-
form to these models) that guarantee properties that are useful to software writers to
protect assets or mitigate potential flaws.

As far as hardware-assisted architectural security features are concerned, we split our presen-
tation into three subsections: features that help in guaranteeing the integrity of the control flow
of a piece of software, features that attempt to protect the confidentiality of the data handled by
the software, and lastly, we dedicate a part of this chapter to isolated execution—which would
otherwise partly fall into both of the other two subsections—as it is of particular importance for
a part of our work.

2.1.1 Hardware-based attacks

The purpose of a hardware-based attack targeting a software procedure is to deliberately provoke
and exploit a behaviour that was outside of the expectations of the software designer. We do not
call these attacks hardware-based because they involve a kind of manual intervention from the
attacker. We say they are hardware-based because they rely on a—potentially well-documented—
behaviour of the real hardware that is not modelled. Note that these attacks are not exclusively
limited to attacking procedures implemented in software. It could also target blocks of hardware
logic. In this case, the discrepancy is between the real piece of hardware and the model that
the designer had in mind when implementing the algorithm (in a hardware description language
such as Verilog for instance).
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2.1.1.1 Side-channels

Side-channel attacks exploit information produced by the execution of an algorithm on a piece
of hardware to deduce a knowledge about the algorithm or the data it handles. Even though
the first presentation of timing attacks by Paul Kocher in [149] is now 20 years old, the subject
is still an active research field as new side-channels are exposed and infrastructure sharing bring
potential attackers close to their targets.

Different types of side-channels

A natural way to classify side-channel attacks is to look at the type of side-channels they exploit.
In [149], which is widely considered as the starting point of this type of cryptanalysis, Paul Kocher
presented an attack exploiting timing variations in an implementation of modular exponentiation.
Since the computation time depends on the bits of the exponent and on the base, the attacker is
able to make two different timing models depending on whether a specific bit of the exponent is
set or not. These models associate to each possible base a time that the algorithm should take.
Given sufficient timing measurements, the attacker is able to choose which of the two models
best matches the measured results, and thus deduce the bit of the exponent.

Timing-based attacks are still widely studied since, contrary to many other side-channels,
measuring time is easily doable even for a non-privileged software application. Moreover, getting
rid of the time variation is hard since many implementation details introduce data-dependent
timing variation. For instance in [4], Aciigmez et al. show how an attacker could recover the
exponent in a modular exponentiation if she is able to predict if a branch misprediction will
happen given a known base and a number of bits known in the exponent. Likewise, a lot of
work has focused on key-dependent memory accesses (when a cipher uses precomputed tables
for instance) as memory accesses duration is heavily impacted by some architectural features
like caches. Cache attacks were mentioned as soon as 1998 in [142] and implemented in [29,
43,200,201, 249]. More recently, cache attacks have been proved to be effective across virtual
machines [272] and across physical cores [138,173].

Another type of side-channel attack pioneered by Paul Kocher is related to power consump-
tion [150]. Indeed, as an algorithm is eventually implemented using semiconductor logic gates
and transistors, monitoring the electrical consumption of a system gives hints about how many
transistors have switched at a particular step of the algorithm. As the size of the system impacts
the signal-to-noise ratio, these kinds of attacks have mostly been successfully mounted against
smartcards or specific cryptographic algorithms implemented on FPGAs [61,233].

Other side-channels that have been exploited include electromagnetic waves [109, 175, 210],
acoustic waves [110] or photonic emission [56].

Countermeasures

Countermeasures to side-channel leakage mostly depend on the type of side-channel we are trying
to silence. Theoretically, these mainly fall under three domains: getting rid of the data-dependent
variation, masking the input data before applying the algorithm or decreasing the signal-to-noise
ratio.

Creating constant-time algorithms [115] is easier than performing a computation with con-
stant power consumption [246], although getting rid of the time variation induced by architectural
features such as caches is still an open research subject [46,153,251]. Likewise, decreasing signal-
to-noise ratio depends on the type of side-channel we are interested in. It could be achieved by
performing random computations, waiting for random cycles or shuffling [252].
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One of the most researched countermeasures is masking. Indeed, a single masking implemen-
tation may be effective against various kind of side-channel attacks. Masking finds its origins in
blinding schemes that enable an algorithm to compute a transformation on derived data without
seeing the actual original data. The result of the transformation applied to the original data
can then be deduced by reversing the derivation function applied to the original data and by
applying it to the result of the algorithm. It was already presented as a possible countermeasure
in the original paper from Paul Kocher [149] for Diffie-Hellman and RSA. It was then applied to
DES and AES in [7], which is more difficult because the S-boxes are non-linear functions. Since
then, masking techniques have continuously be researched to improve their reliability [196] and
efficiency [118,209].

2.1.1.2 Fault injection

The attack

Contrary to side-channel analysis which is a passive technique (at least during the algorithm
execution), fault injection attacks rely on a—most likely intentionally provoked—hardware fault
to induce a behaviour that was unexpected by the designer. The first reported—theoretical—
fault injection attack was published by Boneh et al. in [42]. In this paper, the authors showed
how RSA signing algorithm could leak erroneous data that would enable to factor a public RSA
key if a hardware fault were to happen during the computation of the modular exponentiation
using the Chinese remainder theorem.

Since then, community has researched ways to induce faults: by modifying the environment
through time glitches [213], temperature or power variation [23,24, 135], electro-magnetic vari-
ation [92] or white light exposition [221]; by precise and reliable fault inducing techniques with
lasers [5]; by unintended hardware behaviour (due to physical phenomenon as in [147] or due to
hardware trojans introduced during the foundry stage [111,172]). Fault injection attacks have
also been successfully applied to different algorithms [34,105,112].

Countermeasures

Countermeasures to fault attacks can first be passive or active hardware protections that at-
tempt to prevent the fault injection method or to detect it. For instance, circuits may include a
voltage regulator which filters out rapid power supply changes and compares the output of the
voltage regulator to the external supply to detect a potential attack. Another more common
countermeasure is to compute redundant information and compare it to the result of the algo-
rithm before outputting the result. The redundant computation could be implemented either in
software or hardware and often takes the form of error detection codes [247].

2.1.1.3 Others

In the last two subsections, we have presented side-channel analysis and fault injection attacks
as they are currently the most studied hardware-based types of attack. However, many other
attacks may fall under this category. Static ones: probing in order to spy on a bus or mem-
ory, reverse-engineering of a chip (which includes de-packaging, layout reconstruction, memory
content recovery). Dynamic ones: cold boot attack [125] (resetting the computer and taking
advantage of the short time during which memory retains its content even when power is not
supplied to dump it), evil maid, etc.
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2.1.1.4 Conclusion

We have described these attacks briefly because they have all proved to be very efficient to attack
cryptographic algorithms and reveal secret data. As such, from the point of view of software
security, they should not be underestimated and special care should be taken to implement
effective countermeasures.

These attacks help in understanding how the analysis of the security of a system is complicated
by taking into account the hardware specificities. In particular, this section has shown that
formally capturing these attacks requires to work on a very low-level model of the hardware.
While the perfect theoretical verification method would take into account the system down to
an atomic view of its hardware, a trade-off needs to be made between the size of the system and
the range of the proof.

2.1.2 Data protection

Some of the countermeasures to hardware-based attacks that have been proposed require specific
hardware modifications. This is for example the case of the special gates introduced in [246],
whose power consumption is independent of their input data and that are intended to thwart
differential power analysis.

Another mentioned attack whose countermeasures are mostly implemented in hardware parts
is probing. Although no effective solution exists yet to guard against a powerful enough opponent
ready to invest enough time and money to de-package and modify or probe an integrated circuit,
securing easily accessible memory and buses should still be seriously considered [134].

2.1.2.1 Memory bus protection

The processor-memory bus is indeed a critical medium when it comes to protecting either a
software-implemented algorithm (to protect intellectual property) or the data it handles as both
machine codes instructions and data will one way or another be transmitted over it. Small flash
memories may be present on the processor die for performance or security purpose but their size
is limited by their price. Bypassing software memory protections to get direct access to memory
can be achieved in multiple ways, even when the OS kernel is trusted:

e by physically probing the processor-memory bus,

e by using a peripheral to access memory through DMA when an IOMMU is not present or
when it was misconfigured,

e or by using cold boot attacks [125].

There are three possible ways an attacker could take advantage of an unprotected processor-
memory bus:

e Spying on the data that is transmitted
e Injecting data to the processor
e Spying on the addresses that are accessed by the processor

These three attack vectors are independent and should be addressed separately.
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Confidentiality

In the last 20 years, many architectures have been proposed to protect the secrecy of data stored
in off-chip memory. Most of them rely on encryption of data when it leaves the processor die
and decryption when it is fetched by the processor.

Although some of the proposed architectures rely on software implementations to avoid mod-
ifying the hardware (as in [62]), most of them are based on a hardware encryption module that
interfaces between the memory controller and the last-level cache in order to reduce the perfor-
mance cost of encryption (the authors of [62] report a 37% slowdown with 512KB L2 cache).

One of the first system architectures proposing RAM encryption was the eXecute-Only Mem-
ory (XOM) architecture [170]. On cache miss or cache line eviction, a routine implemented as
microcode is in charge of encrypting or decrypting cache lines so that only encrypted data are
transmitted over the processor-memory bus. A similar bus protection scheme was implemented
for many other projects [49,58,78,90,96,99, 120, 243].

To prevent semantic analysis of the encrypted data, it is also important that the same data
stored on multiple addresses, or stored at the same address on different point in time, does not
result in the same ciphertext. This is why the encryption algorithm must use a spacial and
temporal dependency that alters the result of the encryption (in the form of a block cipher with
an address dependent initialization vector for instance).

Although all of these memory protection schemes have their particularities, the most impor-
tant differences are:

e The encryption algorithm used. The choice of this algorithm greatly impacts the perfor-
mance of the system. In [265], Yang et al. have shown how one-time pad encryption could
improve XOM memory read performance by taking advantage of idle memory controller
cycles by computing the pad while waiting for the ciphered data to be available on the
memory bus. However a specific pad should only be used once so they propose to make it
dependent on a sequence number that needs to be stored on chip, which is expensive and
not scalable. From this point of view, SGX [96] interestingly uses the version needed to
check the integrity of the data (as explained further down) as a counter in a kind of AES
counter mode.

e The granularity of the control available to specify which data should be confidential. XOM
[170] allows to set flags on cache lines to specify whether it should be encrypted, Bastion [58]
and SecBus [49] allow for page-granularity control. SGX [77] encrypts a whole memory
range (configurable in BIOS).

e The ability for software to control the memory protection (security policies, keys). Most
of the proposed architectures assume that the OS (or a large part of it) is not trusted
so they propose very limited possibilities to manage the protection process from software.
This is notably not the case for SecBus [49] whose hardware security module is driven by
a software security manager.

Integrity

Encrypting data as it is written to RAM is not enough to guarantee the confidentiality of data.
A famous example of this is presented in [158]: by injecting guessed encrypted instructions on
the memory bus and observing the CPU reaction, Kuhn was able to reconstruct enough correct
instructions to dump the content of the memory to the parallel port of the DS5002FP.

This shows that the integrity of the data stored in memory should also be protected. To do
this, most of the memory protection schemes store cryptographic MACs or hashes of memory
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chunks and check it when data is fetched from memory. A first naive approach would be to store
both encrypted data and a corresponding MAC in memory. This raises two issues:

e First, an attacker is able to switch two encrypted memory chunks and their respective
MAC. This attack is called splicing.

e Also, an attacker can record a memory chunk and the associated MAC and replace a later
value of this memory chunk by the recorded one. This attack is called replay.

Preventing splicing attacks is easy: including a location-dependent value inside the MAC
prevents the attacker from switching its location. XOM [170] uses the offset of the memory
chunk in the virtual address space of the process so that the software developer—which does
not know the physical address this virtual address will be mapped to—is able to distribute an
already encrypted software. Most of the others use (part of) the physical address.

The second issue is much harder to fix. Indeed, contrary to virtual or physical addresses, the
processor does not associate a time-dependent value to memory chunks. If we want to create
such a version number, it needs to be protected so that the attacker cannot change it to replace
both memory contents and the version with an older version. A first idea would be to store them
on the processor chip, but this does not bring any advantage compared to directly storing the
MAC value on-chip (both would roughly have the same size). It appears that storing the MAC
values on an on-chip SRAM was actually implemented by Microsoft to protect the microkernel
of the Xbox 360 [240]. However, SRAM is expensive and such a scheme is not scalable (SRAM
size must be adapted according to the size of the external RAM).

On the other hand, a solution would be to hash the content of the entire memory and store
the resulting hash on-chip. This would require to read the entire memory for every memory read
or write and is not acceptable from a performance point of view. The solution adopted by most
of the systems providing protected memory is a trade-off between the size of on-chip memory and
the time needed to perform integrity checks. To do this, a hash tree—or Merkle tree [187]—is
built. The leaves of the Merkle tree are the memory chunks whose integrity we want to protect
and each internal node of the tree is computed by hashing the children of the node. The root
is stored on-chip so that the attacker cannot modify it. This way, any modification on the data
and/or on an internal node of the tree would be detected by checking the validity of the hashes
on the path from this node to the root of the tree.

When reading or writing data in memory, the tree is checked and updated in case of a write.
Changing the memory chunk size and the arity of the tree enables to balance the size used by
the hash tree and the performance of the verification (and thus of the memory accesses). These
parameters are therefore important for the overall performance of the design [259].

Addressing pattern protection

Even if the confidentiality and authenticity of the data transmitted on the memory bus is pro-
tected, an attacker is still able to get valuable information by probing the address signal of the
memory bus. Snooping on the bus enables the attacker to learn the control flow of the program
on a relatively coarse-grained precision. Indeed, caches hide memory accesses targeting already
cached memory addresses. Yet, access pattern monitoring attacks have proved to be effective
even when the granularity of the accesses is coarse. For instance in [235], Shinde et al. show
how a malicious OS can reduce the key space by a factor of 22° in a particular implementation
of AES just by monitoring page faults.

Protecting from access pattern monitoring attacks has been studied for a long time and
most of the proposed defense rely on an implementation of Oblivious RAM (ORAM) which
was introduced in [114] by Goldreich. Many ORAM implementations have since been proposed
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[104, 180, 276] and regular improvement on memory accesses overhead is reported by various
studies [68,160,239].

Efficiently combining Oblivious RAM with memory integrity and confidentiality protection
remains an open problem.

2.1.3 Control flow protection

In order to illustrate the difficulty of verifying hardware-software schemes, we present two im-
portant classes of architectures that take advantage of hardware features to guarantee properties
on the software.

2.1.3.1 HW-assisted control flow integrity

Runtime software exploits traditionally attempt to divert the original control flow of a program
in order to execute a stub (crafted by the attacker or by reusing already present code) and launch
an attacker controlled program (as a shell). In a usual scenario, once a vulnerability is discovered,
the attacker attempts to use it to set up the stack and modify a code pointer (function pointer,
return address) that will divert the control flow of the program.

Original exploits use to rely on injected code so that the modified code pointer would jump to
this attacker-crafted piece of code. Today, most systems defend against such exploits through two
mechanisms: detecting that a return address was modified by inserted stack canaries and using
flags on memory pages so that a page can’t be both writeable and executable (this technology is
sometimes called Data Execution Prevention, No eXecute, W @ X).

These defenses effectively protect against code injection attacks. However, an attacker could
still divert the control flow of a program to target already existing code. Today, most state-of-the-
art software runtime exploit use a kind of code-reuse attack named Return Oriented Programming
(ROP) which was introduced in [230]. ROP relies on finding a Turing-complete set of small
instruction stubs in already existing code that end with a return instruction (or an indirect
jump [59]). By carefully setting up the stack with correct return addresses, an attacker is then
able to chain these gadgets to get the expected behaviour.

Defending against these code-reuse attacks has proved to be much more difficult than prevent-
ing direct code injection. Address Space Layout Randomization makes it harder for an attacker
to reliably locate gadgets but memory leaks are pretty common and cancel the effect of this
protection.

Control flow integrity

Control Flow Integrity (CFI) is one of the most studied countermeasures to code-reuse exploits.
Abadi et al. introduced it in [1] and CFT has since become a very active research area. CFI relies
on an off-line analysis of the software code in order to create a Control Flow Graph (CFG)—that
is, a graph in which vertices are instructions of the program and edges between two instructions
mean that these instructions can be chained in a valid execution of the program. Once the
CFG is constructed, CFI attempts to prevent the running program to follow paths that are not
valid paths in the CFG. To do this, [1] proposes to rewrite binaries to add labels on instructions
targeted by a control flow instruction and software runtime checks that verify the target label
before using a control flow instruction. There are two kinds of control flow instructions: forward-
edges (call, jmp) and backward-edges (ret).

This approach however raises some issues. First, extracting the CFG from the program may
be harder than it seems. Indeed, a good code-reuse defense would need to be applicable to
compiled binaries, even when they are stripped of their symbols. And mainly, the performance
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overhead induced by software-based control flow integrity is prohibitive for most usage. Typically,
the worst-case overhead reported by Abadi et al. in [1] was over 50% on SPEC benchmark.
Further works have reduced it (worst-case overhead of around 25% for [268], of 15% for [83]) by
optimizing the original scheme.

In order to further reduce the overhead, some works have presented a coarse-grained version
of CFIL. Instead of guaranteeing that the execution paths strictly conform to existing paths in
the CFG, these solutions typically identify call and jump targets in the binary and ensure that
the control flow instructions only target valid destinations [39, 255,269, 270]. Other solutions
[64,202,261] have proposed to leverage existing hardware features (typically provided by CPUs
for performance monitoring purpose) to periodically check that the program conforms to some
CFI policies: that return targets are preceded by a call instruction, that call targets are valid
destinations in the CFG or that there is at least one long sequence of instructions among the
last executed stubs (before reaching a return).

However, these coarse-grained CFI policies have proved to be insufficient to prevent ROP
attacks: [55,87,123]. These papers have shown that even if targets of jumps and calls are
restricted to valid targets in the CFG and if return targets are limited to instructions that follow
a call site, it is still possible to find a Turing-complete set of gadgets in common programs like
Internet Explorer or Acrobat Reader.

Hardware-assisted control flow integrity

In regard of this, some solutions have recently been proposed to provide fine-grained CFI with
little overhead. All of them [67,84-86] rely on custom hardware modifications to speed up the
control flow verification (which had already been proposed before: [50,271]).

In this section, we propose to give a brief overview of HCFI as presented in [67]. At the time
of writing this report, HCFI is one of the latest hardware-based solution aiming at providing CFI
with reduced overhead. It will serve all along this presentation as an example of how hardware
and software intricacy may complicate formal analysis of the security of a system.

HCFT (which stands for Hardware-enforced Control-Flow Integrity) implements forward-edge
and backward-edge CFI by relying on a set of custom architectural features:

e 4 CFI-related instructions,
e an unmapped memory area used to store a shadow stack and
e an unmapped memory area used as a shadow register.

The authors of [67] have implemented a prototype HCFI by modifying the Leon3 SPARC V8
Softcore and synthesizing it on a Virtex 6 FPGA board. They choose to allocate 128 % 32 bits
for the shadow stack and 32 bits for the shadow register. The 4 instructions that were added to
the SparcV8 instruction set are SetPC, SetPCLabel, CheckLabel and CheckPC.

As proposed in the original implementation [1], forward-edges control is enforced by a system
of labels. An off-line analysis of a binary reconstructs its CFG and adds a CheckLabel instruction
at each point of the program that can be the target of an indirect jump. A label is provided with
the CheckLabel instruction. All the instructions that may jump to this location need to specify
this label with a SetPCLabel instruction before jumping to this location. The SetPCLabel is
placed in the delay slot of an indirect jump location. The delay slot is a common RISC feature
that helps in reducing the cost of branch shadows. On some architectures, the instruction
placed right after a branch is always executed, no matter whether the branch is taken or not.
SetPCLabel stores the label passed to it in the shadow register and makes the core transition to
a state where the only accepted instruction is a CheckLabel with the label stored in the shadow
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register. If another instruction is met, core transitions to a Control Flow Violation state which
corresponds to the Leon3 Error Mode of the Integer Unit. Likewise, if a CheckLabel is met
and it was not preceded by a SetPCLabel, the core is put in the Control Flow Violation state.
To enable locations to be the target of both indirect and direct jumps, the SetPC instruction is
used in the delay slot of direct jumps to negate the fault detection if the next instruction were
a CheckLabel.

Backward-edges CFI is enforced by using a shadow stack, as other—software or hardware-
based—CF1 solutions do. Each time a SetPC or SetPCLabel instruction is executed, the current
Program Counter (PC) is pushed on the shadow stack. During the off-line analysis, a CheckPC
instruction is added in the delay slot of every return instruction. This instruction compares the
value stored at the top of the shadow stack and the PC corresponding to the following instruction
(after the return). If they don’t match, the system is put in Control Flow Violation state.

2.1.3.2 Software integrity verification and software attestation

Once a software vulnerability has been successfully exploited (due to a failure or the absence of
CFI), the attacker often injects malicious code that may reside in the target machine over time
or even across reboots. Complementary protection solutions have thus be envisioned to enable
to measure the content of part of the memory. Measuring part of the memory can be done:

e when the system boots to allow only signed software to take control of the computer. This
is called secure boot.

e when the system boots to measure the software stack which is executed. This is called
static root of trust for measurement.

e when the system has already booted to create an isolated section of memory. This is called
dynamic root of trust for measurement.

e when the system has already booted to produce a trusted measurement of part of the
system. This is called software attestation.

The eventual purpose of these solutions is to provide a tangible proof that the software code that
is (or is going to be) executed is in a correct expected state.

The solutions that have been proposed (and implemented in COTS architectures for some)
can be split into two main categories: solutions that require a reset of the software stack to build
an environment that is not compromised and those which do not.

Trusted measurement of software after reset

Secure boot mechanisms have now been widely adopted in the industry [15]. They rely on a
trusted initial procedure (the root of trust) which is often a small bootloader, usually in a mask
ROM and which computes a hash of the next software part to be executed and compares it to
a reference hash value (whose integrity is also trusted). In turn, the next link of this chain of
trust will measure another part of the memory before transferring control to it, and so on. It
is important to note now that the trusted part of the chain—the root of trust here—is called
“trusted” because it needs to be trusted, without judgement over whether this trust is misplaced
or not. One of the reasons it is trusted could for instance be that the root of trust procedure
and the first hash are stored on ROM. However in this case, it will prevent even non-malicious
agents (as the owner) from updating any part of the software stack that belongs to the chain of
trust.
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To overcome this issue, it is possible to allow rewriting the root of trust through a controlled
mechanism (like a hardware switch) or to delay verification: the user (let us call her the verifier) is
in charge of checking that the list of hashes measuring the different software parts is indeed valid.
This mechanism is called static root of trust for measurement. To perform this measurement
chain, the Trusted Computing Group introduced a specification for a hardware module named
Trusted Platform Module (TPM) that is in charge of computing hashes on memory ranges
(actually on measurements of memory ranges), providing a signed value (quote) representing
the combination of the successive measurements since reset and securely storing the key used
to sign the measurements. Each software element of the boot chain measures the next element
and extends the value stored in the TPM with the new measurement. At the end of the boot
process, the value stored in the TPM is bound to the TPM through the key used to sign the
measurements and to the measurements that were computed since boot (and the order they were
done).

These solutions enable to create an environment that is not compromised (or attest that
an environment has not been compromised) on a machine that has just been reset. However,
rebooting an embedded system to start from a clean environment may often be impractical or
impossible. Some mechanisms have thus been presented in order to allow a machine (traditionally
called the prover) to prove to the verifier that it is running an untampered software.

Among those mechanisms, some rely on specific hardware (such as the TPM) and some
attempt to achieve software attestation with software-only schemes (software-based attestation).
We will first discuss the latter and then argue that the recent focus on hardware-based solutions
acts the defiance of the community toward reliable pure software-based attestation.

Software-based attestation

The specificity of pure software-based software attestation—which originated with the presen-
tation of the Genuinity scheme by Kennell et al. [143]—is that the verifier needs to recognize
a malicious prover, even when the whole software stack is compromised and without relying
on specific hardware. Thus, no secret shared between the prover and the verifier can be relied
on, which rules out cryptographic schemes. To achieve software attestation under these condi-
tions, the verifier has to rely on generic hardware side-effects. The prover is asked to perform
an attestation algorithm that is carefully crafted so that feigning the attestation would provoke
side-effects that would be noted by the external verifier (which only has a black box access to
the prover). Most commonly, software-based attestation schemes observe the time taken by the
prover to execute the attestation routine and compare it to a threshold computed based on the
physical properties of the prover. Time is an interesting side-effect for software-based attestation
as it does not require direct access to the prover. Most of the schemes [156,159,169,226-229,231]
rely on a challenge-response protocol where the verifier requires the prover to compute a hash
on (parts of) its memory and the verifier measures the time elapsed between the moment the
challenge was sent and the moment the response was received. The verifier can compare the hash
to a measurement of the expected memory content and she is able to detect that the attestation
routine was modified if the measured time is higher than a fixed threshold.

Note that all these schemes require that the verifier has a precise idea of the hardware
characteristics of the prover. In particular, the verifier should be convinced that the attestation
scheme has really been executed by the prover and not by a third-party device with different
hardware characteristics (a faster processor typically). Such an attack is called a prozy attack.
Some of the schemes thus require the attestation scheme to be executed in a Faraday cage to
prevent external communication [159], use physically unclonable functions to distinguish the
genuine prover [154,222] or attest all faster nodes in the network before attesting the targeted
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device [169]. Another requirement to software-based attestation is that the verifier is not mistaken
in her understanding of the observed side-effect. Indeed, it should be hard for an attacker to
execute a modified version of the attestation scheme with no noticeable side-effect. Thus, targets
of software-based attestation are mostly simple architectures (limited instruction set, no DMA,
interrupts can be easily disabled, relatively simple cache architecture), often sensor network
devices.

Apart from proxy attacks (which are often ignored in the proposed schemes [226-228]), basic
attacks on naive implementations of software-based attestation consist of:

e Pre-computing the hash before the attestation is requested. This is commonly defeated by
including a nonce in the verifier request.

e Copying the original data to another location and modifying the attestation routine so
that this location is queried instead when hashing the modified data. This attack can be
detected if the checks added to the attestation routine incur a sufficient slowdown. To
prevent the attacker from guessing when the modified data will be hashed, pseudo-random
traversal is often used. It is also possible to limit the available free memory space (by
adding random data to the memory attested for instance).

e Using a faster implementation of the attestation routine so that the added instructions are
not detected. Attestation routines must thus be carefully designed so that they cannot be
optimized (or be parallelized if the prover is helped by another device).

Since software-based attestation schemes were proposed, many researchers [57,232] have ex-
pressed doubts about the possibility to prevent these attacks. In particular, guaranteeing that
the attestation routine cannot be optimized and that the attested memory cannot be compressed
(or that doing so would incur a noticeable time overhead) is difficult, especially when the timing
measurements are noisy (for instance when the prover and verifier interact through a multi-
hop network). These doubts have motivated researchers to study hardware-assisted software
attestation to provide a dynamic root of trust.

Hardware-based attestation

As mentioned earlier, the TPM is a hardware module that was initially used to provide measure-
ments of software elements of the boot chain in order to establish a cryptographically provable
static root of trust. In the specification 1.2 of the TPM, new Platform Configuration Registers
(PCRs) were added to the existing 16 PCRs used to store static (boot-time) root of trust mea-
surements. Contrary to the first 16 PCRs, these ones can be reset without requiring to reboot
the hardware by using a special instruction. This specification enables to build a scheme relying
on the TPM to provide dynamic attestation capabilities. Such a scheme was implemented by
Intel and named Intel Trusted Execution Technology (Intel TXT). Intel TXT introduces new in-
structions to create an environment were an isolated and Measured Launch Environment (MLE)
can run. The SENTER instruction resets the PCR dedicated to the Dynamic Root of Trust for
Measurement (DRTM) and stores in the TPM the measurement of a software module (named
SINIT ACM) which is then called. This module disables Direct Memory Access (DMA) targeting
the memory of the MLE and measures it. The MLE can then require a quote from the TPM to
guarantee both the SRTM and DRTM.

A class of attacks particularly dangerous for software attestation schemes is Time-Of-Check-
Time-Of-Use (TOCTOU) attacks: guaranteeing the integrity of a piece of software is only inter-
esting as far as it is possible to atomically verify and run the measured procedure. By atomically,
we mean that control cannot be passed to another (potentially corrupted) software that would
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be able to modify the procedure after it was measured but before it is executed. As a matter
of fact, Intel TXT has been shown to suffer from a kind of TOCTOU attack. Indeed, Wojtczuk
et al. showed in [260] that an attacker may be able to corrupt the MLE after it is measured
by using a corrupted System Management Mode (SMM) as SMM is not measured during the
DRTM establishment and SMM can be called once MLE is launched if a System Management
Interrupt is received. Intel published a new specification for a SMM Transfer Monitor in charge
of controlling the interactions of the SMM [266] and presented a new generation mechanism,
Intel SGX [183], to overcome the limitations of Intel TXT (security, performance).

TPM-based solutions may not be suitable for low-power embedded devices such as sensors.
Since software-based attestation relies on questionable assumptions, some solutions were pre-
sented to guarantee strong software attestation schemes at the cost of few hardware modifica-
tions [78,100,151,183,198]. All of them rely on hardware-enforced isolation to protect a software
or microcode procedure that serves as a dynamic root of trust and initiate the measurement
chain that allows to measure the software to attest.

Data Program |
T | ]«
,,
Mem ory attests uses key
Bus Access Refused

Figure 2.2 — SMART overview.

As another example design where hardware and software components interact to provide
security properties on a piece of software, we propose here a short description of one of these de-
signs: SMART, which stands for Secure and Minimal Architecture for (Establishing a Dynamic)
Root of Trust and has been presented in [100]. This primitive tackles the problem of remote
attestation by relying on a slightly customized micro-controller unit and a critical routine stored
in ROM.

In SMART, the memory layout is augmented by adding two read-only sections (as presented
by dashed lines in Fig. 2.2). The first one contains a procedure referred to as RC and the second
one contains a key K. RC can be called in order to compute a keyed-hash message authentication
code (HMAC) on a memory range [a,b] passed as an argument. This HMAC relies on a key £
to prevent a compromised software from computing the hash itself. The modified processor
enforces that RC procedure cannot be entered in the middle nor exited from the middle of the
code. Moreover, RC is designed to be constant-time to prevent side-channel analysis and it
disables interrupts to prevent the key from leaking if the procedure was interrupted. Likewise,
memory is sanitized at reset to prevent an attacker with physical access to the prover from
learning the key by rebooting the device while RC is running. Once the measurement procedure
has been run, the measurement is stored in available RAM and control is passed to the measured
memory region. Note that the measurement also includes:
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e a nonce to prevent replaying previous attestation,

e the addresses of the measured memory region,

e the address of the memory location where RC should jump when it ends,
e the parameters to be passed to the measured code.

Software attestation and processor-memory bus protection may be part of a more holistic
security solution to protect a piece of software running on an untrusted machine where the whole
software stack may be corrupted and an attacker may have physical access to the device and
launch relatively simple hardware attacks. We present some of these solutions which are known
as trusted execution environment (TEE) and discuss the problem of accessing peripherals under
such a powerful attacker model.

2.1.4 Isolated execution

As mentioned in the introduction, the development of complex architectures with large privileged
software stacks justifies the need to protect applications even when their—privileged—software
environment is potentially corrupted. Moreover, the success of Infrastructure-as-a-Service (IaaS)
providers (such as Microsoft Azure or Amazon EC2) and the challenges raised by Digital Right
Management (DRM) schemes have shed a new light on a special attacker model that used to
specifically target systems on chip: the owner of the hardware is untrusted. The protection
schemes need to consider that an attacker has access to the physical hardware and can mount
sophisticated attacks against it. However, it may be argued that an attacker would only invest
as much money and time as the asset she is targeting is worth. This trade-off between the value
of the data stored on the device and the investment to protect it has progressively depicted a
powerful, but limited, attacker model. The attacker typically has a physical access to the device,
controls most of the privileged software stack and can reboot the device or plug new peripherals
but she does not invest enough money and time to be able to probe communication channels
internal to the processor die.

2.1.4.1 Trusted execution environment

TEE are architectural solutions that aim at providing isolated execution on an untrusted plat-
form. They may enforce various security properties that show variations in the assumed attacker
model:

e reporting on the value of a memory region that has been loaded,
e controlled enter to and exit from a protected memory region,

e protection of a memory region against modifications by other (potentially privileged) soft-
ware,

e protection of a memory region against software access originating from another (potentially
privileged) software,

e protection of a memory region against leakage and against modification by an attacker
with physical access to the DRAM (and more generally, to all the peripherals outside the
processor die),

e protection against addressing pattern leakage in presence of an attacker with physical access
to the processor-memory bus and
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e protection against side-channel attacks (cache timing attacks particularly).

In the rest of this section, we will discuss how these properties are handled by the different
existing schemes (in particular: XOM [170], Aegis [243], Bastion [58], Intel SGX [183], Sanctum
[78], Overshadow [63], PodArch [236], InkTag [128] and TrustLite [151]). As all these schemes
refer to the protected memory region with different names, we will use a common denomination
here: trusted application. Note that this comparison was greatly facilitated by the previous
survey work of Costan et al. in [77].

Isolating from untrusted software

Arguably, the main purpose of trusted execution environment is to isolate the trusted application
from other (potentially privileged) applications. In a traditional setup, the Memory Management
Unit (MMU) or Memory Protection Unit (MPU) is responsible for isolating memory regions.
However, this protection mechanism is controlled by the Operating System (OS) or hypervisor
and thus is not adapted in a scenario where they are untrusted. Overshadow [63], InkTag
[128] and Bastion [58] propose to use a trusted hypervisor so few (or no) modifications on the
MMU/MPU are needed. The trusted hypervisor ensures that the page accessed (typically on
Translation Lookaside Buffer (TLB) misses) belongs to the trusted application currently running.
Aegis [243] uses a trusted security kernel and includes the virtual page management in this trusted
kernel which is enough to protect from software accesses in this weakened attacker model. Intel
SGX [183], PodArch [236], TrustLite [151], XOM [170] and Sanctum [78] do not trust the OS nor
the hypervisor so the MMU/MPU needs to be modified to verify whether an access is authorized
or not. This verification may be implemented in hardware (for PodArch, TrustLite and XOM),
in microcode instruction (for Intel SGX) or by a trusted piece of software (the security monitor
in Sanctum).

Note that disallowing the untrusted OS to read pages of the trusted application would prevent
it from doing standard management tasks such as paging out these memory pages. This issue is
either ignored (TrustLite uses a MPU which does not provide page management, XOM disables
paging and Sanctum lets each trusted application manage its own page table) or the untrusted
OS is given the possibility to access an encrypted version of the page in order to page it out
(Intel SGX, Overshadow, PodArch, InkTag, Bastion).

Measuring the protected region

In these schemes, the untrusted OS is in charge of loading the trusted application into memory
so that it can execute. It is therefore mandatory to either prevent the OS from modifying the
application before it is loaded or to give the application the ability to prove its integrity to
an external verifier. Aegis, Bastion, Intel SGX, Sanctum and TrustLite offer primitives (either
implemented in software or hardware) to issue a measurement of the current trusted application
(signed with a private key bound to the device). On the other hand, Overshadow, PodArch and
InkTag accept encrypted applications and the trusted hardware of VMM checks the integrity of
the data once it is loaded. In these cases, the application provider can embed a secret into the
application which will guarantee the integrity of the loaded data. XOM also accepts encrypted
applications but does not verify the integrity of the data when it is loaded in memory.

The main advantage of providing trusted applications encrypted is that it natively provides
a way to securely transfer secret data (either resources or code) to the trusted application. On
the other hand, trusted applications distributed in plaintext need to contact the external verifier
and establish a secure channel through which the trusted application measurement may be sent
and secrets may be provisioned.
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Controlling entry and exit

To guarantee isolated execution, it is important to enforce strict policies about how control flows
both from the untrusted environment to the trusted application and from the trusted application
to the untrusted environment. Controlling entries in the trusted application is important in order
to prevent simple control-flow hijacking by jumping in the middle of the trusted application’s
code. Controlling exits from trusted application is necessary to prevent private information
from leaking to the untrusted environment through the processor’s registers. That is why all of
the mentioned TEEs include in their TCB (hardware, trusted hypervisor or trusted kernel) a
mechanism to control where the trusted application can be entered and to save the context of
the trusted application when it is interrupted. The notable exception is XOM which stops the
trusted application when an interrupt occurs during its execution.

Protecting against physical attacks on the processor-memory bus

We have already mentioned these protections in a previous section. More generally, protecting the
processor-memory bus against physical probing is orthogonal to software isolation provided by
TEEs: without memory access policies enforced on software modules, encrypting the transactions
in the memory controller does not prevent a software attacker from accessing the memory of the
trusted application (since the data in memory is fetched as it would be by the trusted application).
On the other hand, legal memory accesses from the trusted application would leak to a physical
attacker if memory accesses are not encrypted. Likewise, protecting the application against
addressing pattern leakage could be addressed separately. As a matter of fact, none of the TEEs
described in this section natively implements a kind of ORAM protection.

Protecting against side-channel attacks

As all these schemes attempt to provide software isolation at the cost of minimal hardware
modifications, protecting against side-channel attacks is often discarded as outside of the attacker
model or because protections are orthogonal (like designing an encryption algorithm in a way
that it is not vulnerable to cache timing attacks). There are two classes of side-channel attacks
that are of particular interest in the context of TEEs: cache timing attacks and addressing
pattern leakage through page faults (called controlled-channel attack [264]). The threats they
pose are serious as they are efficient and do not require physical access to the device. The notable
exception is Sanctum, which provides protection against both of these attacks by partitioning
the cache so that the trusted application never competes with another application for cache lines
and let the trusted application manage its page tables so that it does not need the untrusted OS
to load back a page on page faults.

ARM TrustZone

The TrustZone technology [10] from ARM introduces a partitioning of the processor into two
modes (which are orthogonal to the traditional user/kernel mode): normal world and secure
world. Transitioning from one world to the other is controlled by a secure monitor running
in the secure world. When issuing transactions on the AMBA AXI system bus, the processor
forwards the world the processor is running in to other hardware modules by using a special bit
added to the AMBA AXI bus. This bit enables to partition other resources (like DRAM) and
to give different views depending on the world the processor is running in. Typically, the secure
world has access to the memory of the normal world but not the other way around. TrustZone’s
guarantees depend on how these hardware modules handle the secure bit. In particular, it does
not necessarily provide memory encryption, software attestation or side-channel protection.
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Most of the industrial schemes branded as TEEs based on TrustZone ! run a secure OS in the
secure world which is used to isolate software in the normal world. They differ from the other
solutions presented here (sometimes called hardware-enforced isolated execution environment)
as the hardware support (TrustZone) provides isolation for only one trusted application which
is used to manage the applications running in the normal world.

Table 2.1 — Comparison of various TEEs.

Sw Controlled Trusted Protection
TEE Attest. jump 0S ‘ VMM | mem. bus ‘ addr. pattern ‘ cache timing
XOM X v butint. | X N/A X N/A (Paging X
kill app. not supported)
Aegis v v v N/A X X X
Bastion v v X v X X X
Intel SGX v v X X v X X
Sanctum v v X X X v v
Overshadow | Encrypted v X v X X X
App
PodArch Encrypted v X X X X X
App
InkTag Encrypted v X v X X X
App
TrustLite v v X X X X X
ARM-based X v X X X v X

2.1.4.2 Trusted path

Isolated execution environments as they were presented may be seen as architectural solutions
that link a state of the processor (depending on the program counter, the privilege level) to a
restricted view of the memory. These two hardware components—the processor and the external
memory—are the fundamental elements that compose a traditional computer system in an overly
simplistic presentation. However, there are many applications where other hardware components
(that we will call peripherals to simplify) are used and need to exchange valuable information
with the trusted application. Three potential use cases would be:

e The peripheral is an input device used to authenticate the user to the trusted application.

e The peripheral is an output device (monitor, speakers) that is used to (dis)play protected
content.

e The peripheral is used as an accelerator to offload the processor or increase the throughput
of an algorithm transforming private data.

In these cases, the trusted application needs to extend the range of the protection offered by the
TEE to the peripheral. This issue of establishing a secure channel between a peripheral and a
trusted application in an untrusted environment has been intensively studied under the name of
trusted path.

1Kinibi from Trustonic, QSEE from Qualcomm, T6 from TrustKernel, SecuriTEE from Hansol Secure, Core-
TEE from Sequitur Labs, ProvenCore from Prove&Run, OP-TEE from Linaro, SierraTEE from Sierraware
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Conceptually, one could argue that offering different views of memory depending on the
execution context of the processor is a solution to a sub-case of the problem of establishing trusted
paths to peripherals. The main difference as far as physical attacks are concerned is that, in the
case of memory, the peripheral does not need to know the actual value of the data to provide
the service it is supposed to. Other peripherals share this peculiarity: other storage media like
hard disks or hardware accelerators that work on data encrypted with homomorphic functions
for instance. For peripherals that handle cleartext data (like an input device), transactions with
this peripheral need to be encrypted to protect the confidentiality of the data against physical
probes on the communicating bus (LPC, PCI, PCle, SPI, SATA, USB, etc.).

This consideration leads to a classification of studies on trusted path into two groups: the ones
that use cryptographic primitives to protect the path from end to end and the ones that weaken
the attacker model in order to limit modifications of the peripheral (hardware or firmware). Note
that in both cases, an ideal trusted path solution would guarantee:

e confidentiality of the data (e.g., to prevent keyloggers),
e authentication of the application to the peripheral (e.g., to prevent phishing attacks [101]),

e authentication of the peripheral to the application (e.g., to prevent malware from submit-
ting transactions to the trusted application) and

e integrity of the data to prevent an attacker from altering a genuine transaction.

Supporting legacy devices

In a scenario where the peripheral does not provide cryptographic primitives to build an end-
to-end trusted path protection, physical attacks on the peripheral bus need to be put out of
scope. However even with this weakened attacker model, providing a trusted input path or a
trusted display remains a challenge, especially with limited TCB. As the peripheral device does
not enable to establish an encrypted or authenticated channel, the communication to the device
needs to be isolated from the untrusted software stack. Communication with this device would
normally occur through direct access, interrupts or DMA. All of these are typically under control
of the OS or hypervisor which can, if it is compromised, intercept the interrupts generated by
the peripheral, initiate DMA to this device or configure another PCle device so that its address
range overlaps with the one of the trusted peripheral.

As such, a trusted anchor is needed to isolate the trusted path. It may be the OS [102,248],
a trusted hypervisor [257,267,274,275] or a hardware feature providing software isolation (AMD
SVM, Intel TXT, ARM TrustZone) [103,168,206]. [103,206] are based on Flicker [182], a solution
which uses AMD SVM or Intel TXT to launch a measured, isolated environment which has
exclusive access to the peripherals and can be attested by an external entity.

End-to-end protection

The downside of these mechanisms, apart from the weakened attacker model, is that they either
require to stop all other concurrently executing software or need to considerably increase the
TCB. To provide end-to-end protection, a cryptographic channel between the peripheral and the
trusted application—or an external communicant—is needed. In an untrusted environment with
no TEE in place, the application would not be able to keep cryptographic material secret from
other privileged and untrusted software. Thus, solutions that offer end-to-end protection either:

e trust the software stack (e.g., a set-top box encrypting a video stream to send it through
a HDMI link protected with High-bandwidth Digital Content Protection),
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o use an isolated execution environment [19] or

e distrust the application and establish an encrypted channel between an external trusted
entity and the peripheral [256].

Note that if the OS or hypervisor is trusted—like in some of the aforementioned schemes—
cryptography could still be added as an orthogonal protection against physical probes on the
peripheral bus.

2.1.5 Conclusion

In this section, we have explored why the distinction between hardware and software may make
sense from a security point of view. Naturally, there exist practical, methodological differences
between hardware and software concerning their development (implementation languages are
generally different), deployment (hardware needs to be synthesized), verification (as will be pre-
sented in the next section) and security concerns (physical damage or logical exploits). However,
this section has shown a more theoretical approach to this difference: we sometimes need to
think about systems in their hardware/software duplicity to understand their behaviour. As far
as security is concerned, this behaviour may be

e unintentional and unwanted in case of hardware-based attacks; or

e intentional when the hardware implementation exports high-level features that provide
primitives on which secure software solutions can be built.

In this thesis we were especially focusing on the second case. More generally, we were inter-
ested in how security can be analyzed for systems described as hardware and software compo-
nents. In the next section we will discuss how software or hardware behaviours can be described—
modeled—and verified and how these models can be linked to prove high level properties on whole
systems.

2.2 Hardware and software models

Modeling is fundamentally linked to the process of realisation (be it the realisation of a process, of
a physical object or of a language). Models are—as etymology would have it—measures to which
an implementation must compare and eventually conform to. Models first and foremost exist as
an intermediate step between the intellectual conception of an object and its realization. All of
the large-scale projects go through a modeling stage whose purpose is to provide the designer
with a reduced—but hopefully similar—version of the object that is being realized. Its purpose
is to enable the designer to predict how the final object will behave under different environments
so that she can change her conception if the object does not meet some required criteria. In the
field of computer systems design, these criteria may be about functionalities, safety, performance,
security, reliability, availability, ergonomics, etc.

Formal verification designates the activity of evaluating these criteria (expressed as properties)
on the model using mathematical tools. As mathematical tools require the model to take a certain
form that is not necessarily suitable for evaluation by human eyes, we split this presentation into
two parts: first we will present how models are used during the design of embedded systems with a
particular attention to security; then, we survey different verification methods and mathematical
models commonly used and study how they differ with respect to their relation to the software
abstraction.
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2.2.1 Designing secure embedded systems

As mentioned earlier, models are intermediate steps between specification and implementation
in Model-Driven Engineering (MDE). We will first present the fundamental concepts of MDE as
described in [82].

2.2.1.1 Model-Driven Engineering

Modeling languages used in MDE can be classified according to their domain and their viewpoint.
The domain of a modeling language corresponds to the application domain of the systems that can
be described with this modeling language. General-purpose modeling languages (such as UML
or SysML) can describe a wide variety of systems while domain-specific languages define artifacts
specific to the application domain and thus allow easier modeling and model transformation in
their specific domain.

For each system being designed, multiple criteria can be considered in a model. The viewpoint
of a modeling language defines which kind of aspect of a system is meant to be described in this
modeling language. First, a modeling language can specifically target the description of static or
dynamic properties of the system. A static description shows how a system is structured while
a dynamic description shows how it behaves. Also, it is possible to classify modeling languages
according to their abstraction level. This classification was proposed by the Object Management
Group (OMGQG) in their approach to MDE (called Model Driven Architecture) [189]. According
to this classification, models can be:

e Computation Independent Models (CIM), which "focus on the environment of the system,
and the requirements for the system”.

e Platform Independent Models (PIM), which detail the operation of a system but do not
depend on the specific platform that will be used to implement this system.

e Platform Specific Models (PSM), which show how a specific platform will be used by the
system.

These viewpoints enable to unambiguously detail a specific view—behaviour, graphics or com-
munications for instance—of the system under conception.

The specificity of embedded system design lies in the concurrent conception of software com-
ponents and of a hardware architecture—or even hardware components. This raises new issues
compared to software engineering in other domains: which components will be present in the
embedded system? How do they communicate? How are behavioural tasks mapped to these
components? Different methodologies have been explored to help embedded system designers
answer these questions.

2.2.1.2 Embedded system design methodologies

While agile methodologies have been widely accepted in the traditional software development
industry for their ability to cope with specification changes and unpredicted development issues
[215], they have more trouble permeating the hardware and embedded system design market—
despite some interest [119,258]. According to these two presentations, the difficulties to adapt
agile methodologies to hardware development—and thus, to some extent, to embedded system
design—come from three fundamental differences:

e Building a hardware prototype architecture usually takes a lot more time than compiling
software. In particular, procuring parts requires much more time than fetching software
libraries.
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e Hardware components are expensive. This makes trial and error costly for companies, in
particular when hardware custom components need to be synthesized.

e Hardware and embedded system designs involve diverse competencies (software design,
hardware design, formal verification, etc.) that are often implemented in different teams
so communication and synchronization is difficult.

These reasons explain why the waterfall—or V-Model—paradigm is still widely used in the
embedded system development industry. In such a paradigm, system design follows different
successive steps: requirement, analysis, design and implementation.

During the design step, embedded system design methodologies typically propose to model the
system according to two different questions. The first one, more abstract, requires the designer
to specify a functional representation (PIM) and an architectural representation (PSM) of the
design and to map functional elements onto architectural nodes. This approach [145], named Y-
Chart has been widely adopted [14,20, 146, 253] in order to help designers choose which function
to map on software or hardware components (this process is called design space exploration). At
this step, the designer is typically able to get feedback about the latencies, bus usage or hardware
module solicitation induced by the mapping she has realized. The second question the designer
needs to address is how the global system composed of various components behaves in terms of
computations and in terms of communications.

The models created during requirement, analysis and design phases can conform to different
languages which describe the possible diagrams available to the designer and how they should
be used. Examples of such languages are SysML (a UML profile) or Arcadia [216]. Modeling
languages can be implemented in various dedicated or general purpose modeling tools (e.g.,
Capella, Sirius, Papyrus).

During all these steps, formal methods can be employed to verify safety and security properties
on the design. Some methodologies provide a semi-formal description of their modeling language
in order to formally verify properties directly on analysis or design models [204].

2.2.1.3 Security in design methodologies

As embedded systems become more connected, their security becomes a growing concern and
many—even critical—embedded systems have been shown to present various vulnerabilities [13,
74,79,136]. To address these issues, some works have attempted to integrate security concerns
into model-based engineering methodologies.

Security may be integrated early in the design process through security requirements and
security analysis. Security requirements are often associated to an analysis of the possible threats
targeting the system which are rigorously evaluated [8,199] and can be expressed textually
(informally), mathematically or by specific models such as attack trees [47].

Different models have been presented to capture system security features in analysis or design
models. They usually rely on an existing modeling language or technique to enable capturing
functional and non-functional properties on the same model. They can target specific models
(such as Petri nets [8]) or be integrated in a broader design methodology such as UML [141,
174,234] or SysML [204,217]. These solutions also differ in terms of specificity of the security
properties they target. Indeed, some may provide low-level modeling capabilities that enable to
model a large range of security features or properties (such as Linear Temporal Logic properties
in [8]) while some require to model security properties in a more specific semantics (confidentiality
and integrity of messages in [141,204,217,234] or access control in [174]).

These security modeling capabilities may or may not provide integration with formal verifi-
cation tools to guarantee properties on the system (as it is described in the model). We will now
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survey how formal verification can help designers in assessing safety and security properties on
their design.

2.2.2 System verification

Formal system verification has benefited from constant interest since the dawn of computers.
In its simplest form, formal verification may target satisfiability of first-order logic formulas (an
NP-complete problem known as SAT). Various algorithms (SAT-solvers) have been proposed
to automatically answer the SAT problem. These verification algorithms take their roots in the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm [89]. This algorithm takes as input a logic
formula in Conjunctive Normal Form (CNF) and recursively finds a valuation of the literals that
would satisfy the formula or fails if the formula is unsatisfiable. Each time a literal is picked and
a value is affected to it, the formula is simplified and recursively checked to see if it is satisfiable.
If it is, a valuation has been found: the picked literal is added to the valuation found satisfying
the sub-formula and the valuation is returned. If the sub-formula is not satisfiable, the other
value is affected to the literal and the formula is simplified and checked again. The algorithm was
further extended [107,191] to interface with domain-specific solvers (such as real numbers, bit
vectors or linear inequalities). The DPLL algorithm (or another SAT-solving algorithm) queries
the domain-specific solver to check if a clause if satisfiable. If it is not, the domain-specific solver
returns a core conflict clause that the SAT-solver adds to the original formula. The SAT problem
with background theories is known as Satisfiability Modulo Theories (SMT).

It would theoretically be possible to verify any property on any system by finding an adequate
logic formula and solving it with an SMT-solver. However, even for small real-world systems,
such a logic formula may be far too large to be solved by an SMT-solver. In order to achieve
formal system verification, additional semantics needs to be provided to decompose the problem.
To this regard, some verification methods require that a human interact with the prover and some
use an algorithm on more abstract models—compared to first-order logic formulas—to provide
totally automatic verification. Both of these methods may use SMT-solvers (such as Z3 [91]) as
building blocs.

In this work, we are interested in how formal verification techniques can provide a precise
evaluation of security to designers in the specific context of systems consisting of hardware and
software components. We will first present verification methods that expect human interaction
and argue that they require advanced training and significant manual work. Those are thus not
well suited to our problem. Then, we will discuss automated verification methods and show how
some are more suitable to software or hardware verification.

2.2.2.1 Semi-automated verification

In this first section, we propose to describe verification methods that do not completely infer a
property automatically but instead rely on a human interaction to help it. Such methods define
a language used to model the system and the property to verify and a set of allowed inference
rules. The application enables the user to derive properties using inference rules. Moreover, the
application can automatically apply simple inference rules when possible. As the human user
and the application appear as interacting entities where the former require that some inference
rule be applied and the latter checks that the required rule is valid, these solutions are grouped
under the name of proof assistants (or equivalently interactive theorem prover). Some of the
most well-known proof assistants are Isabelle/HOL [197], Coq [31], EasyCrypt [25] and the B-
Method [3].

Proving non-obvious properties on whole systems by using proof assistants may involve a lot of
human work (11 person years were needed to write the 200,000 lines of Isabelle script to verify the
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14,000 lines of Haskell and C code of the seL4 microkernel [148]). Yet, automated verification
algorithms quickly suffer from the fact that increasing the system size usually exponentially
impacts the time needed by the algorithm to complete (traditionally called the state explosion
issue). In contrast, while human verifiers are slower to apply and combine inference rules, their
intuition to select which rule to apply is hard to implement in automated verification algorithm
and helps in directing the proof to counter state explosion.

This partly explains the choice of many academic and industrial solutions that use proof
assistants to formally verify their system. To name but a few: sel.4 [148] is a microkernel of the
L4 family which has been formally proved to guarantee high-level functional properties on its C
implementation. An Haskell prototype of the kernel was first implemented and automatically
translated into Isabelle/HOL code. The resulting code (named executable specification) is proved
to be a refinement of a more abstract specification in Isabelle. Concurrently, a C implementation
is generated based on the Haskell prototype. The authors of [148] propose a formalization of
part of the C language in Isabelle/HOL language and show that the implementation of sel.4 is
a refinement of the executable specification. It results that properties proved on the abstract
specification (expressed as Hoare logic) are verified on the C implementation (more precisely,
on the model described by the C implementation and the formalization of the C language).
Another project involving formal verification through interactive theorem proving is CompCert.
CompCert [163] is a C compiler that handles a large subset of the C language and was initially
targeting the PowerPC architecture. The compiler is developed in the Coq language and the proof
is also described in Coq. The proof targets observational equivalence between the source and
compiled code: the authors of this tool prove that the compiler does not introduce a behaviour
that could not be observed in the source code and it does not introduce cases where the compiled
code could go wrong (such as accessing an array out of bounds). The implementation of the
compiler takes around 6,000 lines of Coq code and the proof 36,000. Another famous application
of semi-automatic verification in an industrial project is the B-Method which was used to design
the pilot of the automated Metro Line 14 in Paris and the pilot of the automated shuttle in Paris
Charles de Gaulle airport [18].

Formal verification of these designs has involved a lot of manual work. As mentioned earlier,
state explosion prevents automated verification of large systems. However, performance increase
of these algorithms may enable them to be applied to relatively small systems. Apart from
the amount of work it would spare, there is another important advantage to fast automated
verification of systems. Indeed, skills required to manually verify a system are usually complex
and quite different from implementation skills. As a result, a distinct team often needs to be
dedicated to formal verification which complicates the feedback that it would provide to the
designer if it were applied on implementation models.

2.2.2.2 Automated verification

To allow designers with little formal verification knowledge to prove properties on models, totally
automated verification methods can be used. These automated formal verification methods may
differ in terms of:

e the modeling language used to describe the system,
e the language used to describe the property to be verified,
e the environment under which the system is expected to run, and

e the algorithm used to evaluate the property.
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Representing simple systems as finite state machines

A—more abstract than boolean formulas but still simple—representation of systems is to depict
them as Finite State Machines (FSMs): a finite set of states and a set of transitions linking these
states together. Various other state-based models (such as Petri nets or Kripke structures) are
based on FSMs and extend them with specific semantics. Systems may be modeled directly by
FSMs or they may use another modeling language which is pre-processed to be transformed to
FSMs. This language can for instance be a synchronous language such as Esterel [30], Signal [28§]
or Lustre [124]. FSMs are interesting to model systems as they capture an evolution of the
system and so enable to verify temporal properties on the model. These properties are typically
expressed as temporal logic formulas (e.g., using Linear Temporal Logic or Computation Tree
Logic).

Tools that check such properties on finite state machines are grouped under the generic name
of model checkers [72]. Even though finite state machines have a finite number of states and
transitions, this number may be quite large, even for simple systems due to the state explosion
problem. Various strategies have been proposed to improve the verification algorithm by ar-
bitrary limiting the states that are checked by the algorithm (bounded model checking [33]) or
by simplifying the model before the algorithm runs through abstracting part of the state of the
system (symbolic model checking [184]). This abstraction could generate a mismatch between
the abstract and original model. This would result in a property being verified in one model
and not in another. To solve this issue, abstraction is usually iteratively refined through a pro-
cess known as CounterExample Guided Abstraction Refinement (CEGAR) presented in [70]. In
CEGAR, the abstraction is chosen so that it is a sound approximation: if the property holds
for the abstract model, then it also holds for the original one. If the property is proved false on
the abstract model, a counterexample on the abstract model is generated and checked against
the original model. If it is valid for the original model, then the property is false on the original
model. If it is not, the counterexample is spurious (introduced by the abstraction step) and
abstraction is refined so that the counterexample is not valid on the abstract model anymore.
These improvements enable to verify properties on models of real-life systems [51].

Protocol Verification

Modeling concurrently executing actors which take part in a protocol (or game) with FSMs
is difficult as the number of states is greatly increased due to concurrency. Other modeling
languages were thus proposed to model these systems. Many of them derive from the family
of process calculus. Process calculus and its derivations enable to model a system by giving a
high-level formal description of the actors and communications of the model. It focuses on how
processes are duplicated, how they communicate and how they synchronize rather than on a
low-level imperative description of their implementation.

Formal verification of cryptographic protocols has motivated the presentation of numerous
and various methods since the 1990s. Blanchet gives in [37] a survey of these methods and of
tools that implement the methods. We will summarize this survey and we refer the interested
reader to this paper for a more complete overview.

A first distinction which allows to classify protocol verification approaches lies in how cryp-
tographic primitives are modeled. Some methods assume a computational model in which the
concrete representation of data (as bitstring) is taken into account so that the protocol can be
analyzed in terms of probability to violate the security properties. This model is relatively close
to the eventual implementation of the cryptographic protocol and has been traditionally assumed
by cryptographers to analyze the security of cryptographic schemes. Automated formal verifica-
tion of computational models is however difficult. A representation more suitable for automated
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verification is achieved by using symbolic models. In a symbolic model, cryptographic primitives
are assumed to be perfect: hash functions can not collide, encryption can only be reversed by
decrypting with the corresponding key, etc. Moreover, all messages exchanged in the protocol,
crafter by a genuine participant or by the attacker, can only use these well-defined primitives.

While automated verification is easier for symbolic models than for computational models,
the problem is undecidable in the general case [98]. In particular, the set of messages that the
attacker is able to learn in the protocol is infinite since the attacker can apply primitives an
infinite number of times and since an infinite number of sessions of the protocol can be executed
in parallel. To cope with this problem, diverse solutions have been proposed:

e The number of sessions and the length of messages can be limited. In such case, traditional
model-checking techniques can be applied. This approach is taken by FDR [176] or SATMC
[17] for instance. It is efficient at finding attacks against a protocol but can not guarantee
that a protocol is free of vulnerability since part of the state space has not been explored.

e Another possibility is to limit only the number of sessions and assume reasonable properties
on the cryptographic properties in which case the problem may be NP-complete. The
protocol can then be analyzed with constraint solving or model checking based approaches
for instance (as in the Cl-AtSe [65] or OFMC [27] tools).

e A third possibility is to simply allow the verification tool to not terminate in some cases
as it is done in Maude-NPA [186].

e It is also possible to restrict the class of protocols on which the verifier will work (tagged
protocols in [211] for instance).

e A manual intervention of the user may be requested to direct the proof. This intervention
may for example be an interaction with a proof assistant (Isabelle/HOL in [203]), the
input of type annotations for Cryptyc [116] or the specification of intermediate lemmas for
Tamarin [220].

e Finally, the verification tool can rely on an abstractions to terminate at the price of com-
pleteness: the tool may provide an "I don’t know" answer. This method was pioneered
by Bolignano in [41]. A tool that falls in this category and that we have used during this
thesis is ProVerif [35]. We will discuss in Chapter 4 why we chose this tool over the other
mentioned here.

Note that some platforms have been implemented that provide a protocol description language
and allow this language to be translated to other languages to use the aforementioned tools.
This is the case of the Common Authentication Protocol Specification Language (CAPSL) [188]
which can be translated to the input language of Maude-NPA or of the High-Level Protocol
Specification Language (HLPSL) used by AVISPA [16] which can use multiple back-ends like
SATMC, CIl-AtSe or OFMC. It is also notable for this thesis that some of these tools have
been integrated to design modeling methodologies using modeling languages such as UML or
SysML [204, 234].

Verifying protocols in the computational model can be achieved in two ways. The first
possibility relies on a result Abadi and Rogaway [2] which states that under some assumptions,
if a protocol is secure in the symbolic model, then it is also secure in the computational model.
This enables to exploit the existing automated verification tools for symbolic models. The second
possibility is to use one of the fewer dedicated tools (mostly CryptoVerif [36] and EasyCrypt [26]).
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2.2.2.3 Hardware and software verification

Formal verification tools usually expect systems that need to be verified to be modeled in a
dedicated language. As mentioned in the previous section, some translation algorithms were
proposed to convert design models into models suitable for formal verification. However, this
translation may be tedious to automate and error-prone if the original modeling language and
the mathematical language used for formal verification are too different. This explains that
some formal verification methods are more suited to verify software or hardware even though
a transformation of the model can often close the gap. We will discuss these methods in this
section. Note that we are interested in solutions bringing mathematical guarantees and thus do
not discuss solutions that execute the targeted system within a specific environment (including
input): testing and dynamic analysis.

Hardware verification and software verification

Model checking methods on FSMs—as detailed earlier—are of particular importance for hardware
designs. While they are not specific to hardware models, the state explosion problem heavily
limits the size of models that can be checked through—even symbolic—model checking. Yet,
model checking is perfectly suitable for small parts of hardware designs and has been implemented
in various commercial and academic tools (Incisive from Cadence, Magellan from Symnopsys,
VIS [45], NuSMV [69], UPPAAL [162], CADP [108], etc.).

Combinational equivalence is another property that is particularly important for hardware
designers. It is used to prove that two boolean functions are equivalent (which is a coNP-complete
problem). There are traditionally two ways of proving such a property: either by using SAT-
solving algorithms as DPLL mentioned previously [113] or by using a canonical representation
of boolean functions (as reduced ordered binary decision diagrams). Recent research in this
domains focuses on increasing performance of combinational equivalence checking algorithms for
specific circuits [12,190,192] or extending equivalence checking to non-combinational circuits
(sequential equivalence checking) [71,219].

Software-specific verification methods have typically been conceived with two properties in
mind that differ from other verification methods (apart from their expected input modeling lan-
guage). First, they usually need to verify large systems since most of the software vulnerabilities
do not come from the core controlling logic but from implementation details. Secondly when
software verification is applied to a system described in an implementation language, it may
need to handle parts of the system in different forms: machine code for various architectures,
source code in various languages. These constraints shape the various automated verification
methods that will be presented in this section. This presentation is built upon various recent
surveys [53,95,223].

As for hardware models, model checking has been implemented in many tools targeting
software descriptions (SPIN [130], JAVA PathFinder [126], SLAM [21], BLAST [32], etc.). As
mentioned earlier, model checking suffers from the state explosion problem and most of the
research effort concerning software model checking has focused on improving performance of
model checking algorithms by approximating them. Approximation is typically done either
through abstraction in symbolic model checking and predicate abstraction or through limiting
the depth of the search in bounded model checking. Note that limiting the depth of the search
would normally affect the completeness of the proof but simple static analysis of software (as
estimating loop counts) may help in approximating the completeness threshold through trial and
errors (the depth of a model that needs to be explored so that further exploration would only go
through already explored states).

An automated static analysis method close to symbolic model checking that has been raising
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great expectations from the community due to the increasing performance of SAT and SMT
solvers is symbolic execution [53]. Symbolic model checking is based on constructing an FSM of
the system according to abstractions chosen before the FSM construction. Symbolic execution
delays abstraction until a branch is found. In symbolic execution, state variables have symbolic
values and the current explored path is conditioned to a constraint formula. When reaching a
branch, a constraint solver (typically SMT solver) is used to check that the two branches can
be taken. If they can, symbolic execution splits and the constraints are added to the respective
path constraints. Various tools exist to symbolically execute software: KLEE [52], S2E [66],
Symbolic PathFinder [208], etc.). As model checking, symbolic execution suffers from a kind of
state explosion (called path explosion for this method), so recent research works have focused on
improving its performance by selectively merging states [161] or approximating the exploration
with concrete values [225] when the size of the path constraint exceeds the capabilities of the
constraint solver or when the source code for part of the system is not available (e.g., libraries).

Another static analysis technique widely applied to analyze software programs is abstract
interpretation [80]. Instead of computing a FSM of the program as concrete and symbolic
model checking do, abstract interpretation iteratively builds an approximation of the program
by using monotonic functions to over-approximate the set of values the state variables may have
at any point in the program. Operations on state variables are extended to operate on the
abstract domains used to represent the variables and the state variables abstract representation
is iteratively enlarged to fit new values computed by these operations until a fixed point is
reached. The approximation needs to be carefully chosen to be sound—as defined earlier—and
to balance the precision of the proof with the time needed to reach the fixed point. Tools
such as Astrée [81] or IKOS [44] enable to verify programs using abstract interpretation. The
inabilities of abstract interpretation to generate counterexamples and to deal with subtle, path-
sensitive properties explains that it is mainly used for verifying simple generic properties or for
compiler optimizations [95]. Other formal verification methods exist that cope with the state
space explosion problem by trading accuracy, like flow sensitiveness: pointer analysis [127] for
instance.

Another area of research concerning formal verification of software concerns the prover envi-
ronment:

e providing a—preferably general-purpose—modeling language to describe software programs
in order to present a common and practical input language to formal verifiers [48,52,97,122]
or

e formally describing the effect of software instructions on real hardware [106].

Combined HW /SW verification

Most commonly, industrial verification of hardware and software co-designs relies on simulation
and testing rather than on formal verification due to the state explosion problem limiting the
size of designs that can be formally verified. Due to potentially tight interaction between hard-
ware and software, new verification methods focus on simulating both hardware and software at
the same time instead of successively verifying hardware against a hardware specification and
software against a software specification. In order to test a HW /SW co-design, the hardware com-
ponents need to be either implemented in a prototype [194], simulated in software [131,224,242]
or hardware and software need to be described in an abstract modeling language [51] (this case
was discussed in the previous section).

An important step in co-design testing is to define how software and hardware components
interact (e.g., software procedures triggered by hardware interrupts, software variables mapped to
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hardware signals). The question of how software and hardware components interact is central to
all formal verification methods targeting hardware /software co-designs [6,40,71,157,193,245,254,
262,263,273]. Indeed, most of the verification methods proposed rely on leveraging a common
formal language to model both hardware and software components. This formal description
may be directly formulas for SAT or SMT solvers [71,193], (extended) petri nets [245], Kripke
structures [157] or other automata [164,273]. The formal model that is verified may also be
derived from another common specification such as C [6] or SystemC [157].

The main difficulties that these works address are the composition of hardware and software
components and the performance of the verification algorithm. As previously mentioned, com-
posing hardware and software components requires to define the mechanisms used to interact (the
interface) but also the possible concurrency of hardware and software components to model that
software and hardware execution is not sequential (the problem is for instance raised in [131]).
It is notable that, in order to simplify the combination of hardware and software models, most
of the verification techniques target rather loosely coupled hardware and software components.
Some solutions as presented in [133] propose to verify a full emulation of the hardware but this
greatly limits the size of the design that can be verified.

2.2.3 Conclusion

In this section, we have presented various formal verification methods targeting generic or specific
system models. Testing was not part of this presentation as it does not provide a mathematical
guarantee that a property is satisfied on the system (except if the model is exhaustively tested,
which relates more to model checking than to testing). Nonetheless, testing is by far the preferred
software and hardware quality attestation technique used by the industry in most—if not all—of
the large system design project. Testing is faster and requires less specific competencies than
formal verification. The process of implementing then testing is also more intuitive for developers
than starting by formally modeling the design to apply mathematical verification. Moreover, the
guarantees that testing may bring can be greatly improved by automated test-case generation
techniques that take metrics such as coverage into account, only leaving unproved details. Yet,
the devil is in the detail.

Table 2.2 — Comparison of various verification methods.

Verification Manual work for Design Suitable for verifying
methods modeling [ verifying size HL models [ HW [ SW [ HW/SW
Proof Low Very Very v v v v
assistants high large

Model Medium Low Medium v v v Loosely
checking coupled
SAT/SMT High Low Small v v X Loosely
solving coupled
Abstract Low Low Large X X v X
interpretation

Symbolic Low Low Medium X X 4 X
execution
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2.3 Conclusion

As far as this thesis is concerned, analyzing the security of embedded systems draws the attention
on three different points:

e Many studies have proposed isolated execution environments. Trusted path has also been
a subject of research. Yet, the combination of these techniques has not been extensively
studied and the existing approaches [257] considerably weaken the attacker model proposed
by trusted execution environments.

e Security analysis during embedded system development has recently been an important
subject of research. These works have focused both on providing modeling languages to
perform security analysis and design early in the design and on formally verifying security
properties on system models. However, the combination of both in a design methodology
that would enable easy modeling of security features, fast formal verification algorithms
accessible to designing teams and clear feedback to the designers is still an unsolved prob-
lem.

e Formal verification of hardware/software co-designs has primarily focused on loosely in-
teracting software and hardware components. In the case where hardware modifies the
semantics of software, formal verification of relatively large systems is still an open prob-
lem.

We will propose answers to these three questions in the next sections. In chapter 3, we
show how Intel SGX can be extended to provide hardware support to establish a trusted path
between a peripheral and an application. Verifying some parts of this system (such as the key
exchange protocol) can be done from high-level design diagrams. We thus show in chapter 4 how
it is possible to perform verification from SysML diagrams during the partitioning and software
design phases. However, modeling a system with loosely interacting hardware and software may
not be suitable (or even doable) for some systems where hardware modifications deeply impact
how software executes. We study this problem in chapter 5.
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Chapter 3

Hardware and software from a
security point of view

Hardware may be an essential part of a software security solution where it is sometimes used to
improve performance (e.g., to enforce control flow integrity) or to anchor trust in a secure physical
core (e.g., a TPM used to measure part of the memory). In order to better understand how
software and hardware components can cooperatively provide security guarantees, we propose
in this chapter to present a design—based on an existing architecture—that aims at providing
a secure path between a peripheral and an application. The proposed architecture protects
the communications with an external peripheral against a powerful attacker that controls the
whole software stack (except the application) and is able to physically probe the bus between
the processor and the peripheral.

We chose this scenario as a case study to illustrate the presentation in Chapter 4 as it relies on
a recent technology to enforce strong security guarantees that could not be achieved in software
only. Formally analyzing the interacting hardware and software components to prove security
properties of the whole design is a valuable but difficult problem.

3.1 Intel SGX architecture

While the first infrastructure providers go a long way back, the advantages of virtualization in
terms of machine management (reliability, availability, dynamic resource allocation, machine mi-
grations, etc.) still makes it an active research field. This interest stresses out the need to realize
the abstraction that has always motivated virtualization: behave as if the customer application
were alone in an isolated, high-availability and high-performance physical machine. Economic
value of the data managed by such a customer application may—and actually frequently does—
motivate other co-located applications to abuse this belief of clear isolation.

There are two different ways an application can spy on another co-located Virtual Machine
(VM): either by performing actions or measurements that are—legitimately or not—available
to it, or by elevating its privileges to attack the targeted VM from a more privileged context.
Both have proved to be efficient in breaking the isolation abstraction and recovering confidential
information [214]. The discovery of a vulnerability in a hypervisor is unfortunately not so un-
common [205] and it motivated academic and industrial research targeting VM isolation from the
privileged hypervisor. In particular, technologies have been presented to build an untampered
isolated software enclave upon a corrupted environment. One of the latest industrial technologies
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providing such software isolation capabilities is Intel Software Guard eXtension (SGX).

Intel SGX relies on limited hardware modifications and a cooperation between hardware and
software components to provide a Trusted Execution Environment. In this first section, we
propose to give a brief overview of Intel SGX: its attacker model, its security guarantees, its
mechanisms and its architecture. For a more thorough presentation of SGX, we refer the reader
to the detailed paper from Costan et al. [77]. We will then argue that extending Intel SGX
protection to trusted peripherals is possible at the cost of some minor hardware modifications.
This design is a typical example of a hardware/software co-design that could greatly benefit from
formal security verification.

3.1.1 Overview of the protection model

Intel SGX provides strong security guarantees in terms of software isolation and software attes-
tation in presence of a powerful adversary.

3.1.1.1 Attacker Model

The main idea behind SGX is to reduce the Trusted Computing Base (TCB) to the processor
package only. All hardware components outside of the package can be seen as elements providing
services to the software running in the enclave protected by the processor. While the enclave—
which runs in user mode—relies on the OS to perform actions such as accessing peripherals, it
should not believe the OS to actually be honest. Likewise, the hypervisor should not be trusted.
In the rest of this chapter, we use the term OS to denote the privileged software stack, including
the hypervisor.

Physical attacks

An enclave would be very limited in what it could do without trusting something as basic as
data coming from DRAM. So including—at least parts of—the DRAM into the TCB would first
appear to be mandatory. Once Direct Memory Access (DMA) to the protected DRAM area are
forbidden, and assuming that an attacker cannot fake a DRAM or spy on the communication
inside the processor die (which contains the processor cores and the uncore: the QuickPath
Interconnect controller, the DDR3L/DDR4 controller, the shared L3 cache mainly) and on the
memory bus, the only entity able to read from and write to DRAM would be the processor
attached to this DRAM (see Section 3.1.2 for a discussion about multi-processor architectures).

While one can argue that spying on the communications inside the processor die requires
relatively costly equipment, connecting a fake DRAM to the memory bus could be an affordable
attack for realistic attackers. Since the Memory Controller (MC) in recent Intel architectures is
integrated to the processor die, the TCB can be limited to the processor die by transparently
encrypting and integrity checking memory reads and writes to DRAM in the memory controller.
This is implemented by SGX in the Memory Encryption Engine.

Software attacks

In Intel SGX, the whole software stack is untrusted: the OS, hypervisor and SMM are considered
as potentially corrupted. The only trusted software applications are the application enclave and
a few other management enclaves. All of them are measured to guarantee their integrity.
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Side-channel attacks

Side-channel attacks are not considered by Intel SGX. In particular, cache-timing attacks have
been proved to be effective in retrieving secret data handled by an enclave [117]. While hardware-
based protections exist to protect against side-channel attacks [78], some software-only counter-
measures (as presented in section 2.1.1.1) can be used to protect against these attacks and the
problem can be considered orthogonal.

3.1.1.2 Guarantees

Intel SGX provides strong program isolation: memory pages of protected enclaves are only
readable and writable by their owner. Control flow from and to the enclave is protected so
that an enclave can only be entered on defined locations and such that the processor registers
are cleared before control is passed to the untrusted software when the enclave is interrupted.
Moreover, the enclave can be measured to provide a cryptographic proof of the content of the
memory pages of the enclave and of its configuration (such as entry points).

3.1.2 Architecture
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Figure 3.1 — Intel inter-core and core-uncore communication overview (borrowed from [77]).

Figure 3.1 presents an overview of the architecture of a Skylake processor die. This shows the
hardware TCB considered by Intel SGX. Data fetched from memory is decrypted by the memory
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controller and stored unencrypted in the L3 caches. All links outside of the processor die (QPI,
DDR) are untrusted and it is assumed that an attacker can eavesdrop and tamper with these
buses.

From a logical point of view, part of the memory is reserved for the processor to store enclave
pages and metadata to manage the enclaves. Accesses to this part of the memory from a non-
enclave application are forbidden. This Processor Reserved Memory (PRM) is used to store:

e SGX specific pages in an area called the Enclave Page Cache (EPC).

e Metadata about these pages (one entry per page in the EPC). This area is called the
Enclave Page Cache Map (EPCM). The address of an EPCM entry is computed by the
processor based on the physical address of the corresponding EPC page.

An EPC page can be either:
e a regular page of an enclave

e an SGX Enclave Control Structure (SECS) page which contains metadata about an enclave
or

e other types of management pages that we will ignore for the clarity of the presentation
(used to store hashes of swapped out pages for instance).

Security of multi-processor, SGX-enabled architectures

DRAM DRAM DRAM DRAM FLASH
UEFI
ME FW
CcPU; CPUs CPUs CPU; {
SPI
USB SATA
| |
L._._ PCH
CPU, CPU, CPUs CPUs
- ME
|
|
|
DRAM DRAM DRAM DRAM '-4 NIC /PHY
QPI DDR ----- PCle --—-—-DMI

Figure 3.2 — Intel motherboard overview (borrowed from [77]).

As mentioned previously, the HW TCB in SGX design is reduced to the processor die. This
means that the communication links between processors in a multi-processors architecture are
considered to be untrusted. In each processor, multiple cores are connected to the ring (see
Figure 3.1), which is also connected to a memory controller and a Quick Path Interconnect
packetizer that enables the processor to communicate with other processors. When a core on a
processor needs to access protected memory attached to another processor, data is decrypted on
the second processor and sent back to the first through the QPI link. For instance, if CPU; in
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figure 3.2 accesses the memory of an enclave with an address that belongs to the DRAM attached
to C'PUs, the data stored at this address is first decrypted by the memory controller of C'PUs,,
transferred through the ring interconnect (see Figure 3.1) to the QPI packetizer of CPUs where
it is encrypted. Then it is sent encrypted to the QPI packetizer of C'PU; which decrypts it and
sends it to one of the CBox on C'PU; which will store the unencrypted value in cache.

Considering SGX TCB, securing these QPI links is thus important, and yet only briefly
mentionned in an Intel patent [140]: “The CMA [Intel denomination for MEE] fully integrates
into the Intel QuickPath Interconnect (QPI) protocol, and scales to multi-package platforms, with
security extensions to the QPI protocol. In a multi-package platform configuration, the CMA
protects memory transfers between Intel CPUs using a link-level security (Link-Sec) engine in
the externally facing QPI link layers.”. However, this Link-Sec engine does not seem to be
mentionned anywhere else.

As these QPI links are interfaces between the core trusted by Intel SGX and the outside world
which is considered to be controlled by an attacker, the implementation of the cryptographic
protections of these links is critical to the overall security of the architecture. Moreover, the
implementation needs to be efficient to deal with the high throughput of this high-performance
link. Reversing Intel cryptographic protection of the QPI links would be interesting, but difficult.
Indeed, these links are high-speed (initial implementation was 3.2GHz, which yields 6.4GT/s as
QPI is double-rate) and each transfer carries 16 bits of data.

3.1.3 Enclaves

Page Tables
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| |

| 1

Host Application : managed by ‘ DRAM
Virtual Memory Enclave Vir't ual ! system software :
View Memory View : |
| |
|
T~ l ‘
\ ‘ |
|
|
|
|
|

Abort Page ELRANGE EPC

Figure 3.3 — Enclave and host application memory view (adapted from [77]).

As illustrated by Figure 3.3, an enclave is a subpart of an application—a collection of memory
pages—that needs to be protected. All the memory pages of an application, no matter whether
they are in an enclave or not, share the same virtual address space. However, when a program
running from outside an enclave tries to access the enclave page, the memory access is denied
and the processor returns zeroed out data.

To implement this access control policy, the Memory Management Unit (MMU) has been
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modified to check each time a new entry is added to the Translation Look-aside Buffer (TLB)
that the targeted enclave page belongs to the same enclave that is currently running. TLBs are
flushed at each context switch to guarantee that the enclave pages cannot be accessed in the new
context.

The management of memory pages (page table management, swapping) is done by the system
software. Since system software is untrusted, address translations are checked by the processor
on TLB misses.

3.1.4 Memory protections

As presented in section 2.1.2.1, to prevent a physical attacker from spying on the processor-
memory bus, the content of the PRM is encrypted by the memory controller and a Merkle tree
is maintained to guarantee integrity of the memory.

3.2 Integrating security-aware peripherals

In an SGX setup, it is interesting to wonder what kind of operation could be performed by an
enclave without weakening the attacker model. The software TCB is well defined as everything
outside the enclave code is not trusted. When the enclave needs to communicate with other
software, it thus has to assume that the other software may be corrupted. This other software
can for instance be the OS. Indeed, enclaves execute with user privileges and the OS is not
trusted. As a result, an enclave should not assume system calls to be correct or it would be
vulnerable to a corrupted OS returning malicious values from system calls (this type of attacks
is known as Tago attacks [60]). The hardware TCB is reduced to the processor die. As for software
communications, the enclave should thus not trust data coming from outside the processor die:
from a peripheral for instance.

In this section, we introduce the problem of peripheral communication on an untrusted ma-
chine. We present possible scenarios with and without Intel SGX technology. Some of them are
commonly found in commercial setup or research projects and some are theoretical architectures
that we propose in order to combine the guarantees provided by different security solutions. We
then discuss their security guarantees and their performance.

3.2.1 The problem of peripheral communication on an untrusted ma-
chine

Communication with a peripheral introduces a new mean for the OS to spy on data handled
by the enclave. More generally even if the OS is not malicious, an application could manage to
modify the configuration space of the PCle endpoint of the host, or one of the PCle switches
along the path from the host to the peripheral (targeting the Base Address Register for instance)
in order to route Transaction Layer Packets to an attacker-controlled peripheral. This is even
more realistic in modern setups where a lot of devices may be plugged on the PCle bus—in order
to provide concurrent access to different NIC for different VMs for instance. While the reality of
large chunks of data transiting on the bus between the processor and a peripheral may have been
arguable years ago, the increasing amount of data handled by algorithms in the cloud nowadays
calls for more specific devices to unload the CPU. This trend is best illustrated by the ongoing
adoption of FPGAs in modern cloud architectures.!

Ihttps://azure.microsoft.com/en-us/resources/videos/build-2017- inside-the-microsoft-fpga-
based-configurable-cloud/
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To the potential threat of a malicious OS and of a misconfigured PCle network should be
added the less obvious possibility of the infrastructure provider tapping the PCle link to spy on
the communication between the enclave and the peripheral. This means that, even if the OS (or
at least the PCle configuration space) were trusted, this would not prevent a motivated physical
attacker from spying on the communication. For all these reasons, it may be interesting to think
that an attacker can control the communication on the PCle link.

Example scenario

In the following scenarios, we consider that an application is running on a particular core in user
mode and that it is relying on an underlying OS to communicate with the peripheral connected
through the PCle link. Some example cases of such a setup could be:

e The application needs the user to input some private data.
e The application needs to output private data to the user.

e The application needs to read values coming from sensors, in a way that the owner of the
platform cannot fake them.

e The application wishes to rely on an accelerator to run some algorithm on private data.

e The application needs to rely on a peripheral to run some algorithm on private data that
it is not able to (because keys are stored in a HSM for instance).

The first case has received a lot of attention from the community since it corresponds to the
case where a user wishes to connect to an application on a platform that she owns, with some
guarantees that the inputed credential could not be stolen by an eventual all-powerful malware
that would have control over the whole SW stack except the application (to which the user is
trying to authenticate). This attacker model is however far less powerful than the one used to
design SGX since the attacker has no HW access (we could argue that it only assumes that the
attacker cannot replace the peripheral by another one, but it is somehow difficult to depict a
scenario where the attacker would be able to spy on the internal buses, and yet could not replace
a peripheral).

In most of the exposed cases, an attacker should not be able to fake being the expected
peripheral. This is obvious when the application must send private data to the peripheral, and
when the application expects data from one particular sensor. In the first case however, some
scenario may not require the peripheral to be authenticated. We will present two short examples
to illustrate why it may or may not be useful:

e The application unlocks personal data when the user is identified by plugging some personal
device that sends a key to the application. In this case, the ownership of the device is the
property that needs to be verified. An attacker would gain nothing by using a different
peripheral, except if she manages to get the key beforehand. This scenario is illustrated by
Figure 3.4.

e The application unlocks personal data when the user is authenticated by using a secure
fingerprint sensor. In this case, the authentication of the sensor is mandatory to guarantee
the security of the scheme since, otherwise, an attacker could replace the rightful sensor
with a fake device that will intentionally leak the key of the user. This scenario is illustrated
by Figure 3.5.

To simplify, we have used the following notations in Figures 3.4 and 3.5:
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attackerPeripheral enclave
authenticationPeripheral enclave
nonce nonce
[noncelattackerKey
[nonceluserKey >

keyVerification keyVerification

OK KO

(a) Genuine peripheral.
(b) Attacker peripheral.

Figure 3.4 — Authentication based on ownership of the peripheral.

e [m]actor means the signature of m with the private key of actor.

e [x]actor means the signature of everything preceding this in the current message with the
private key of actor.

We will reuse this notation for other sequence diagrams presented later.

3.2.2 Architectural description of the setup

We give in this section an abstract description of a typical setup of a cloud provider machine
hosting a customer application that uses data stored in RAM and communicates with a peripheral
connected through the PCle bus.

The host machine represented in Figure 3.6 is inspired by latest Intel architectures (Skylake)
but could mainly represent most of the recent non uniform memory architectures used in today
cloud servers (except for technical subtleties that are not relevant here). It consists of intercon-
nected processors, each composed of multiple cores and a Last-Level Cache (LLC) and connected
to a memory module, the southbridge (called Platform Controller Hub in Intel architectures) and
high-speed peripherals through PCle (or AGP).

3.2.3 Threat Model

We classify the different attackers that will be considered in this section according to their
abilities.

Bus Manipulation

The memory bus may be encrypted and the memory controller may or may not be integrated to
the processor die. As a result, the attacker may or may not be able to spy on the memory bus.
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Figure 3.5 — Authentication based on user features.

When the attacker can spy on the bus, we will consider that it is also able to replay a previous
message and send its own messages.

An attacker may or may not be able to spy on the PCle link, either by putting hardware
probes on it, or by abusing PCle configuration. When the attacker can spy on the link, we will
consider that it is also able to replay a previous message and send its own messages.

Accessing Application Memory from another Software Application

A software attacker can either be another application running in user mode on the same or on
another core, or it can be the OS itself. We are interested in its ability to access the memory of
the application.

Side-Channel Attacks

As we said earlier, Intel SGX considers that side-channels are an orthogonal problem. We will
thus also ignore them in our work.

3.2.4 Security Properties of Interest

Ultimately, we want to evaluate if the peripheral and the application can rightfully trust their
communication to be secure. This security is evaluated according to the following criteria:

e Identification of the Other Party: the application identifies the peripheral or the other way
around.

e Confidentiality of the Data Exchanged.
e Integrity of the Data Exchanged.

e Non-Repudiation Property.
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Figure 3.6 — Hardware Description.

3.2.5 Various protection scenarios

We give in this section an iterative process toward a secure cloud infrastructure. Each step
improves security or performance by leveraging technologies (mostly cryptographic-based) that
may be available in the industry or may require more or less substantial modifications of existing
ones.

We focus here on a situation where a peripheral is connected through a PCle link. Some
of the results given should be valid for a peripheral connected through the southbridge (with
some technical modifications) but performance is evaluated for a PCle device. Note that some
low-frequency buses connected on the southbridge are shared (and not point-to-point as PCle)
and spying on those buses would be much easier than spying on the PCle or memory bus (this is
the case for SPI, PCI, 12C, etc.). Also for simplicity, we will consider that the host only consists
of one processor (with potentially multiple cores).

3.2.5.1 No protection

The first scenario, where no particular attention is given to security, will help in understanding
potential threats and in comparing performance with other designs.

Presentation

In this scenario, an application hosted on the CPU exchanges data with a PCle device. At some
point, this data is stored in the DRAM of the host and travels along the PCle channel. No
special precaution is taken as to where this data is stored and how it is sent.

Obviously, the OS is able to read and modify this data in memory. If the machine is a desktop
or server computer, we can safely assume that the OS could configure an IOMMU to forbid DMA
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transfers originating from non-authorized devices connected through PCle. However, an attacker
able to spy on the PCle link would be able to recover data exchanged with the trusted peripheral.

Security Discussion

Although this scenario may seem too naive with respect to the other ones presented in the
paper, it is nonetheless important to present as it is the model that best represent a typical
cloud infrastructure as of today.

3.2.5.2 Memory encryption

A first attack vector that can be addressed is the processor-memory bus.

Presentation

As presented in section 2.1.2.1, various solutions [49, 58, 78,90, 96, 99, 120, 170, 243] propose to
protect the content of the memory by encryption and hash trees.

Security Discussion

These solutions guarantee the confidentiality and integrity of the data stored in memory against
a physical attacker who can spy on the processor-memory bus. However, they do not protect
against a logical attacker which controls either the OS or an application on the processor.

Performance

Some of these solutions can be found in commercial off-the-shelf processors. In particular, Intel
SGX uses an extension of the memory controller called Memory Encryption Engine (MEE)
to dynamically encrypt and hash data read and written to memory. In [120], Intel advertises
performance measurements on the MEE: "We see that the MEE imposes performance degradation
that varies from 2.2% to 14%, with an average of 5.5%."

3.2.5.3 Enclaves and memory isolation

Protecting the processor-memory bus prevents external attackers from tampering with data man-
aged by an application. However, it does prevent another application running on the same core
from accessing the data of another application. The next step toward a secure communication
between an application and a peripheral is thus to isolate the memory of an application from
other software.

Presentation

Software isolation has also been previously discussed in section 2.1.4. Many architectures have
been proposed to protect software enclaves against software-based attacks from other—potentially
privileged—applications [58,63,78,128,151,170, 183, 236,243].

Security Discussion

These solutions provide isolation guarantees against an attacker which controls the OS or hy-
pervisor. Their protection is however purely logical in most cases (although some like Intel SGX
are combined with memory-bus protections described in the previous section).
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3.2.5.4 Driver-enforced trusted path

While these protections enable an application to securely handle data in an isolated environ-
ment, the application cannot trust communication with an external peripheral. The problem of
establishing a trusted path isolated from other software applications thus needs to be addressed.

Presentation

We described solutions that aim at providing trusted path in section 2.1.4.2. They also aim at
protecting against logical attackers but instead of protecting data in memory, they target the
communication with a peripheral.

Security Discussion

To provide such a protection, most of these solutions rely on a trusted logical core (driver,
microkernel, hypervisor) to establish a secure link between the application and the peripheral.
Their attacker model is thus weaker than Intel SGX as they require support from a trusted piece
of software and do not protect against physical attacker spying on the channel to the peripheral.

Performance

As these solutions do not assume that there is a strict memory isolation they usually cannot rely
on DMA to transfer data to the peripheral. While DMA may not be suitable for all types of
peripheral, their use may greatly improve performance in case large chunks of memory need to
be transferred. This would typically be the case in a setup where the peripheral is a GPU or
hardware accelerator.

3.2.5.5 Software-based channel encryption

As traditional trusted path requires to rely on a trusted piece of software to communicate with
a peripheral, it is not directly applicable to an Intel SGX setup. Indeed, Intel SGX only enables
to protect user-mode applications which cannot directly access peripherals without trusting the
OS (the page tables are managed by the OS).

Presentation

An enclave protected with SGX can nonetheless securely transfer data to a peripheral by using
cryptographic primitives. The encrypted data could then be transmitted directly to the periph-
eral (through port-mapped I/O or memory-mapped I/O) or stored in memory outside of the
PRM and a peripheral could access it through DMA.

Security Discussion

In this scenario, communication with the peripheral is protected both from a logical attacker
with control over the OS and against a physical attacker who could spy on the PClIe link.

Performance

Although the Skylake architecture provides special instructions (AES-NI) that implement AES
encryption in hardware, this method would require either to directly transfer data to the pe-
ripheral (through memory-mapped I/O for instance) which would use CPU cycles and incur a
non negligible performance cost if large memory chunks need to be transferred; or to write them
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back to memory to trigger a DMA transfer. Arguably, this method would results in poorer per-
formance that the preceding one. Indeed, for each data unit to be transferred, one memory read
and one memory write would be issued by the CPU, and one memory read would eventually be
issued by the peripheral. If the encrypted cache line needs to be written to memory, this would
result in two memory accesses for single-use, disposable data. This is even more problematic
since the memory bus is nowadays the bottleneck for most architectures.

3.2.5.6 Unified memory and I/O encryption
Presentation

It could also be possible to leverage the fact that the data is already present in encrypted form
in memory to avoid decryption and re-encryption. We could thus modify the MEE to let the
enclave decide which key should be used to encrypt some particular memory page. Another
device knowing this key could thus access the memory through a DMA transfer. Confidentiality
would thus be guaranteed by the fact that only the enclave and the device know the key that
was used to encrypt the requested page.

The main downfalls of this method are:

e When the MC receives a transaction directed toward an address in the DRAM, it does not
know which enclave it belongs to, and thus which key should be used. Knowing such thing
would involve either a lot more logic on the MC side to fetch the EPCM corresponding to
the requested page and fetch the required key, or the active participation of the CPU that
would provide with each request an identifier of the enclave, or directly the key to be used.

e An enclave may wish to allow part of its memory to be shared, but not all of it. MC would
thus need to match keys to memory ranges instead of enclaves, which would require more
memory reserved for the controller to remember these policies.

e Data in cleartext in the LLC could not be used directly to be transferred to a peripheral.
This would require that the cache data is written back (and encrypted) to the memory and
read again to be transferred to the peripheral.

e Even with such an implementation, replay attacks would still be possible. To prevent
these, we would need to add sequence numbers (or similar mechanism) to mark transactions
between the memory controller and the peripheral. However, this would require a second
layer of encryption / hashing.

Performance

This last comment is important since it negates to some extent the effect of reducing the number
of encryptions to perform data transfer to the peripheral. However, moving the cryptographic
algorithms from the CPU to an external entity (be it the MC or another one) would still be
beneficial to unload the CPU.

3.2.5.7 Hardware-based channel encryption

To this regard, we could also find a compromise between HW modification of the MC and the

number of encryptions performed by placing the encryption logic in an exterior entity (e.g., I/O

controller). The CPU would configure this entity with the correct key and enable DMA transfers

to the enclave memory range. No HW modification on the MC core logic would be needed.
This architecture is described in more details in the next section.

71



CHAPTER 3. HARDWARE AND SOFTWARE FROM A SECURITY POINT OF VIEW

3.3 A Secure and efficient design

In this section, we propose architectural modifications to the Intel architecture that try to balance
the three following points:

e Hardware modification is kept as lightweight as possible. This is achieved by leveraging
already existing functionalities implemented as part of Intel VT-d technology. (See [77]
Section 2.11.3)

e Security guarantees granted by Intel SGX are extended to the communication with a
peripheral without substantially increasing the TCB.

e Performance is taken into account which rules out decrypting and re-encrypting directly
in the CPU.

3.3.1 Example scenario

Using cryptographic algorithms to secure a path between a peripheral and an enclave however
comes with a price, in terms of execution time and delay particularly. This price should be
weighted against the guarantees that are brought by the encryption and against the purpose of
the peripheral (e.g., when it is a HW accelerator). We first limit our study to cases where the
price is negligible. This means that we focus on cases where data is exchanged through burst
instead of frequent interrupts. This rules out controllers and sensors.

An interesting example case is when an enclave must perform heavy computations and wishes
to unload the CPU by running them on a HW accelerator (such as on a GPU). This HW
accelerator could be shared by all the enclaves / VMs on the host platform (a form of isolation
could be guaranteed, for instance by self-virtualizing the device as in [238]). In this case, the
enclave needs some guarantees that it is sending private data to the expected peripheral, and not
to a host-controlled device (either because it is impersonating a rightful accelerator, or because
the host OS changed the MMIO configurations to redirect traffic to another device). Since
the enclave does not know, a priori, which specific accelerator will be present, there should be a
trusted third-party the enclave would depend on to authenticate the peripheral. Such third-party
could for instance be present as a root certificate issued by the vendor of the HW accelerator.

3.3.2 Architecture of the design

A representation of the proposed architecture is depicted in Figure 3.7. Gray blocks represent
the physical modifications that would have to be performed on the original architecture of Intel
SGX.

This architecture would require some modifications in two different components: the CPU
and the DMA remapping unit.

3.3.2.1 CPU modifications

Adding key and counter to the Enclave Page Cache Map

In order to authorize DMA to a protected page, the Enclave Page Cache Map (EPCM) entry
corresponding to this page should define a key and a counter that will be used to encrypt
and decrypt transactions targeting this page. Intel System Programming Guide [137] does not
describe in details the fields of each EPCM entry but adding a new field should not be really
difficult (in the worst case, EPCM entry size would need to be increased). If we use the same

72



CHAPTER 3. HARDWARE AND SOFTWARE FROM A SECURITY POINT OF VIEW

DRAM

Core

I
I

I

I

I

I

I 0S

I

|

| microcode
I

I

I

I

I

I

|

1

I

PRM

enclave

Address

key (0x0000)
cnt (0x0000)

{ L] \

MEE

Memory Cont.

DMA unit

1/0 TLB

non-PRM

virt | phy }

v|p|key|cnt

Figure 3.7 — Proposed Architecture.

cryptographic algorithms than the ones used in MEE, we would need 56 bits for the counter
and 128 bits for the key, which adds up to a total of 184 bits (23 bytes). When an enclave
page is created (with EADD instruction), the key field should be set to zero to forbid DMA to
this page until the enclave explicitly sets it. The key field would also need to be reset when
the page is swapped out. This would prevent the OS from swapping the physical addresses of
two protected pages and replay a transaction (that embeds the virtual address of the targeted
page) on a different physical page. The enclave should thus pick a new key each time the page
is swapped out.

It would also be possible to flush I/O TLB each time an enclave page is swapped out as it is
done for standard TLB.

Adding a new instruction

The main logic that would need to be added on the processor side is an instruction to set
the key (and reset the counter). This means that setting the same key multiple times on the
same page would open up possibilities of replay attacks. This could be mitigated by letting the
instruction randomly pick a key. However, it would thus be impossible to share a unique key
between different pages so a lot of cryptographic material would need to be exchanged with the
peripheral, which probably rules out this possibility. Still, due to the swapping problem, enclaves
should not assume that they will only need one key.

3.3.2.2 DMA remapping unit

DMA domains are described in Intel VT-d spec [76] as “an isolated environment in the platform,
to which a subset of the host physical memory is allocated”. This abstract definition can be
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implemented in different ways but Intel “envisions DMA-remapping hardware to be implemented
in Root-Complex components, such as the memory controller hub (MCH) or 1I/O hub (IOH)”.
1/0 page tables stored in system memory are used to translate DMA-Virtual Addresses to Host-
Physical Addresses.

Encrypting and decrypting memory transactions to enclaves would be implemented by the
DMA remapping hardware unit. DMA remapping hardware unit receiving a transaction targeting
PRM would first use unmodified IO page tables to translate the DM A-virtual address to a host-
physical address. If this host-physical address falls into PRM, EPCM would be queried to know
if the page is accessible through DMA. If so, key and sequence number would be used by the
remapping unit to encrypt / decrypt data. Note that this key and sequence number could also
be cached in the IOTLB.

A DMA read by a trusted device would result in a transaction containing the encrypted cache
line—we suppose that the granularity of memory accesses are of one cache line, as the MEE—,
the realization of a counter and a MAC over the counter and virtual address of the page.

Depending on how the remapping units are implemented, they could either reuse existing
cryptographic hardware (present in the MEE for instance) or use their own. Note that a more
in-depth investigation should be performed to see if reusing MEE encryption hardware would
not negatively affect performance of memory accesses from CPU cores. Since on-die silicium
is scarce, properly selecting minimal-sized hardware modules is necessary. Since the required
cryptographic primitives are the same as those needed by the MEE, hardware for incrementing
the counter, computing the MAC and performing AES could be the same as the one described
in [120,121].

AES module

An AES module would need to be added to the DMA remapping unit to encrypt and decrypt
transactions targeting PRM range. The same module as the one used by the MEE (and described
in [121]) could be used. According to this paper, the unified encrypt/decrypt module computes
an AES round in one clock cycle and only occupies an area of 7995um? (round keys are precom-
puted). In our design where we need to compute round keys each time (since keys are different
depending on the page accessed), the silicium area occupied should be around 10000zm?2.

MAC module

We also need a MAC module to guarantee integrity of the transactions. The same MAC module
as MEE (Carter-Wegman MAC) could be used.

I/0 TLB
I/O TLB lines would need to be increased to contain the 184 bits of the key and the counter.

Additional logic

The main logic implemented by the DMA remapping unit would be to fetch key and counter
when a DMA transfer targets a protected page and to discard the memory access when the key
is not set.

Incrementing the counter could also use the hardware module described for MEE which relies
on a “56-bit Galois Shift Register with taps in positions 34, 35, 55”.

For write transactions, the DMA remapping unit would have to check that the MAC is valid
before forwarding write to the memory controller.
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3.3.2.3 Key management

Figure 3.8 shows a sequence diagram of the protocol used to share a secret key between a
peripheral and the enclave (called driver here). This protocol relies on an external entity to
verify that the peripheral is genuine (we call it verifier).

Verifier Peripheral Driver QuotingEnclave

nl

n2

n2, idPeriph, n3, [*]periph

driverPub, |n1, idPeriph, n3, [idPeriph, h3]driver

enclaveState, driverPub, n1, idPeriph, n3, [idPeriph,|n3]driver, [*]SGX

periphPub, [n3, drivgrPub]verif, [*]verif

[n3, driverPub]verif, drjverPub, asym_encrypt(sk, periphPub), [*]driver

sym_encrypt(secret, sk)

Figure 3.8 — Key establishment.

To simplify, we modeled the SGX attestation process as a simple actor named QuotingEnclave
which outputs a signed measurement of the state of the enclave. This measurement also contains
the data passed to it by the measured enclave. This summarizes a more complex attestation
protocol described in [77] for instance.

The steps of this protocol are:

1.

The verifier sends a nonce n; to the driver.
The driver sends a nonce ns to the peripheral.

The peripheral returns ns, its id and a new nonce n3 to the driver. This message is also
signed by the peripheral with its private key.

The driver creates a new public and private key pair.
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5.

10.

11.

12.

13.

14.

15.

16.

The driver requires a quote that embeds the measurement of the enclave, the public key of
the driver, ny, the id of the peripheral, ns and a signature of the driver over the id of the
peripheral and ns.

The resulting quote is forwarded to the external verifier.

The verifier verifies that the quote originates from an authorized enclave and contains n;.

The verifier fetches the public key of the peripheral according to its id.

The verifier sends a signed message to the driver containing the public key of the peripheral
and a signature of the verifier over the public key of the driver and ns.

The driver verifies the signature of the driver.

The driver verifies the signature of the peripheral on the message received in step 3.
The driver creates a new symmetric key sk.

The driver sends to the peripheral a signed message composed of

e the signature of the verifier over ng and the public key of the driver,
e the public key of the driver and
e sk encrypted with the public key of the peripheral.

The peripheral verifies the signature of the driver.
The peripheral verifies the signature of the verifier over n3 and the public key of the driver.

The peripheral decrypts sk.

At the end of the protocol the driver and peripheral share the symmetric key sk. Note that:

The driver does not contain any private material initially. This is needed since the OS is
untrusted but it has to load the driver into memory.

The driver does not know which peripheral it is going to interact with. The authentication
is done by the external third party.

The peripheral does not know which driver it is going to interact with. It relies on the
external third party to verify that the correct driver is running in a genuine SGX-enabled
system.

The verifier can selectively forbid communication depending on the id of the peripheral or
on the content of the driver.

The security of this protocol is formally verified and the results are presented in section 4.3.2.
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3.3.2.4 Steps to allow DMA

In order for an enclave to authorize DMA to a subset of its memory and for the peripheral to
access it, the following steps would happen:

1.

The enclave issues an instruction to set the key for a particular enclave page. This instruc-
tion checks that the enclave page belongs to the enclave calling this instruction and sets
the key and resets the counter in the EPCM.

The OS adds the mapping for the targeted enclave page to the I/O page table.

The peripheral tries to access the enclave page (addressed with the virtual address) through
DMA. The request is handled by the DMA remapping unit that fetches the corresponding
entry in the I/O page table.

The DMA remapping unit fetches the EPCM entry corresponding to the targeted page.
Since the address of this entry can be computed from the physical address of the page,
only one memory access is needed. If the key is set, the DMA remapping unit adds the
mapping, key and counter to its I/O TLB and forwards the memory access to the memory
controller.

When the DMA remapping unit gets the result from memory, it stores the content in the
L3 cache (part of the L3 cache of Intel architectures is reserved for DMA)

The DMA remapping unit concatenates data and counter, encrypts it and appends the
MAC of the counter and virtual address to it. The result is sent to the peripheral. The
counter is then incremented.

If the peripheral reads data from the same page again, the key and counter can be used
directly from the I/O TLB so only one access to memory is needed. If this particular data
is already cached, the CBox queries it from cache instead of forwarding it to memory so
no memory access needs to take place.

This protocol is illustrated by the sequence diagram presented in Figure 3.9.
Only steps 5 and 6 would change if the peripheral were to issue a DMA write. these steps
would be:

5.

The data received from the peripheral is composed of two parts: the encrypted data and
counter and a MAC over the counter and virtual address. The DMA remapping unit thus
decrypts the first part and checks that the counter is correct with respect with the value
fetched from memory. Then the MAC is verified against the counter and the required
virtual address. The counter is then incremented.

The data is then sent to the CBox so that it can be written either to cache or to memory
depending on the cache policy implemented.

3.3.3 Performance evaluation

One of the advantages of this architecture is that it is transparent for anything behind the I/O
controller. As such, if data is present in cache, it would be possible to fetch it directly instead of
going through the memory controller to query the DRAM. Indeed, since Xeon E5 family, Intel
introduced Data Direct I/O Technology [75] which consists of directing DMA transfers to the last
level cache instead of main memory. This must be evaluated in different scenario since in some
scenario (such as GPU communication), memory to transfer may be tagged as non-cachable.
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Peripheral DMAUNit Memory Enclave 0s
setKey

write(EPCM, page, key, 0)

allowDMA(page)

write(IOPageTable, virtAddress, physAddress)

read(virtAddress)

read(IOPageTable, virtAddress)

read_ans(physAddress)

read(EPCM, physAddress) N
>

read_ans(key, counter)

nioTLB

savel

read(physAddress)

read_ans(data)

(encrypt((data, codpter), key), MAC((counter, viftAddress), key))

incrementCounter

Figure 3.9 — Secure DMA read.

On the one hand, the OS controls the I/O page table needed by the DMA remapping unit
to translate the virtual address to a physical one. On the other hand, each time a peripheral
accesses an enclave page, the key corresponding to this enclave page is used to encrypt data
exchanged. Since the address of the EPCM entry is computed from the enclave page physical
address, an enclave (or the OS) is able to access memory from an enclave page if and only if it
knows the key stored in the corresponding EPCM entry. However, the CPU guarantees that only
the enclave owning a particular enclave page can set the key in the corresponding EPCM entry.
If this key is shared with the peripheral in a secure way (using the previously presented protocol)
and not leaked from the peripheral and the enclave, this guarantees that only the peripheral is
able to access the content of the enclave page.

Theoretical analysis

When a peripheral needs to access a protected page for the first time, the virtual address used
by the peripheral needs to first be translated to a physical address by the DMA remapping
unit based on the I/O page table. This process is the same as when non protected memory is
targeted. However, once the address has been translated, the key and counter need to be fetched
which results in one additional memory access (with MEE decryption). Compared to non-enclave
DMA, following DMA transfers would need to be decrypted by the MEE (if data is not cached),
then encrypted once again by the DMA remapping unit and decrypted by the peripheral. Since
we envision that the DMA remapping unit would use the same cryptographic algorithm than
the MEE, we can evaluate that the encryption and MAC will introduce a delay corresponding to
one MEE round. If the peripheral uses the same hardware support to decrypt DMA reads, we
can approximate the mean overhead per memory read in a same page introduced by protecting
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the path from peripheral to memory as:

1—¢q
T:

n * (5mem + 5mee) + (3 - p) * 5mee

where
e ¢ is the probability that the accessed page has a corresponding entry in the I/O TLB

e p is the probability that the accessed data has been cached

Omem 18 the delay introduced by one memory access

Omee 1s the delay introduced by one MEE round
e 7 is the number of memory accesses done on the same page

q depends on the number of peripheral issuing DMA requests and on the range of memory
accessed by the considered peripheral. p depends on the space / time locality of memory accesses
from the peripheral and CPU core. If the enclave and the peripheral exchange a lot of data from
a localized area, the overhead will roughly be

T = 2% Opmee

In [120], the author states that the average overhead induced by the MEE is 5.5% (the result
is obtained by running experiments on the SPECINT2006 benchmark). We can thus expect
an overhead of around 11% in our case for applications with localized memory accesses. While
the impact on performance is not negligible, it should be weighted against the strong security
guarantees provided by the cryptographic primitives.

3.4 Conclusion

In this chapter, we have proposed a design that allows to build a secure trusted path between
a peripheral and an application against an attacker model stronger than the ones that have
been considered by the previous works until now (as presented in section 2.1.4.2). Indeed,
the communication between the peripheral (it could be an authentication device or a hardware
accelerator for instance) and the application is protected against an attacker who controls the
entire software stack except the application (including OS, hypervisor) and can physically probe
all buses external to the processor die or the peripheral.

To provide such guarantees, we had to rely on cryptographic primitives, which explains the
overhead incurred by this secure design. However, we have made it so other communication links
and application are almost not affected (the only verification added to every DMA transfer is to
check whether it is targeting the PRM or not). The hardware TCB is only increased to contain
the peripheral in order to guarantee that the key used by the cryptographic primitives do not
leak.

In order to assess the security of this design, formal verification may be used to check proper-
ties on different features of the design. It is for instance possible to verify that the key exchange
protocol does not leak the key. It would also be possible to verify that the DMA transfer protocol
is correct from a high-level: meaning that only the peripheral which has just shared the key with
the application is able to access the enclave pages. It could also be desirable to prove that a
low-level implementation in the DMA remapping unit complies to the high-level description of
its behaviour given here.
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In the following chapters, we propose to discuss how formal verification of such a design could
be performed. In particular, we first focus on how formal security verification can be integrated
to high-level models used during the conception of an embedded system (and we provide a model
and formal proof of the key establishment protocol presented in this chapter). Then we will
discuss how formal verification can be performed when hardware and software components are
tightly coupled.
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Chapter 4

Formal security verification of
embedded system from design
models

One objective of this thesis was to integrate modeling artifacts for security features to a design
methodology targeting embedded system design and to provide fast, simple and informative
formal verification of these models. I personally focused on system verification from software
design models (presented in section 4.3) but I have also worked on integrating security verification
to the partitioning stage (presented in section 4.4).

We will first discuss how security requirements may be integrated to embedded system design
methodologies and explain why we focused on the SysML-Sec approach [217]. We will then
present our contribution and how they integrate to SysML-Sec.

4.1 Introduction

4.1.1 Motivation

While the security of cryptographic protocols benefits from regular, accurate and thorough anal-
ysis (and in particular, formal analysis), strict security development processes still have trouble
finding their ways to industrial applications. To non-specialists, security is often seen as the right
way to use the right tools. This however leads to subtle bugs when out-of-the-box cryptographic
solutions are not suitable, and in particular when the importance of an asset or communication
is misunderstood.

Such a security issue can be minor when the number of affected devices is small and when
the vulnerability can be easily fixed (e.g., with a software patch). However, this is typically
not the case for embedded systems where design flaws can be impossible to fix and can affect a
whole range of products. Even when a security vulnerability is discovered before the product is
released, the amount of work needed to rethink the whole architecture may be prohibitive.

This calls for an accurate embedded system design methodology—and, in particular a method-
ology supported by a language to model both hardware and software components—that enables
early security verification. In order to provide reliable and fast feedback to the designer, such a
methodology should enable to build formal proofs on high-level models.
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4.1.2 Integrating security considerations during the conception of em-

bedded systems

In [195], Nhlabatsi et al. propose to classify approaches targeting security modeling during
system conception into four classes:

Goal-based approaches [181,207,212,250] focus on progressively refining goals into a set of
sub-goals linked by logical relationship. These methods enable to reason about high-level
goal relationship but are not directly concerned about capturing behaviours.

Model-based approaches [129, 141,174, 217,218] aim at integrating security elements to
existing model-driven software development methodologies.

Problem-oriented approaches [155,171,237] focus on attack scenarios and integrate security
as countermeasures to these attacks. As goal-based approaches, functional behaviours are
described to support higher-level security assertions (when they are described at all).

Process-oriented approaches [185,244] focus on how security analysis is performed in the
global process of system design. They are not concerned with the design at hand but with
the process the conception goes through.

In this thesis, we were interested in formally verifying behaviours (described either by high-
level models or low-level implementations) against security properties. In order to take into
account the behaviour of a system and its security, we thus require to base our verification
method on a modeling language that would enable describing functional and non-functional
behaviours. Our choice was thus drawn to model-based approaches.

Among various model-based approaches, we chose SysML-Sec since:

4.2

It specifically targets embedded system design. Thus, it allows to model HW/SW par-
titioning and supports modeling of low-level properties (computational complexity, clock
frequency, FIFO policies, etc.).

It builds upon a recognized language. SysML is widely used both in the industrial (e.g.,
Thales) and academic world.

It proposes to integrate security features to multiple phases of the design process. In
particular, its model-based approach to system design is suitable for formal verification.

It is supported by a free and open-source toolkit and thus enables to easily develop algo-
rithms that leverage existing modeling capabilities to perform formal verification with the
same tool that is used for modeling.

This toolkit already implements various other formal verification algorithms targeting per-
formance or safety properties. Performing safety and security verification from the same
model can greatly increase the reliability of the proofs as mechanisms implemented to guar-
antee security may impact safety or performance results and modifications targeting safety
or performance may endanger the security of a design.

SysML-Sec

SysML-Sec is a model-driven approach to design embedded systems with safety, security and
performance constraints.
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4.2.1 Methodology and diagrams

4.2.1.1 Overview

Functional view Architectural view

Simulation
Formal analysis

. Mapping view
Requirements I Simulation
Formal analysis

< ‘ Use case view ‘ Scenario view I SW Analysis

Attacks o
: Simulat . .
‘ Structural View = gomal analysis ‘ Behavioral view

Formal analysis .
. SW Design
“ Deployment view

Figure 4.1 — Overall SysML-Sec Methodology.!

Basically, SysML-Sec supports three main modeling phases (see Figure 4.1):

1. The requirement analysis phase targets the analysis of desirable properties or possible
attack scenarios on the system. As this phase is not concerned with the question of how
the system will be implemented but in what should be implemented, we will not detail it
in this work.

2. The system-level HW /SW partitioning phase includes capturing functional elements
of the target application, modeling candidate architectures and finally mapping functional
elements—including communications between functions—to candidate architectures. Then
follows a verification sub-phase in which safety, security and performance constraints are
evaluated in order to select the "best" HW/SW partition.

3. A software design phase follows a successful partitioning phase. Software components
are first built from high-level functions mapped onto processor nodes at the previous phase.
Then, they are progressively refined. Refinement typically concerns the accurate description
of algorithms and protocols, including security protocols.

Design elements of the last two phases are built from (safety and security) requirements. Verifi-
cation is supported in all modeling stages in order to assess the security and safety requirements.
Attack trees also help capturing potential attacks that are feasible in the considered mapping
models.

TTool is a free and open-source tool that supports the different phases and models of SysML-
Sec. TTool also offers a press-button approach for safety, security and performance verification,
and can backtrace verification results to modeling views.

IFigure available at http://sysml-sec.telecom-paristech.fr/.
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4.2.1.2 Modeling partitioning in SysML-Sec

A SysML-Sec partitioning follows the Y-chart approach [146] comprising three modeling stages:
application modeling, architectural modeling, and mapping modeling.

The application model comprises of a set of communicating tasks, modeled in a unified
diagram corresponding to the SysML internal block and block definition diagrams (we will call
it SysML block diagram for simplification). The behavior of each task is described abstractly in
an Activity Diagram. Functional abstraction allows to ignore the exact calculations and data
processing of algorithms, and consider only their relative execution time. Data abstraction allows
to consider only the size of data sent or received, and ignore details such as type, values, or other
details.

The architectural model displays the underlying architecture as a network of abstract exe-
cution nodes, communication nodes, and storage nodes. Execution nodes consist of CPUs and
Hardware Accelerators. All execution nodes must be described by data size, instruction execution
time, and clock ratio. CPUs can further be customized with scheduling policy, task switching
time, cache-miss percentage, etc. Communication nodes include bridges and buses. Buses con-
nect execution and storage nodes for task communication and data storage or exchange, and
bridges connect buses. Buses are characterized by their arbitration policy, data size, clock ratio,
etc., and bridges are characterized by data size and clock ratio. Storage nodes are Memories,
which are defined by data size and clock ratio.

Mapping partitions the application into software and hardware by specifying the location
of the implementation of functional tasks on the architectural model. A task mapped onto a
processor will be implemented in software, and a task mapped onto a hardware accelerator will
be implemented in hardware. The exact physical path of a data/event write may also be specified
by mapping channels to buses, bridges and memories.

4.2.1.3 SysML-Sec software design

A SysML-Sec software design is composed of SysML block and state machine diagrams. The
block diagram describes the architecture and components of the system, and state diagrams
describe their behavior. In a SysML block diagram, each component of the system is modelled
by a block and the blocks are linked by channels to model communication links. The blocks can
define attributes to model state conditions, methods to model internal procedures and signals to
model external communications. Each block is associated with a state machine diagram which
describes the high-level behaviour of the corresponding component. The state machine models
attributes modifications, procedure calls, sending and receiving signals and the generic control
flow of the component.

4.2.2 Formal verification and security

Verification takes place at different engineering phases. Simulation is mostly used at the parti-
tioning stage in order to evaluate the impact of security mechanisms in terms of performance.
Formal verification on design diagrams intends to prove safety or liveness properties of the system
and its resilience to threats.

4.2.2.1 During partitioning

Before we added formal verification of security during the partitioning stage in [165], mathemati-
cal analysis during the partitioning stage only concerned performance and safety evaluation. The
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performance of the design is evaluated according to multiple criteria: bus and cpu load, latencies
between an input and an output or schedulability of bus transfers.

4.2.2.2 During software design

Safety

Safety verification can evaluate the absence of deadlocks, and the reachability and liveness of
state machine states. More complex properties can be modeled either with a subset of CTL, or
with the use of observers in the model that are expressed with state machine diagrams. TTool
includes its own verifier that can also generate a reachability graph, and minimize it according
to a set of user-selected observable properties. TTool can also rely on UPPAAL [162] for safety
proofs.

Safety proofs take into account all design elements besides the ones specifically defined for
security purposes: security-oriented pragmas and cryptographic methods that have no impact
on safety properties (liveness, reachability).

Security

The software design stage includes the definition of security mechanisms, and the refinement of
security requirements in security properties to be proved in the design.

Security verification is based on model transformation to a formal specification than can be
handled by the ProVerif security prover [35]. A first version of model transformation was already
published in [204] but it had strong limitations on the usage of choices and loops (as described
in the next section). We will show in the next section how we have resolved these issues and we
will give a formal description of the transformation algorithm.

In both of these versions, SysML-Sec blocks can define a set of methods corresponding to
cryptographic algorithms, such as encrypt(), to enable to describe security mechanisms built
upon these algorithms, e.g., cryptographic protocols. Blocks can also pre-share values, a feature
commonly needed to set up cryptographic protocols.

The behaviours described with these elements are evaluated to verify confidentiality, authen-
ticity and reachability properties. Authenticity appears in two forms: weak authenticity (also
known as integrity) and strong authenticity (integrity and protection against replay). Strong au-
thenticity is verified by taking into account multiple executions of the system (called sessions).
This concept is similar to the one described in [35]. Note also that while reachability is tra-
ditionally qualified as a safety property, it is also useful for security as security properties can
be expressed with observers. The reachability results cannot be reused from safety verification
because some of the features of the models are ignored by security and safety verification.

Indeed, like safety verification, the proof of security properties abstracts away irrelevant or
non supported system details. For example, in the attacker model we consider, an attacker is
able to delay a message so temporal information provided on design diagrams are discarded.
This results in a sound approximation where all attacks possible on a timed model exist on the
un-timed approximation. The temporal information discarded is both the temporal operators
(as the after operator), or the semantics of the channel. Indeed, while SysML-Sec allows to
model blocking channels, the attacker could accept the message and send it later. Likewise, the
attacker could play the role of an infinite queue and rearrange messages as she wishes. Other
modeling elements, like loops, were ignored by the translation process.
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4.3 Verification of security properties on SysML-Sec soft-
ware design diagrams

We now propose an algorithm to translate a SysML-Sec software design into an applied pi-calculus
specification to be handled by the ProVerif automated cryptographic protocol verifier. Modeling
security behaviours during the software design phase is easier than during the partitioning phase
as functional behaviour is not abstracted. We thus present first verification of security during
software design before discussing partitioning.

In this section, we will first present a brief and informal description of the translation al-
gorithm, then we will give a detailed formalization of this algorithm and finally discuss how
ProVerif results are backtraced to the SysML-Sec models.

4.3.1 Overview
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Figure 4.2 — Security and formal verification during embedded system design.

Figure 4.2 shows the integration of security modeling and formal verification during the differ-
ent stages of SysML-Sec. Conception starts with the design-space exploration phase (discussed
in the next section) and advances to a software design phase where software and hardware com-
ponents are modelled with state machine diagrams. Software models are then refined to their
concrete implementation. Hardware models are present during the software design phase to de-
scribe the behaviour of communicating agents and enable verification of whole systems. Security
artifacts are added to the diagrams of the different phases to model high-level properties during
partitioning and lower-level cryptographic primitives during software design.

4.3.1.1 ProVerif

Formal verification of SysML-Sec software design diagrams was done by using the ProVerif prover.

Description

ProVerif is a toolkit that relies on Horn clauses resolution for the automated analysis of security
properties over cryptographic protocols, under the Dolev-Yao model. ProVerif takes an input
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as a set of Horn Clauses, or a specification in a restricted version of the applied pi-calculus
together with a set of queries. ProVerif then outputs a result for each query, telling whether it
is satisfied or not. In the latter case, ProVerif tries to identify a trace explaining how it came to
the conclusion that a query is not satisfied.

When translating from SysML-Sec to ProVerif, we generate an applied pi-calculus specifi-
cation. The generation takes advantage of the Horn clauses semantic to model concepts, such
as loops in the state machine diagram, that are not directly supported by ProVerif. Note that
relying on the semantic of Horn clauses to help ProVerif verification algorithm has proved to be
effective by some other works [93].

Pi-calculus enables description of protocols in term of processes executing in parallel and
exchanging messages over channels. In the applied pi-calculus language, messages can be terms
over literals. Processes can split to create concurrently executing processes, and replicate to
model multiple executions (called sessions) of a given protocol. Cryptographic primitives, such
as symmetric and asymmetric encryption or hash, can be modeled through functions that are
either constructors, which create new values, or destructors, which reduce the number of applied
constructors in an expression.

An example of some ProVerif code is presented in Listing 4.1.

(* Functions )

fun sencrypt (bitstring , bitstring): bitstring.

reduc forall x: bitstring , k: bitstring;
sdecrypt (sencrypt (x, k), k) = x.

(*+ Variables )
free token_ _ QuotingEnclave__ 0: bitstring [private].
free token__  ExternalVerifier___0: bitstring [private].

(* Queries x)
query event(enteringState _ _ ExternalVerifier ___ Success()).

(* Sub—processes )

let QuotingEnclave__ 0 =
new strong__ _QuotingEnclave__ _02: bitstring;

out (chControl, strong  QuotingEnclave  02);

(*+ Main process x)
process
new QuotingEnclave  SGXPrivKey data: bitstring;

Listing 4.1 — Global structure of the ProVerif file.

Starting from this specification, reachability, correspondence and confidentiality properties
can be queried and ProVerif will present a result to the user that is either true if the property is
verified, false if a trace has been found that falsifies the property, or cannot be proved if ProVerif
failed in asserting or refuting the queried property. Such failures in proving properties over
an unbounded number of sessions and unbounded message space are unfortunately unavoidable
since this problem is undecidable [98]. Thus, sound approximations are made by ProVerif when
translating the applied pi-calculus specification into Horn clauses.

Reasons to use ProVerif

The choice of ProVerif as a formal verification tool seemed logical for our purpose as it is a state-
of-the-art prover specifically targeting security properties on communicating components against
an attacker conforming to the Dolev-Yao [94] attacker model. This attacker model describes a
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powerful adversary which is able to read all messages sent between the components, create new
messages, replay previously learned messages and apply cryptographic primitives. The attacker
model was suitable for the verification of embedded systems as accessing communication buses
between components is much easier than spying on their internal states. Moreover, ProVerif does
not limit the states to be explored and does not require manual interaction.

Another possibility would have been to use a common language as provided by the AVISPA
tool [16]. However, the description of the behaviours of the blocks in SysML-Sec state machine
diagrams is closer to the imperative style of ProVerif than on the event and transition-based
description used by AVISPA. We were also interested in the ability of ProVerif to define custom
low-level elements (predicates, constructors, destructors, clauses) and in the possibility to add
pointers to modify the verification algorithm (through nounif instructions for instance).

4.3.1.2 Missing features in SysML-Sec software design diagrams

<<cryptoblock>> <<cryptoblock>>
QuotingEnclave ExternalVerifier
- SGXPrivKey : Key; A ASXPubKey : Key;
- SGXPubKey : Key; lM—— M - enclaveExpectedState : int;
- enclaveState : int; - nonce : int;
- nonce : Message; - message : Message;
- message : Message; - message2 : Message;
- SignatureCorrect : bool;
<<datatype>> <<datatype>>
Key Message
- data : int; - data : int;

Model Pragmas

#PrivatePublicKeys QuotingEnclave SGXPrivKey SGXPubKey

#InitialSystemKnowledge QuotingEnclave.SGXPubKey ExternalVerifier. SGXPubKey
#InitialSystemKnowledge QuotingEnclave.enclaveState ExternalVerifier.enclaveExpectedState

Security Property

Figure 4.3 — Block diagram of Intel SGX model.

To illustrate the models and the transformation described in these sections, we provide a
simplified model of the SGX attestation scheme using the SysMIL-Sec modeling language. As
mentioned previously, a SysML-Sec software design is composed of a block diagram (Figure 4.3)
and a state machine diagram for each block of the block diagram (Figure 4.4).

In the years since a first translation from a SysML-Sec model to ProVerif was proposed [204],
valuable feedback was gathered from industrial and academic testers. Among easily corrected
corner cases or usability bugs, some robustness issues indicated more fundamental problems.
These issues were often related to a mismatch between the semantics of features in SysML-Sec
and their counterparts in ProVerif. We present some of the most important issues that motivated
us to completely rework the translation process:

Loops

Often, users take advantage of the verification feature embedded in TTool in order to assess
the security of a system that provides a service. For some of these systems, modeling their
state machines using loops seems natural. Unfortunately, ProVerif tries to flatten the given
specification as a first step. By using a straightforward translation as it was implemented,
verification on a design containing loops would not terminate. We will show how we address this
significant drawback in sections 4.3.1.4 and 4.3.2.
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(nonce = RANDOMOY0, 10] )

message.data = nonce
Y
[ attestationRequest(message)

waitForAttestationAnswer

message.data = enclaveExpectedState
ttestationR ry l message2.data = nonce
attestationRequest(nonce) message = concat2(message, message2)

Y
attestationAnswer(message2) I

message.data = enclaveState SignatureCorrect = verifySign(message, message2, SGXPubKey)
message = concat2(message, nonce)

y Message = sign(message, SGXPrivKey)
[attestationAnswer(message) receivedAttestationAnswer

[else ] [ SignatureCorrect ]

waitForRequest
7

(a) QuotingEnclave.

Fail Success

(b) ExternalVerifier.

Figure 4.4 — State machine diagrams of the blocks in the SGX model.

Private Channels

As in ProVerif, SysML-Sec enables the user to model two types of channels between blocks:
private and public. While their semantics should be the same for ProVerif, their behaviors with
respect to reachability queries differ. ProVerif considers that a message sent should always be
received. On private channels, only explicitly specified entities can read the sent message, while
on public channels, the message can also be read by the attacker. When assessing the reachability
of an event, ProVerif tries to reconstruct a trace and stop at the exact moment when the event
is triggered. Therefore, if the event occurs just after a message was sent on a private channel,
the message would not yet be read. ProVerif would thus consider the trace invalid, returning a
cannot be proved result. As we wished, in our context, to provide the ability to prove reachability
properties, modifying the private channel representation was also an important issue we addressed
in our work.

Trace reconstruction

If ProVerif manages to find a counterexample to prove that a property is not guaranteed by the
model, it outputs a trace. In the original implementation of the transformation, the trace was
directly provided to the designer to help her debug the models. However, ProVerif traces are
tedious to read, in particular due to the artifacts added by the translation process.

4.3.1.3 New modeling artifacts

The specificities of SysML-Sec block and state machine diagrams compared to their counterpart
in SysML are manifold: first, a type for cryptographic material (keys) is added. This type
enables to define cryptographic primitives in SysML-Sec blocks that basics operations such as
encrypting, decrypting, computing hashes, verifying certificates, etc. A graphical artifact is added
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to channels in SysML-Sec blocks diagrams when they are modelled as public (where an attacker
can spy). Also, we extended SysML with pragmas, i.e., formal text notes regarding the attributes
of the system (purple box on Figure 4.3). This enables for instance to declare two attributes
equal at the start of a session. Pragmas are classified into Model Pragmas or Property Pragmas.
Model Pragmas provide more security-oriented semantics to attributes of blocks, while Property
Pragmas describe security properties that need to be verified on the system. The pragmas that
we defined are described in Table 4.1.

Pragma \ Description
Model Pragmas
PrivatePublicKeys Two attributes of a block are set as Private Key and Public Key,
respectively

InitialSessionKnowledge | Listed attributes have the same value at the start of a session
InitialSystemKnowledge | Listed attributes have the same value when the system starts

Secrecy Assumption Listed attributes are assumed secret. ProVerif verifies this after-
wards
Constant Declares a string as a possible constant value

Security Properties
Confidentiality /Secret | Query the confidentiality of attributes listed

Authenticity Query the weak and strong authenticity of the two attributes at
given states

Table 4.1 — Pragma Descriptions.

4.3.1.4 The transformation algorithm

In order to verify a SysML-Sec software design with ProVerif, the diagrams need to be first
translated to a ProVerif specification. We will first give an informal description of the translation
process in this section and then detail a formal description of the algorithm in the next section.

Some components of the SysML-Sec diagram can be mapped to their ProVerif counterparts
quite straightforwardly since we borrow the attacker model and the channel semantic from
ProVerif. However, for other components, like loops on the state machine diagram or private
channels, we had to carefully consider ProVerif reasoning in order to avoid as much as possible
cases where the proof would fail.

A first transformation, already implemented, translates timer-related capabilities into a set
of blocks and signals. The latter are inherently taken into account in our formalization.

The transformation then can be described as happening in three steps: basic blocks creation,
basic blocks translation and basic blocks linking (see Figure 4.5).

Basic blocks creation

Since a SysML-Sec state machine diagram may contain loops, we need either to unroll these loops
up to a certain limit, or to reuse the parts of the translated specification that could be executed
multiple times. Both of these choices have been considered in static analysis works [139, 161]
and are strategically important, since allowing jumps in the specification often incurs a loss in
terms of completeness, while flattening the graph by limiting the number of repetitions affects
the correctness of the proof.

In order to maintain the soundness of the verification guaranteed by ProVerif, we chose not
to limit the loops. As such, the first step in translating a SysML-Sec Diagram composed of
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SysML-Sec ; ; .
. Basic blocks > Basic blocks ) Basic blocks
softvyare design creation translation linking
diagrams
Backtracin Verification ProVerif
9 by ProVerif specification

Figure 4.5 — Overview of the translation algorithm.

well-formed blocks to a ProVerif specification is to partition the state machines of the different
blocks into atomic basic blocks that cannot be entered from two different locations. A basic
block correspond to a maximum connected sub-graph of a state machine where no state may
have multiple incoming edges. A connected state machine can thus be partitioned by a set of
basic blocks (see Figure 4.6). Note that these basic blocks are trees and thus have a root state
(initial state, s¢ and s7 in Figure 4.6).

Basic blocks translation

The algorithm then translates each basic block into a process of the ProVerif specification. Most
of the operators in the SysML-Sec state machines are translated to their counterparts in applied
pi-calculus.

When a state is followed by multiple outgoing transitions, any of them can be taken as long
as the boolean condition that guards the transition is verified. From a security point of view,
any trace of attacks using one of these transitions is valid. This is conceptually equivalent to
letting the attacker choose which transition to take in case of non-deterministic transitions. We
model this by creating values corresponding to each transition, making them public, and waiting
for the attacker to return a value corresponding to her choice.

Basic blocks linking

ProVerif supports simple process calls by flattening them, and as a result, does not terminate
for diagrams containing loops. Thus, instead of directly calling basic blocks, we generate tokens
at the end of each basic block and make them available to the attacker. The token contains a
reference to the next basic block to execute and the current state of the system (the attributes
of the blocks). One such token allows the attacker to execute the basic block whose initial state
matches the token. When the token is used, the values of the attributes of the block are set
according to the values passed as arguments of the token. This token should only be used once,
and only in the right session, so we add to the token a session identifier to guarantee that the
token is forged and used in the same session, and use a nonce mechanism to prevent its reuse.

4.3.2 Formal description of the translation

In order to provide a reliable mathematical base for the proofs performed by ProVerif on a SysML-
Sec software design diagram, we decided to formally express the transformations performed on
the model as it is implemented in TTool. This formalization will provide understanding on both
how we managed to link a general purpose SysML diagram to a ProVerif specification that relies
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@

Figure 4.6 — A SysML-Sec state machine partitioned in basic blocks. Each basic block (greyed
area) is a rooted acyclic sub-graph of the state machine where only the root of the sub-graph
may have multiple incoming transitions in the original state machine.

on Horn clauses, and where sources of incompleteness may come from. This formalization is also
a first step in building a mathematical proof of equivalence for a future work.

4.3.2.1 SysML-Sec

In the software design phase, the SysML-Sec diagrams intend to describe a software design. This
section provides a formal definition to software designs and their inner components.

Definition 1 Design. A design is defined by a network of blocks interconnected by links and a
set of pragmas:
D =(B,C,P)

Figure 4.3 displays two blocks corresponding to the actors in the SGX attestation protocol.
The blocks are linked by a channel which can be private or public—as denoted by the illuminati
symbol. In this formal description, we don’t mention data types as they only act as syntactic
sugar as far as security analysis is concerned.

Definition 2 Block. A block is a tuple

block = (ident, A, M, S, behav)
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where

ident is a block name.

o A is a set of attributes.
o M is a set of methods.
o S is a set of directed signals. For each s € S, type(s) € {in,out}.

e behav is a state machine diagram.

We define a function block that given a design D returns the set of its blocks, a function sig
that given a block returns the set of its signals and a function att that returns the set of its
attributes.

Definition 3 Channel A channel connects signals between blocks.
channel = (type, mode, R)
where

e type is a physical property which can be either private or public.

e R is one-to-one correspondence between two sets of signals, R C sig(b1) x sig(ba) where
b1,be € block(D) such that ¥(s1, s2) € R, type(s1) # type(sa).

Pragmas enable to either describe properties of the system in the initial state, or to query a
property of the design that will be checked during verification. To simplify the presentation of
this description, we will consider that a pragma can only be of two types:

e cither it expresses that two attributes have the same value at the beginning of the execution
(Pinit)

e or it queries the confidentiality of an attribute (Psecret)-

Definition 4 Pragma. Let D be a design. We define a pragma as a pair
P= (Pinit7 Psecret)

where

Pinit C ( U att(b))Q

beblock(D)

Psecret C U CLtt(b)

beblock(D)
Definition 5 State Machine Diagram. A state machine diagram is a rooted directed graph
behav = (9, q0,q1,E)
where
e Q is a set of activity state nodes.

e o € Q is an initial state node.
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e g, € Q is a final state node.

e £ C Q x Guards x Actions x Q.

A name is given by the designer to each state. We thus define a labelling function L that
returns the name associated to a state. Given an edge e = (q,9,a,q¢'), we define functions
source(e) = q, gard(e) = g, action(e) = a, and target(e) = ¢'. A trace o € Actions® in a
state machine is a sequence of actions ag, ai,...a, such that there are qg, q1,...q, € Q with
(¢i-1,9,ai,q;) € Eforalli=1,... n.

The set Actions of actions used in a state machine is defined as follows:

a € Actions == f(x1,...,2,) function call
| ©:=exp assignment expression
| c{v) input action
| e(m) output action
| v random action
| e empty action

Expressions in SysML-Sec consist of values, variables and function calls.
exp == walue | x| f(x1,...,2,) Expressions
With no loss of capabilities, we consider that a guard is of the form:
g € Guards == true|x Guards

Figures 4.4a and 4.4b show the state machine diagrams of the two blocks in Intel SGX
attestation scheme. Note that empty actions and "true" guards are not shown in the diagrams.
Note also that multiple actions appear on each transition. This is semantically equivalent to
multiple chained transitions, each of which bearing a single action and a true guard.

Syntactic constraints on activity diagram

TTool enforces some basic properties on the state machine diagrams, namely:
1. The initial state node may only occur in the source of an edge.
2. The final state node may only occur in the target of an edge.

3. For any state node except the final state note, there is at least one path from the initial
state node to this node.

4. Any state node different from the final state node has at least an outgoing transition.

4.3.2.2 The resulting ProVerif specification

As described in [38], ProVerif specifications are described in a custom language following a well-
defined structure. OQur translation, described in section 4.3.2.3, does not make use of the entirety
of the ProVerif language. We describe here a subpart of the ProVerif language that is useful for
our purpose.

In particular, we consider that a ProVerif specification consists of the following five sections
(the ProVerif associated keywords are given inside parentheses):
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e Functions declaration (fun and reduc keywords). They are typically used to describe
cryptographic primitives such as hash, symmetric encryption, etc. and don’t depend on
the particular design we are translating.

e Variables declaration (channel and free keywords). They declare channels and other
variables that are shared by every participants and can be either public or private.

e Queries (query keyword) express the security properties that a user wishes to prove on
the design

e Sub-processes declarations (let keyword). Each sub-process (or macro) declaration con-
tains a behavioral description of part of the state machine diagrams of the design. They
may be referenced by other sub-processes or by the main process. If they are not referenced
by anyone, they are simply ignored.

e The main process (process keyword), which is the entry point of the design. It can
reference any sub-process.

This global structure can be seen in the ProVerif code presented in Listing 4.1.

In particular, we see a constructor declaration (sencrypt), a destructor declaration (sdecrypt),
two shared variables declarations (for the variables named token___QuotingEnclave___0 and
token___ExternalVerifier___0), a reachability query, the declaration of a sub-process (whose
name is QuotingEnclave___0) and the main process which creates a new private variable (named
QuotingEnclave___SGXPrivKey___data).

Once the sub-processes have been flattened into the main process, the syntax of the ProVerif

language to describe a process is given in Figure 4.7 (inspired by the presentation in [9]).

Figure 4.7 — Syntax of the part of the ProVerif language used in our translation.

M,N == terms

T,Y, % variable

a,b,c name

f(My, ..., M,) constructor application
P,Q = processes

0 nil

PlQ parallel composition

\P replication

new a; P restriction

out(M,N); P output

in(M,N); P input

letx = g(My, ..., M,)in Pelse @ destructor application

if M = N then Pelse(Q conditional

event(a); P event

In [9], the semantics of the ProVerif language is provided as a set of reduction rules. This
is the definition that we use for our translation as well. These reduction rules operate on a
configuration represented as a triple £, P, S where "P is a multiset of processes, £ is the set of
free names of P and of names created by the adversary, and S is the set of terms known by the
attacker." The reduction rules are given in Figure 4.8. In these rules, the notation P{y/x} means
the process P where x has been substituted with y. Note that in the semantics, the conditional
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construction does not appear. Indeed, as it is explained in [9], this conditional can be represented
by a destructor that can only be reduced if the two terms appearing in the conditional are equals:
letx = equals(M, N)in P with equals(M,M) — M. Also note that the rule Red Event that
we added has no effect on the configuration since events only cause side-effects (not related
to the demonstration of confidentiality) that are useful for other properties (reachability and
authenticity) which are not presented in this formalisation.

As in [9], we use the notation fn(P) (or fn(M)) to designate the set of free names in the
process P (or term M). We also say that Tp, is a trace of Py from Sy if it is a finite sequence
of reductions fn(Fy) USo, {Po}, So — ... — &', P, S. We also say that the closed term M
is secret from Sy if fn(M) C fn(P) and there is no trace of Py from Sy which contains a state
E,P,S where M € S.

4.3.2.3 Translation

We now give the semantic of a SysML-Sec software design, expressed as a translation from
SysML-Sec software designs into ProVerif specifications. For each SysML-Sec software design D,
the interpretation function is expressed under the form:

[D]; = Fe(D) ® Ve(D) ® Q¢ (D) @ Pe(D) & "process" @ Maing (D)

It relies on several auxiliary functions for expressing the semantics of specific parts of the de-
signs. The core entities of this semantics include: Fg(D) generating functions, Vg (D) generating
variables, Q. (D) generating a set of queries from pragmas, Pg(D) generating a set of processes,
and Maing (D) that generates the process that manages global instantiation of other processes.
The construction of these functions relies on an environment £ = (&, &,) that keeps track of the
states that have to be visited (£;) and those that have already been (&,).

Before defining the interpretation function, it is helpful to introduce some notations. We use
the quote (") character to indicate the beginning and ending of a string (ProVerif instruction).
Quoted strings placed next to each other are concatenated (by @ operator) to a single string

(source code). @“€S denotes a list of parameters over the set S.

Non-processes declarations

Functions include a list of cryptographic primitives that can be used in the SysML-Sec software
design and that are common to all designs: hash, symmetric encryption and decryption, asym-
metric encryption and decryption, etc. and the two functions tok and untok (see below). Also,
a pair of encryption and decryption functions is added for each private channel.

Variables consist of one channel used for public communication, one channel for control
messages (chctrl) and one token ... variable (see next paragraph) for each basic block.

Note that the token ... variables can only be generated once we know the list of basic blocks.
This list is constructed during the generation of sub-processes that thus need to be created before
variables can actually be declared.

For each variable v for which the designer would like to check the confidentiality, we generate
a query of the form "query attacker(new v)".
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Figure 4.8 — Reduction rules of the semantics
E,PuU{0},S —» &P, S (Red Nil)
E, PU{event(a); P}, S — &, PU{P}, S (Red Event)
£, PULP|Q}. S — £ PU{P,Q}, S (Red Par)
E, PU{lP},S —» & PU{P P}, S (Red Repl)

a é¢é&
E, PU{newa; P},S§ — EU{d}, PU{P{d/a}}, S

M¢S

€, PU{in(M,z); P, out(M,N); Q}, S — & PU{P{N/x}, Q}, S

g destructor of arity n, g(M,....,M,) — M

E, PU{letx = g(My,...,M,)inPelse@Q}, S — £ PU{P{M/x}}, S

g destructor of arity n, g(Ma,..., M,,) # M for all terms M

E, PU{letx =g(My,...,M,)inPelseQ}, S — &, PU{Q}, S

MeS
E, PU{out(M,N); P},§ — &, PU{P}, SU{N}

M,N €S
E, PU{in(M,x); P}, S — & PU{P{N/z}}, S

f constructor of arity n, My,....M,, € S
E,P,S = &P, SU{f(My,..,M,)}

g destructor of arity n, My,...,M, € S, g(My,....M,) - M
E,P,S = &P, SU{M}

a ¢&
E,P,S = Eu{d}, P, Su{d}
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Processes generation

Sub-processes are generated by walking through the state machine diagram of every block of the
SysML-Sec software design. To do this, the interpretation function relies on a queue of states to
be visited &, that is initialized to contain the start state of the state machine of each block, and
a list £, that contains all the states that have already been visited (empty at the beginning).
While there still are queued states, one of them (let’s call it s) is dequeued (it does not matter
which one is picked), it is added to &, and a new sub-process is created through the function
[s]z (see Table 4.2). This function will walk through a subpart of the state machine that we
call a basic block. A basic block is a sub-graph whose root has multiple incoming transitions.
The interpretation function of a state is given by the function [.]¢. The interpretation function
for single outgoing edge is denoted [.,.]% and for multiple outgoing edges is denoted [.]2*. The
interpretation of an action is given by the function denoted [.,.[¢. The continuation of the
interpretation of following states is completed by [.]¢ function.

In our interpretation, we use the terminology fresh variable which means that the variable is
a new one and it has no occurrence anywhere in the code except in the instruction that creates
it. We use Out function that returns the set of transitions Ou#(q) which are outgoing from the
state node q.

We define a predicate UniqueOut that takes a state ¢ and returns true if no two different
transitions have ¢ as a source state.

- Y(q1,91501,91), (g2, 92, a2, 43) € €.
UniqueOut(q) < PO AR RS IR
q (q) ( qlzq/\qzzq:glzgz/\a1:a2/\q/1:qé

In the same way, we define a predicate Uniqueln that takes a state ¢ and evaluates to true if
no two different transitions have ¢ as a target state.

- Y(q1,91,a1,41), (2, g2, a2, g2) €.
Uniqueln(q) < VI T AL A IE e
1 (@) ( (=9 NG=¢=>q=@Ag=g2Na1=a

The translation of a basic block from a given block b, as described in Table 4.2, is mostly
straight forward. Transitions are translated by transforming their guards into if conditions
and their actions into ProVerif instructions. States are translated to a corresponding ProVerif
event used for reachability queries. Two transformations deserve special care: multiple outgoing
transitions and transitions linking states of two different basic blocks (which corresponds to
multiple incoming transitions). When there are multiple outgoing transitions, the resulting
ProVerif process generates a token for each possible transitions and makes them available to the
attacker. Then it triggers the path by asking the attacker to accept one token. This is illustrated
by Figure 4.9a. When control should be passed to another basic block, the process also generates
a token. This token must contain the current state of the block (as described by its attributes)
and the identifier of the basic block to be called (the token  variables). Also, in order to prevent
the attacker from replaying previous tokens, the token includes a nonce that is issued by the
callee. This token is protected from modification and spying by the attacker by encapsulating it
into a private function tok. This is illustrated by Figure 4.9b.

The main process is then appended to the end of the ProVerif specification. Its purpose is
first to create one unique tok(...) message for each state machine so that the attacker can call®
the process corresponding to each basic block whose root is the initial state of a state machine.
To create each token for a block, the main process needs to instantiate the attributes of the

2The term call here is abusive. Indeed, the attacker has no control over the execution flow of each process. It
is however able to pass a token to a particular process which is blocked waiting for it.
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BasicBlockB
BasicBlock Attacker
BasicBlockA BasicBlockB
tokenA nonce
g <
tokenB
> tok(token_BasicBlockB, nonce, args)
tokenC
>
tokenB
¢
(b) Between two basic blocks.

(a) Non-deterministic transitions.

Figure 4.9 — Special case of translation for transitions.

block, wait for a nonce and send the token. Then, it runs all the created processes in parallel (as
denoted by the | operator) infinitely (as denoted by the ! operator).

Maing (D) = ( @ ( @ "new a;" & "in(chctrl, nonce);
beblock(D) acatt(b)

out(chctrl, tok(token ILL(go), nonce, args))"))
" (" ! proclabel 1(q) ")

q€Ey

with args = Focatt(b)
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Table 4.2 — Interpretation function of State Machine Diagrams.
"let proclabel L(q) =
new nonce;
» _ Jout(chctrl, nonce);
[ale = in(chctrl, token);let (=token _IL(q), =nonce, args) = untok(token)" & [q[&
with args= 7 acatt(b)
n . n if q — ql
[q]g = { "evententeringState_L(q)();" @ [q,e]y if UniqueOut(q)
"event enteringState_L(¢)();" ® [¢]s"  otherwise
g, e]. = "if guard(e) then" @ [q, €]z if guard(e) # true
O Cle= lq, €]z otherwise
: , ¢
@ "new . ;out (chctrl, z.); " @ "in (chctrl, ¢) ;" @ ("n‘ c= 1z, then" & [[q,e]]g)
m
[a]e' = ecOUt(q) ecOUt(q)
where ¢ and 7. are fresh variables
"letz = exp in" @ [target(e)]z if action(e) =z := exp
"new z;" @ [target(e)]z if action(e) = v.x
lg, €] =< "out (c,m);" & [target(e)]z if action(e) = &(m)
"in (c,v);" @ [target(e)] if action(e) = c(v)
[target(e)]z if action(e) = f(x1,...,22) | €
g% = lelz if Uniqueln(q)
Ue= [[q]]lg otherwise
"in(chctrl, nonce) ;out(chctrl, tok(token _IL(g)), nonce, args))." if g€ E,orq € &,
"in(chctrl, nonce) ;out(chctrl, tok(token 1.(g)), nonce, args))." otherwise
[als = & =& U{g}
with args = @€ att(b)
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Correctness and completeness

Thanks to the presented translation, we have given an expression of the studied design in a
ProVerif formalism. From the designer point of view, the interesting property to prove on
the translation algorithm is that a protocol, as described by the SysML-Sec state machines,
guarantees confidentiality. The value of such a proof depends on the validity of the translation
algorithm. In this section, we propose to give a formal proof of correctness of the translation
with respect to the property of secrecy.

We first need to formally describe the capabilities of the attacker in the SysML-Sec model.
These capabilities (which follow the Dolev-Yao model as stated earlier) can be formalized as an
implicit state machine described by Definition 6.

Definition 6 Attacker state machine. The attacker state machine is a graph composed of
one state and four transitions from this state to the same state (see Figure 4.10). These four
transitions are labeled with an action:

e in which receives a term on a channel,

e out which sends a term on a channel,

e new which creates a new name and

o function which applies an ezisting function to terms.

Informally, the semantics of the attacker is given by explaining how each step of a trace in
its state machine affects a configuration. This configuration is composed of

e a set of names created by the attacker
e and a set of terms known by the attacker.

For each in(M) transition, the term M is added to the set of known terms, the out(M) transition
can be triggered if M belongs to the set of known terms, new(x) adds x to the set of names created
by the attacker and the set of known terms and function(f(M, ..., M,)) adds f(M, ..., M,) to
the set of known terms if f is a constructor or adds M to the set of known terms if f is a
destructor and f(My,...,M,) — M.

In order to distinguish the actions of the attacker from actions of the other blocks, we will
designate these transitions by atk;y, atkous, atkpew and atkrunction i the rest of this chapter.

atk,

in

Figure 4.10 — Attacker state machine.
Through this state machine, the attacker is able to interact with the state machines of the

SysML-Sec blocks. To give a formal description of this interaction, we define the parallel com-
position of the state machines of the SysML-Sec software design.
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Definition 7 Parallel composition. Given a software design D = (B,C,P), we call parallel
composition of D (noted Cp or simply C in the rest of this formalisation) the automaton whose
states are elements of the cartesian product of the states of the state machine of each b € B and
whose transitions from (s°,...,s") to (s'°,...,8'™) are either:

o corresponding to atknew, t0 Atk function OT to a transition from the state machine of a block
b€ B, i.e., Ji € [0,n] such that (s%,s"") is a transition of the state machine of b. In this
case, the transition is guarded by the guard of the transition in the original state machine
or by € in the case of atknew and atkpynction and the action is either the action of the
original state machine, or atkpey, or atkunction-

e or corresponding to two transitions in the original state machines: one bearing an input
action (of a block or atk;,) and one bearing an output action (of a block or atk,y:). In this
case, the guard of the transition is the conjunction of the two guards in the original state
machines and the action is a special action which models the exchange between the input
and output actions.

Definition 8 Execution trace. We call an execution trace of the design D composed of m
blocks a path Te in the parallel composition C of D:

7& :Nlazlalclaal — .. %Nnaznalcnvan
Where Vi € [1,n]:

e N; contains the names of the attributes of all blocks, the names introduced by random
actions and the names created with atk,,e.,,

o X, = (8%, ...,s™) is an element of the cartesian product of the states of all state machines,
o [C; is the set of terms over N; that are known to the attacker and

e 0, is a substitution of all the attributes, i.e., a function from the set of attributes to the set
of terms over N;.

Moreover, we say that an ezecution trace is valid if all guards met on the path are satisfied.

The secrecy property is defined (similarly to [9]) as:

Definition 9 Secrecy in a SysML-Sec design. The SysML-Sec software design preserves
the secrecy of an attribute a if and only if for any valid execution trace T, there is no state

(N, X, K,0) of T where a € K.

There are two interesting properties to prove concerning the translation algorithm presented
in this chapter (with respect to the property of confidentiality): a correctness property and a
completeness property. These properties are presented in Theorem 1 and Conjecture 1.

Theorem 1 Correctness. If an attribute a is secret in the resulting applied pi-calculus speci-
fication, then it is also secret in the SysML-Sec design (according to definition 9). This means
that the translation does not introduce false negatives (a possible attack is not detected,).

Conjecture 1 Completeness. If an attribute a is secret according to definition 9, the presented
translation results in a ProVerif specification where the name corresponding to a is confidential.
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Note that, due to the ProVerif approximation discussed in section 4.3.3.1, even if the presented
translation is both correct and complete, this would not imply that a term M would be secret
according to definition 9 if, and only if, the secrecy of the corresponding name were to be proved
by ProVerif in the resulting applied pi-calculus specification. Indeed, M could be secret but the
translation could generate a specification where the secrecy of the corresponding attribute could
not be proved.

As presented in the previous section, some of the SysML-Sec concepts have quite straightfor-
ward counterparts in the resulting ProVerif specification. Basically, when a SysML-Sec state has
multiple outgoing transitions, it means that either one of these transition can fire. Proving that
no matter which one of these transitions is taken, an attribute remains confidential would be
equivalent to proving the same property on a design where the attacker decides which transition
the process should take. This is what is modeled in the ProVerif specification. When control
is passed from a basic block to another, it should appear as if the instructions of both were
literally one after the other. The nonce and tok functions ensure that a token cannot be created,
modified or replayed by the attacker, ensuring that a basic block can only execute if another one
called it.

Proof of correctness

A formal proof of correctness is provided in Appendix A. This proof relies on an induction to
create a trace of the ProVerif process resulting from the translation algorithm in which the set
of terms known by the attacker is a superset of the set of terms known by the attacker in the
SysML-Sec model. The proof of completeness would be more difficult and is left for future work.

To conclude, note that in the specific case where ProVerif is used to verify the confidentiality
property on the applied pi-calculus specification, it would also be interesting to study when the
translation results in a specification where ProVerif can not prove the expected property. Indeed,
the algorithm could be correct and complete but could generate specifications that are especially
difficult for ProVerif to handle.

4.3.3 Backtracing

Providing a clear and visual feedback to the designer is one of the key point in integrating
security verification during the modeling phase of a design. Indeed, the purpose of early security
verification is twofold: it helps the designer to model parts of the design based on the properties
previously proved and it gives a way to better discover and understand design flaws in order to
debug them.

4.3.3.1 ProVerif results and ProVerif Output

When queried about a property, ProVerif tries to prove it by finding all possible ezecution traces
that would lead to a violation of this property in an approximated model. This approximated
model—which is needed since proving secrecy property in the Dolev-Yao model has been proved
to be undecidable in the general case [11,98]—is constructed so that each possible trace on the
real model produces a possible trace in the approximated model. As such, ProVerif can issue
three types of results (given for secrecy here):

e Property is true. ProVerif did not find any trace leading to a violation of the property in
the approximated model. Since the approximation is sound, this means that the property
is true also on the real model.
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e Property is false. ProVerif has found a trace on the approximated design and has managed
to construct a corresponding trace on the real model. The trace found is provided with the
result by ProVerif.

e Property cannot be proved. ProVerif has found a trace on the approximated design but
this trace did not match a valid trace on the real model. In this case, ProVerif is not able
to conclude but the trace on the approximated model is output so that the designer can
decide whether this matches a valid trace or not.

We keep these three possible results and make them available to the designer through the
TTool interface.

4.3.3.2 Verification results on models

In order to enable the designer to simultaneously see the results of the previous verification
and accordingly continue modeling, verification results are displayed on the diagrams that are
build by the designer. Results for the reachability, confidentiality and authenticity properties
are displayed on the block and state machine diagrams in the form of green (when property is
true) or red (when property is false) locks.

4.3.3.3 Reconstructing traces

Also, in order to ease debugging and when it is available, the designer is provided with a trace
that shows why the property is true (for instance how a state is reachable) or false (how a secret
can be disclosed). This trace is automatically constructed based on the trace issued by ProVerif
and displayed as a sequence diagram. As such, the trace presents the messages exchanged by
the participants (all blocks and the attacker) and the states that each block goes through.

4.3.4 Model and verification of a key exchange protocol

To illustrate the method proposed in the previous sections, we propose to model and verify the key
exchange protocol presented in Section 3.3.2.3. We refer the reader to this section for a detailed
description of the protocol. To summarize, the protocol allows a Peripheral and an application
(named DriverEnclave) to share a secret key that will enable them to communicate securely on
an untrusted platform (the Prover). To do this, they rely on the Intel SGX architecture (modeled
by the QuotingEnclave component) and on an external trusted third party named Verifier.

Model

The diagrams used to model this protocol are shown in the following figures. Figure 4.11 shows
the block diagram which describes the components of the protocol. Figures 4.12, 4.13, 4.14 and
4.15 show the state machine diagrams of the blocks in the key exchange protocol.

Verification results

The result of the verification of the confidentiality of a message exchanged with the established
key is shown on Figure 4.16. We can see on the block diagram the green lock which shows that
the secret attribute has been proved to be confidential. Figure 4.17 shows a trace that leads to
the state nonceVerify of the state machine of DriverEnclave.
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Figure 4.11 — Block diagram describing the actors of the key exchange protocol in the SysML-Sec

methodology.

<<cryptoblock>>
<<datatype>> -
Verifier
Message
- data : int; - expectedEnclaveState : Message;
- attestationKeyPub : Key;
- periphPubKey : Key;
- verifierKey : Key;
<<datatype>> = (e 8 [
Key - message : Message;
= - enclaveMeasurement : Message;
- data :int; - driverPubKey : Key;
- nonceVerif : Message;
- idPeriph : Message;
- noncePeriph : Message; A
i
<<block>>
Prover
A
JoN
i
<<cryptoblock>> <<cryptoblock>>
Peripheral DriverEnclave
- periphKey : Key; - enclaveState : Message;
- verifierPubKey : Key; - secret : Message;
- message : Message; A &?riﬁerPubKey : Key;
- nonce : int; ivKey : Key;
- idPeriph : Message; N pubKey : Key;
- message3 : Message; - sk : Key;
- driverPubKey : Key; - message : Message;
- signature : Message; - nonce : int;
- signatureOK : bool; - nonceVerifier : Message;
- sk : Key; - noncePeriph : Message;
- message? : Message; - signature : Message; A
- periphPubKey : Key; » »

- signedNonce : Message;

- Message aencrypt(Message msg, Key k)
- Message adecrypt(Message msg, Key k) A
- Key pk(Key k)

- Message sign(Message msg, Key k)

- bool verifySign(Message msgl, Message sig, ...,
- Message cert(Key k, Message msg)

- bool verifyCert(Message cert, Key k)

- Key getpk(Message cert)

- Message sencrypt(Message msg, Key k)

- Message sdecrypt(Message msg, Key k)

- Key DH(Key pubkK, Key privK)

- Message hash(Message msg)

- Message MAC(Message msg, Key k)

<<cryptoblock>>
QuotingEnclave

- attestationKey : Key;

- message : Message;

- message? : Message;

- attestationPubKey : Key;

- Message aencrypt(Message msg, Key k)
- Message adecrypt(Message msg, Key k)

- Key pk(Key k)

- Message sign(Message msg, Key k)

- bool verifySign(Message msgl, Message sig,...
- Message cert(Key k, Message msg)

Model Pragmas

#InitialSystemKnowledge DriverEnclave.enclaveState Verifier.expectedEnclaveState
#PrivatePublicKeys QuotingEnclave attestationKey attestationPubKey

#InitialSystemKnowledge QuotingEnclave.attestationPubKey Verifier.attestationKeyPub
#PrivatePublicKeys Peripheral periphKey periphPubKey

#InitialSystemKnowledge Peripheral.periphPubKey Verifier.periphPubKey

#PrivatePublicKeys Verifier verifierKey verifierPubKey

#InitialSystemKnowledge Verifier.verifierPubKey Peripheral.verifierPubKey DriverEnclave.verifierPubKey
#InitialSystemKnowledge Peripheral.verifierPubKey DriverEnclave.verifierPubKey

Security Property
#Confidentiality DriverEnclave.secret

/4
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nonce = RANDOMOI[0, 10]

Y

pcieln(message)

message2.data = nonce

message = concat3(message, idPeriph, message2)
message2 = sign(message, periphKey)

message = concat2(message, message2)

pcieOut(message) )

Epcieln(message)

get2(message, message3, signature)

get3(message3, signedNonce, message, message2)
driverPubKey.data = message.data

signatureOK = verifySign(message3, signature, driverPubKey)

driverSignatureVerificationFailed driverSignatureVerify
[else]

[ signatureOK ]

message2 = adecrypt(message2, periphKey)

sk.data = message2.data

message2.data = nonce

message2 = concat2(message2, message)

signatureOK = verifySign(message2, signedNonce, verifierPubKey)

verifierSignatureVerificationFailed verifierSignatureVerify |
[else]

[ signatureOK ]
y

Y

end

message = sdecrypt(message, sk)

Figure 4.12 — State machine of Peripheral.
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y

(nonce = RANDOMOIO0, 101 )

y message.data = nonce

wanOut(message) )

wanln(message)

get2(message, message, signature)
signatureOK = verifySign(message, signature, attestationKeyPub)

signatureVerificationFailed L | verifySig
r [else] |

nature |

[ signatureOK ]
get2(message, enclaveMeasurement, message)

( enclavelntegrityCheckFailed l¢ ( checklntegrity |

[ enclaveMeasurement.data == expectedEnclaveState.data ]
get4(message, message, nonceVerif, message2, signature)

i nonceVerificationFailed l¢ verifyNonce

[ nonceVerif.data == nonce ]
driverPubKey.data = message.data
signatureOK = verifySign(message2, signature, driverPubKey)

signature2VerificationFailed verifySignature2 |
[else] I

Y

y

[ signatureOK ]

get2(message2, message2, noncePeriph)
message = concat2(noncePeriph, message)
message = sign(message, verifierkey)
message2.data = periphPubKey.data
message = concat2(message2, message)
message2 = sign(message, verifierKey)
message = concat2(message, message2)

wanOut(message) )

Figure 4.13 — State machine of Verifier.

quoteRequest(message) |

Eattest(messageZ)

quoteAnswer(message)

message = concat2(message2, message)
message2 = sign(message, attestationKey)
message = concat2(message, message2)

Figure 4.14 — State machine of QuotingEnclave.
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wanlin(nonceVerifier)

nonce = RANDOMOI[0, 10]

message.data = nonce

pcieOut(message)

Epcieln(message)

get2(message, message, signature)
get3(message, nonceVerif, idPeriph, noncePeriph)

( nonceVerificationFailed L nonceVerify
{ [else ]

[ nonceVerif.data == nonce ]

Y

privKey.data = nonce

pubKey = pk(privKey)

message2 = concat2(idPeriph, noncePeriph)

signature2 = sign(message2, privKey)

message.data = pubKey.data

message = concat4(message, nonceVerifier, message2, signature2)

quoteRequest(message)

attest(enclaveState)
quoteAnswer(message)
wanOut(message)

wanln(message)

get2(message, message, signature2)
signatureOK = verifySign(message, signature2, verifierPubKey)

verifierSignatureVerificationFailed ] ( verifierSignatureVerify. ]

1 J

[else ] [ signatureOK ]

get2(message, message, signedNonce)

periphPubKey.data = message.data

message = concat3(nonceVerif, idPeriph, noncePeriph)
signatureOK = verifySign(message, signature, periphPubKey)

( periphSignatureVerificationFailed ] ( periphSignatureVerify ]

l e |

—T

[ signatureOK ]

message.data = pubKey.data

message = concat2(noncePeriph, message)

signatureOK = verifySign(message, signedNonce, verifierPubKey)

I
™

verifierSignature2VerificationFailed verifierSignature2Verify )

J

—T

[else] [ signatureOK ]

nonce = RANDOMO[O0, 10]

sk.data = nonce

message.data = sk.data

message = aencrypt(message, periphPubKey)
message2.data = pubKey.data

message oncat3(signedNonce, message2, message)
signature sign(message, privKey)

message = concat2(message, signature)

Y

pcieOut(message) >
message = sencrypt(secret, sk)

Y
pcieOut(message) >
(end )

®

Figure 4.15 — State machine of DriverEnclave.
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- signatureOK : bool;
- sk : Key;
- message2 : Message;

<<block>>
Prover
<<cryptoblock>> <<cryptoblock>>
Peripheral DriverEnclave
- periphKey : Key; laveState
- verifierPubKey : Key; Bsecret : Message,
- message : Message; A T UDREY
- nonce : int; ivKey : Key;
- idPeriph : Message; L - pubKey : Key;
- message3 : Message; - sk : Key;
- driverPubKey : Key; - message : Message;
- signature : Message; - nonce : int;

- nonceVerifier : Message;
- noncePeriph : Message;
- signature : Message; A

A

<<cryptoblock>>

The Conﬁdent|a||ty QuotingEnclave

- attestationKey : Key;

Of S e C r—e -t h a S - message : Message;

- message2 : Message;
- attestationPubKey : Key;

be e n Ve rlﬁ e d [ - Message aencrypt(Message msg, Key k)

- Message adecrypt(Message msg, Key k)

- Key pk(Key k)

- Message sign(Message msg, Key k)

- bool verifySign(Message msgl, Message sig,...
- Message cert(Key k, Message msg)

Figure 4.16 — Block diagram with verification result.
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DriverEnclave.nonceVerify Security verification with ProVerif x *
Verification options
_ O Quit simulation window _ time unit: :._wmn_1 _ @ Refresh transactions 7 Generate ProVerif code in: [/pvspec | ‘mwo
S Execute ProVerif as: |~/Documents/biryproverif | =
m L compute state reachability: @ all ) selected ' none
o Attacker CriverEnclave F:n_mi Allow message duplication in private channels: @® Yes ) No
=t @0 | _ 8 % [v] Generate typed Pi calculus
& [newlattacker.nonceverifier]) EFTERtIG TERLITS = =]
o Reachable states:
newl{Attacker. signature) DriverEnclave.end
DriverEnclave.nonceVerificationFailed =
new(sttacker.nencePeriph} DriverEnclave.nonceVerify =
DriverEnclave.periphSignatureverificationFailed
H_”_ newlAttacker. dPeriph) wanin{nonceVeri priverenclave. periphSignatureverify —
o] DriverEnclave.verifierSignature2verificationFailed
DriverEnclave.ver nature2Verify m
i nonce = RANDOMO
” LT TN T | DriverEnclave.ver natureVerificationFailed
lattacker.nonceVerifier] » masa DriverEnclave.verifierSignatureverify
. {({{attacker noncevertf, Attacker.idPeriph, Attacker.noncePeriph)| Attacker signature]) Peripheral.driverSignatureVerificationFailed
M pcieOut{messag Peripheral.driverSignatureVerify
nonceverify(l Peripheral.end =
peieln{messag v Start ‘ Close
get2{message, message, signature)
get3{message, nonceverif, idPeriph, noncePeriph)
nonceVerify
M.
| <] ] o] [ nonceVerif.data == nonce |
|8 transactions, min time=0, max time=0 |
| norice = RANDOME[0, 10]
privkey.data = nonce
pubkey = pki{priviiey] ||
messageZ = concat2{idPeriph, noncePeriph} >
[ Il [+]

Figure 4.17 — Trace proving the reachability of the state nonceVerify.
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4.4 Security analysis during partitioning

While the implementation details ultimately determine the security of a system, taking security
into account in early development phases, without constructing the entire software/system design,
would prevent costly late-stage reworking of designs that present vulnerabilities due to early
partitioning choices. Even if actual security algorithms will be more complex, basic security
primitives and relative computation complexities should be accurate and provide useful feedback
to designers when selecting a mapping.

Adding security semantics—and even more, proving security properties—during the parti-
tioning phase is a difficult challenge. On the one hand, the ideal security analysis would take
into account every single detail of the system. On the other hand, the designer needs to quickly
describe her system for efficient design space exploration, which requires providing an abstract
description of the system. In [165], we have provided a security semantic that does not require
the designer to deal with implementation details that are irrelevant to partitioning. For exam-
ple, we are not interested during partitioning in the implementation of encryption algorithms; we
only need to consider parameters that will affect the partitioning choice (satisfaction of security
properties, execution time, bus load, etc.).

We proposed to add high-level security artifacts to the traditional HW/SW partitioning
methodology of the Y-chart approach [146]. Indeed, manually modeling security enables to
evaluate its impact in terms of overhead or calculation complexity and security.

Modeling of security mechanisms

In order to allow the security verifier to track data encryption elements, we introduce Crypto-
graphic Configurations (upper left part of Figure 4.2). Cryptographic configurations are graphical
elements of activity diagrams (shown on Figure 4.18) that model the fact that a communica-
tion is protected by cryptographic primitives. The designer must give a brief description of the
cryptographic primitive and define:

e its type (encryption, hash, MAC),

e cryptographic material used by the primitive (optional),

the performance cost induced by the primitive (computational complexity, overhead), and

e cryptographic material exchange with this configuration (optional).

sec:ProcessorMemoryEncryption

Figure 4.18 — Cryptographic Configuration.

The performance parameters allow us to model the impact of security mechanisms on perfor-
mance when evaluating candidate mapping. Cryptographic Configurations can also secure other
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cryptographic material such as keys. For example, we can model key distribution, where one
task forges a key for Symmetric Encryption, and sends it encrypted with another task’s public
key. The receiving task can then decrypt the message with its own private key to recover the
shared key.

The security of the hardware architecture itself is modeled to depict the assumed attacker
capabilities. Any of the communication nodes can be tagged by the user as secure—which
corresponds in our context to the impossibility for an attacker to access it. For example, a Wifi
connection could be modeled insecure and all data broadcast on it would be available to an
attacker. While internal buses could be modeled as secure.

To send encrypted data along a channel, the designer must create a Cryptographic Config-
uration, tag all channels along which encrypted data is sent, and finally recover the original
data with the Decryption operator. All the keys must be mapped to memories before security
verification, and the toolkit warns a designer if access to a key implies transmission across a
non-private channel.

Security properties

As for security verification during the software design phase presented in the previous section,
the properties we are interested in are: reachability, confidentiality and weak and strong au-
thenticity. Since the partitioning phase abstracts away the content of the messages exchanged
through channels, these properties don’t concern specific values but they are verified on an ab-
stract exchange: a correct implementation of the cryptographic mechanisms modeled by the
cryptographic configuration would guarantee that these properties are verified on any value of
this exchange.

Automated security generation

While Cryptographic Configurations can be manually handled by the designer, it is also possible
to automatically generate these security elements. Based on security requirements provided by
the designer, our toolkit automatically generates Cryptographic Configurations for each channel
whose data must be secure. Currently, we support automatic preservation of confidentiality (pro-
tecting against leakage of sensitive data) and strong authenticity (protecting against tampering
and replay). When both need to be guaranteed, Cryptographic Configurations are generated so
that sensitive data will be concatenated with a nonce and then encrypted before being transmit-
ted across an insecure channel. This automated encryption adds a basic estimation of security,
which the designer can later modify.

From partitioning diagrams to state machine diagrams

Once a complete application modeling has been mapped to an architecture, a ProVerif speci-
fication can be generated from the partitioning model. We leverage the translation presented
in the previous section by first converting our partitioning model into an equivalent software
model representation, and use the existing translation process to generate a ProVerif model.
Each task is first translated to a SysML-Sec block in the block diagram. Each communication
path between tasks—mapped to a set of buses, bridges, memories—is translated into an abstract
software-model channel. If a path is mapped to a set of communication nodes that are all tagged
as secure, the resulting software-model channel will be private. Otherwise, a public channel is
used. Most of the components of the activity diagrams are translated straightforwardly to their
counterparts in the state machine diagrams. In particular, cryptographic configurations are re-
placed by their specified cryptographic primitives and concrete values are exchanged through the
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channels. An overview of this verification method is given in Figure 4.19.

Backtracing

Y Y

Manual partitioning Partitioning model with

model cryptographic configurations
Verification

Security requirements

Automated

translation
Application T .) Application Les ProVerif specification

JINEEEEEEEEEY

Mapping Mapping :
') Software design  [€—
Architecture Architecture
+
A x |
| Model | |
| | |
Rework | |
Designer

Figure 4.19 — Verification method from partitioning models.

4.5 Conclusion

High-level description of systems in early stages of embedded system design can benefit from
formal verification as early design choices may lead to hard-to-patch vulnerabilities. During
these design stages, the designers need to receive fast feedback on the security impact of their
modifications. Automated verification is able to provide such a fast feedback. However, formal
verification often requires advanced specialized skills to model a system, express a property,
help the verification algorithm and interpret its results. By proposing an automated translation
from a modeling language targeting embedded system design to a formal specification suitable
for automated verification, we made a step toward providing a press-button approach to formal
verification.

Naturally, the verification method proposed here comes with a price: by automatically han-
dling complex design artifacts, the translation algorithm introduces artifacts that are potential
sources of incompleteness. This is a classical trade-off where the less human interaction, the
harder it is for the algorithm to conclude.

Note that the methods presented in this chapter could be applied to models of system con-
sisting of software and hardware components communicating through well-defined channels. The
software components are defined by using operations that are implemented by general-purpose
processors. Formally verifying designs where hardware and software are more tightly coupled
would be impossible at this level of abstraction and need to be discussed in the next chapter.
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Chapter 5

Formal verification of tightly
coupled hardware and software

In the previous chapter, we were interested in proving security properties on high-level models of
a system. While this approach can greatly help in designing secure embedded systems, it fails to
uncover security vulnerabilities introduced by lower-level implementations. In this chapter, we
will discuss how formal verification—and in particular formal verification of security properties—
can be applied to relatively low-level models of systems that express their hardware and software
components in different languages.

The need to describe a custom hardware component or architecture is common to most of the
embedded systems. We will argue in Section 5.1 that the methods to formally verify such systems
greatly differ depending on how tightly the hardware and software components are coupled. Then,
we will propose a method to formally verify a system whose hardware and software are tightly
coupled and which allows for some hardware customization. In particular, we focus on verifying
hardware-assisted security solutions such as memory bus protections [49, 78,120] (presented in
Section 2.1.2.1), hardware-assisted control flow integrity [67,84,85] (presented in Section 2.1.3.1)
or software attestation [100, 198] (presented in Section 2.1.3.2) as they often rely on a tight
cooperation between a customized hardware and the software running on it.

5.1 A problem of interaction

5.1.1 Expectations of a verification methodology

In order to guide our discussion and evaluate methods and tools, we list here the properties that
one would expect from a formal environment when assessing the security of a hardware/software
co-design.

5.1.1.1 Security-aware expressiveness

Software has been steadily increasing in term of quantity and complexity in embedded systems
and is still undergoing considerable growth. Implementing critical functions in software may
induce bugs or security flaws by increasing the attack surface and thus motivates the need to
find solutions that guarantee security properties, such as control-flow integrity or code integrity,
on any software. To target such global security properties new solutions often rely on specific
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hardware. The global security of the system thus depends on the security of the solution im-
plemented as a tight mix of hardware and software. An efficient methodology dealing with this
kind of designs should enable to express properties and give back results in a security-oriented
meaningful way.

Natural expression of security properties

First, designers would like to express the property they want to prove on their design as directly
as possible. Translating the expected property into a combination of properties manageable by
the solution but whose meanings are hard to grasp—typically formulas in conjunctive normal
form or CTL formulas—is a source of errors. The verifier would thus be more interested by
solutions that can naturally handle properties such as the confidentiality of a software variable
or the propagation of a taint.

Attacker model

On the other side, expressing the capabilities of an attacker should be equally straight forward.
It may be by using the Dolev-Yao model [94], or by tainting inputs that the attacker is able to
control, for instance. The attacker model is normally coherent with properties the method is able
to handle since the latter should be checked against the former, but a tool could also provide an
automatic translation of abstract attacker models into low-level logic that the verification engine
can handle. For instance in the algorithm presented in [35], the Dolev-Yao attacker capabilities
are translated to a set of Horn clauses.

Reconstruction of Traces

When the analysis tool determines that the required property may be violated, the designer
must correct the erroneous part. The verifier should thus be able to rely on the feedback of the
analysis framework to target the part of the design that would need to be redesigned. Since
precisely and automatically determining the erroneous part of the design is currently impossible,
a compromise often found is to provide the user with a trace summarizing the steps that lead to
a state in which the property is violated. On the other side, returning the unsatisfiable core of
a CNF formula would be of little interest for the designer.

5.1.1.2 Soundness of the verification algorithm

Many hardware/software systems (such as the ones presented in section 2.1.3) provide core fea-
tures that are critical either for the proper functioning of the system (such as peripheral manage-
ment), or for its security (e.g., access control, cryptographic primitives). These modules require
strong safety and security guarantees that only formal verification is able to provide. Software
analysis often has to deal with very large programs, which rules complete verification out. Here,
we are concerned with smaller programs that hopefully enable us to mathematically prove that
they are correct with respect to the features they were supposed to provide. Approximations are
thus considered only as far as they do not affect the soundness of the verification.

5.1.1.3 Easy adaptation to hardware modifications

When designing systems composed of hardware and software components, the designer needs to
get fast feedback concerning the effect of hardware modifications. Most verifications of software
targeting embedded systems rely on a manual expression of the hardware model [88,241]. While
finding a generic method that would deal with any hardware description may seem too optimistic,
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we believe that analysis of embedded systems or systems on chip would benefit from some
modularity in terms of hardware models. We will thus evaluate the ability of each method
to verify a system whose hardware is provided as a low-level description.

5.1.2 Successive verification

The traditional approach to hardware/software validation is to express a formal model of the
hardware and use it during the verification of the software [106]. The hardware may also be
proved equivalent to the model, thus ensuring the overall security of the system. We will call
these methods successive verification since the verification takes place in two steps. The two
steps are explicitly or implicitly linked by the designer who provides a formal semantic at the
junction of hardware and software.

For designs where hardware and software are tightly coupled, it may however be difficult to
find an abstraction that would both enable the hardware to be verified, and require a manage-
able modification of a generic software analysis framework to integrate the specificities of the
hardware. We discuss here how these two worlds could be integrated.

5.1.2.1 Expression of the hardware model

We target here designs where hardware and software must be checked together to ensure system-
level properties. There are mainly two classes of such designs: either the hardware was customized
in order to change the way the software was executed, or the hardware to verify does not affect
the core processor but is a peripheral (such as an MMU or a sensor), and the software part is
handling the communication with this peripheral. In the first case, the software analysis tool—
which assumes a particular semantic of the instruction set and the execution engine—would
need to be modified to take into account the specificities of the hardware. In the second case,
a common formal model could be found, and the hardware and the software could be checked
separately against this model. In this case, the hardware specificities do not question the software
abstraction made by traditional verification tools.

To prove that the hardware model—either when it is integrated into the software analysis
framework, or when it is common to the software model—is a correct abstraction of the hardware,
traditional verification of hardware designs could be applied. This verification is mostly done
either by equivalence checking or by model checking. Many industrial and academic tools exist
for this purpose such as Vis [45], NuSMV [69], Incisive! or Formality.2

5.1.2.2 Verification of low-level software

Since we are here interested in both software and architectural vulnerabilities, we would like to
take the compiler out of the trusted computing base. This is particularly true for security-critical
features—such as MMU management or cryptographic primitives—that are typically directly
implemented as machine code. Therefore, we are mainly interested in software verification
tools that can take machine code as input.

Higher-level concepts such as arrays, objects, functions, or types are not available when using
assembly code. Losing such concepts means that we can’t benefit from the semantic of coherent
objects that the designer manually provided. For instance, it is simpler for the analysis to replace
calls to a function by the formal expression that links the output of the function to its inputs
and to prove that the function is indeed equivalent to this formal expression, than to analyze the

Ihttp://wuw.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
2http://www.synopsys.com/Tools/Verification/FormalEquivalence/Pages/Formality.aspx
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function each time it is called in each context. However, we believe working with assembly code
is more representative of the attack scenarios we want to prevent (shellcodes, ROP) and of the
software we want to verify.

In order to verify software at the assembly level, we ideally need a formal semantic of the
instruction set. Such semantics are rare in practice, but progress has been made lately in this
direction [88,106]. Once this formal model has been found, traditional software analysis methods
like model checking and bounded model checking or symbolic execution may be applied.

5.1.2.3 Dealing with hardware customization

Since a designer may want to see the impact of a hardware modification as part of the design
process, the amount of work needed to include this modification in the software verification
framework and to prove the model to be a refinement of the modified hardware should not be
prohibitive.

5.1.3 Unified verification

As disjoint verification of hardware and software naturally suffers from the considerable manual
effort needed for finding a good abstraction that could both be proved to be a refinement of the
hardware and be used as a base for verifying the software, some research work has been done to
verify hardware/software systems as a whole [132,157].

Similarly to successive verification of hardware and software, the methodology here also differs
depending on how tightly the two are coupled.

5.1.3.1 Hardware and software as tasks

For hardware/software systems where the processor is not modified and the verification effort
should focus on some parts of the design that communicate with software through the use of a
simple interface (such as memory mapped port or signals), the duality hardware/software is not
relevant anymore. Conceptually, both hardware and software parts provide abstract functional-
ities that are described in two unrelated languages. It becomes thus possible to verify both at
the same time, but still keep them distinct. As presented in Section 2.2.2.3, a good example of
such verification on loosely coupled hardware and software can be found in [157].

5.1.3.2 Tightly coupled hardware and software

Hardware-based protection against software vulnerabilities often affects how the processor in-
terprets machine code, by detecting policy violation as in [100], or by adding new instructions
as in [67] for instance. In such designs, the processor itself is part of the verification target,
and thus, simultaneous verification of disjoint hardware and software cannot be done as in the
previous section.

Including software as part of the hardware representation

In such cases, we are trying to verify a customized processor implemented in hardware for a
particular piece of software. However, we want to verify both as a whole, that is to say we do not
want to create a formal model of the processor—which would be an intricate manual process.
We cannot prove the software with respect to a generic processor model since our processor
is customized and we have no abstract model for our specific hardware. The abstract concept
of software is thus unusable and program instructions must be considered for analysis in their
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Table 5.1 — Comparison of verification tools.

Tool Security-oriented Type of prop. Soundness HW/SW modelling
NuSMV no CTL,LTL sound abstract model
UPPAAL no TCTL sound abstract model
BLAST yes safety sound software
Vis no CTL sound hardware
KLEE, FIE yes safety sound software
S2E yes safety sound software
ZeBu, Seamless, no — unsound HW/SW

SoC Designer Plus

true, concrete format: binary data. Concretely, this means filling the memory in the hardware
representation with the program in binary format and verifying the combined system as a whole.

5.1.3.3 Proving properties on the whole design

Once software has been integrated into the hardware representation of the design, traditional
hardware verification tools could be used to prove the required property. However, some parts
of the design are controlled by the attacker, typically some part of the memory corresponding
to the procedure arguments could take any value. The value of these bits will affect how the
program executes. For the analysis, this means that a huge number of states will have to be
explored. Even addressing this problem with symbolic model checking would most likely be
difficult. Indeed, symbolic model checking attempts to reduce the state space by finding good
abstractions that would lead to a reasonably small model. In our case, such abstractions would
need to relate software-level objects together, which would have disappeared in the combined
HW /SW system. For instance, let us say we are trying to verify a piece of software where a good
abstraction—one that would make the property provable on the abstract model—would be “the
length of string s is smaller than the value of variable v”. The meaning of s and v, however,
is no longer present at the hardware level, and automatically reconstructing these objects, by
predicate abstraction [70] for instance, would be difficult. Indeed, there is no hardware concept
of what a string is, nor what smaller means. For this reason such a verification scheme would
probably be limited to very small programs.

5.1.4 Adequacy of existing tools

We summarize in Table 5.1 the adequacy of academic and industrial tools to the requirements
described in Section 5.1.1. It is interesting to note that some tools can take abstract models as
input and thus can analyze both hardware and software. However, using these tools requires the
designer to first manually provide an abstract model corresponding to the system to verify. Also
note that ZeBu, Seamless, and SoC Designer Plus were included even if they are emulators and
not formal verification tools.
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Table 5.2 — A ProVerif process and the corresponding Horn clauses.

ProVerif Process Set of Horn Clauses

process
in (ch, a: bitstring);
out (ch, f(a))

mess(ch,a) — mess(ch, f(a))
and attacker(a) — attacker(f(a))
if ch is public.

5.2 SMASHUP

In our approach to HW/SW verification, we looked for a method which had some properties
of the ideal method we described earlier and which could be adapted easily to designs with
customized hardware components. That is to say we were searching a method that could:

e Model a generic processor and instruction set.
e Allow simple modeling of hardware customization.
e Model an attacker and prove security-oriented properties.

e Automatically produce a meaningful result, be it a clear answer if the property is proved
to be true, or a trace if the property can be violated.

5.2.1 ProVerif deductive algorithm

As presented in Section 4.3.1.1, ProVerif [38] is a tool for analyzing protocols. It focuses on
security protocols but the generic language (applied pi-calculus) used for ProVerif specifications
and the simple reasoning of the tool, based on Horn clauses make it a good candidate for a wide
variety of applications [204].

5.2.1.1 Motivations for using ProVerif

Our requirements led us to search for a tool that would work with basic and generic logic and
would target security properties. As ProVerif answered these needs, we chose it despite the fact
that it was originally designed for a different field of applications.

An interesting attacker model

A lot of security properties can be expressed as the secrecy of a particular asset, and such a
property can be natively represented in ProVerif. The tool also enables to query more complex
properties such as authentication or observational equivalence.

These properties are checked against an attacker whose capabilities follow the Dolev-Yao
model. These kind of capabilities are also interesting in many designs, where the various hardware
and software components can be seen as participating in a protocol and the user-controlled
software on the device has full access to the abstract channel they are using.
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A simple reasoning

ProVerif takes as input a description of a protocol in a restricted version of the applied pi-
calculus language. This description is internally translated into Horn clauses that ProVerif uses
for reasoning. Horn clauses are logical formulas of the form:

A\pi—q or q or N\pi — false (5.1)

where p;, g are positive literals. The second formula corresponds to the case where there is
no premise and the third to the case where the disjunctive normal form only contains negative
literals. This simple formulation makes it possible to model how each assembly instruction
impacts the state of the system depending on the environment, and thus, allows for easy modeling
of the effect of hardware modification on software execution.

Trace reconstruction

Another feature of interest in ProVerif is its ability to reconstruct a trace when the queried
property is violated. This trace is given as a succession of actions performed by the attacker
that eventually lead to a violation of the property. The process of reconstructing this trace may
fail (as explained in [9]) due to the approximations done when translating processes in applied
pi-calculus into Horn clauses. However as explained earlier, this incompleteness is unavoidable
as the global problem is undecidable.

5.2.1.2 ProVerif solving algorithm

Our ambition was to prove properties on a relatively small piece of software running on a custom
hardware. Since formally proving the property on a model of the software would mean exploring
the entire state space, and sticking to a realistic model would limit the possibilities for abstraction,
we assumed that our methodology would not scale well. Even though, we believe it may prove
useful for small, central, security-critical software, as it is the case for some hardware-assisted
security solutions such as the architecture proposed in chapter 3.

We briefly present here how ProVerif is able to reason about the specified protocols. This
will help us explain how we exploit it in our method and compare the performance with more
traditional techniques.

Horn clauses and predicates

Protocols that need to be verified by ProVerif are described as multiple processes that commu-
nicate between each other through private or public channels. The attacker can see anything
that goes through public channels, intercept messages, create new ones, and send them on public
channels.

The fact that the attacker knows about the message m is modeled as a predicate attacker(m).
The fact that a message m can be sent on channel ch is modeled as a predicate mess(ch, m).
As stated earlier, ProVerif works with Horn clauses so, for instance, the abilities of the attacker
regarding channels are:

mess(ch,m) A attacker(ch) —  attacker(m)

and attacker(ch) A attacker(m) —  mess(ch,m). (5.2)

Processes are also translated into Horn clauses. For instance a basic process and its translation
are presented in Table 5.2. Note that both express the fact that if the attacker has knowledge
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of a, then she can acquire knowledge of f(a). As it will be explained in the next section, this
simple mechanism enables us to model an instruction-accurate version of a processor.

Clauses unification

Once the protocol has been translated into Horn clauses, these clauses are combined to derive
the total knowledge of the attacker. If the required property is violated during the process, a
trace is computed based on the clauses that have been unified to lead to the violation.

In our method, the way the clauses are unified will determine how the state space of the pro-
gram is explored. Thus more information about the resolution process of ProVerif—as explained
in [35]—is going to be exposed.

The idea behind clause unification is to progressively expand the knowledge of the attacker.
Let us say we have two clauses:

attacker(m) —  attacker(f(m))
(5.3)
and attacker(f(m)) —  attacker(g(m)).
Unifying these two clauses is interesting since it will result in: attacker(m) — attacker(g(m)),
which means that if the attacker has knowledge of any message m, then g(m) can also be known.
By default, ProVerif considers that unifying two clauses is interesting when all the premises of
the first clause are of the form attacker(xz) where x is a variable and when the premise of the
second clause that can be unified with the conclusion of the first—attacker(f(m)) in our previous
example—is not of the form attacker(x). It means that it favors unifications that reduce the
number of premises that are not of the form attacker(x).

By unifying clauses like that, ProVerif eventually reaches a fixed point where no new clause
can be generated. If the required property is the secrecy of a variable z, and eventually no clause
of the form attacker(z) has been derived, this is a proof that the attacker can’t learn the value
of z.

5.2.2 Using ProVerif for simple symbolic execution

We will now present the method we proposed to verify hardware/software systems. This method
enables us to verify systems described as a hardware part (in a language that will be presented)
and a software part described as assembly code.

We show first how we automated the translation of assembly code into a ProVerif model, and
then, how hardware customization was integrated into the model. Finally, we demonstrate the
solving process performed by ProVerif and relate it to a more classical software analysis method.

5.2.2.1 The software part

We model our software in an instruction-accurate way: We express the impact of each instruction
on the state of the system. This semantic enables us to consider attack scenarios and software
designs that are realistic, especially on low-level code: dynamic control-flow graph with indirect
jumps for instance. As we were specifically targeting embedded system verification, we used a
software implementation described in an assembly language for the MSP430 architure which is
common in the embedded system world (and for which soft-cores are freely available 3). We
thus modeled a subset of the MSP430 assembly language, composed only of basic instructions.
For a more general approach, it would be better to use an intermediate representation such as

3https://opencores.org/project, openmsp430
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REIL [97] or the BAP intermediate language [48] and use the already existing front ends to
compile either assembly code or binary code to this intermediate representation.

An instruction at virtual address ¢ is modeled as a process, which is translated by ProVerif
into a Horn clause: state(i, R, MEM) — state(PC’', R', MEM’'), in which PC’ is a program
counter, R and R’ are states of the registers, and M EM and M EM’ states of the memory. PC’,
R, and M EM’ are expressed as functions of R and M EM and model the effect of the instruction
at address i on the state of the memory and registers—for instance PC' = M EM|R][3]].

The state(PC, R, MEM) predicate here would mean that a state of the system is accessi-
ble where the program counter is PC, the registers’ values are R, and the memory is in state
MPEM. This predicate is obviously not defined in ProVerif and we must model it. We could
do this by using a private channel: each message (PC, R, M EM) sent on the private channel
priveh would mean that the state (PC, R, MEM) is accessible. The effect of an instruction at
address ¢ would thus be: mess(privch, (i, R, MEM)) — mess(privch, (PC',R', MEM')). How-
ever, private channels behave differently with respect to trace reconstruction. For instance, when
trying to reconstruct a trace, ProVerif will only allow sending messages on a private channel if a
process is ready to read the message on this channel. Therefore, we chose to use an equivalent ap-
proach with public channels: mess(ch, f(i, R, MEM)) — mess(ch, f(PC',R', MEM')). Where
f and its inverse un__f are private functions (with no explicit definitions) that guarantee that the
fact attacker(f(PC, R, M EM))—which means that the state (PC, R, M EM) is reachable—does
not lead to attacker(R) or attacker(MEM), and reciprocally that the attacker cannot create
f(PC,R,MEM) with any PC, R and M EM. Eventually the corresponding process in applied
pi-calculus is:

process
in (ch, state: bitstring);
let (PC: int, R: registers, MEM: memory)
= un_f(state) in

if PC=i then

out (ch, £f(PC’, R’, MEM’))

This process only models one instruction. To model the entire program, we created one process
per instruction and replicated it—using the ProVerif operator !—so that the instruction could
be invoked many times (in case of loops for instance). We wrote an open-source Python program
named SMASHUP* (Simple Modeling and Attestation of Software and Hardware Using Pro Verif)
that automates the process of translating MSP430 assembly code into a set of such processes.

5.2.2.2 Parallel with symbolic execution

The algorithmic efficiency of ProVerif resides in its ability to derive the complete knowledge of
the attacker with as few clause unifications as possible. The policy used to choose which clauses
to unify will guide the exploration of the program in our context. We’ll show how this works on
a basic example:

0 mov.w #0x0000, r4
10:

1 add r3, r4

2 sub #1, r3

4 Available at https://gitlab.eurecom.fr/Aishuu/smashup
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3 jnz 10
4

As will be explained later, ProVerif has originally no representation for numbers. In order to
simplify the presentation in this report, we will here ignore this fact and use them as intuition
dictates. We will also only consider the first five registers and no memory to shorten the clauses,
use R2 as the zero flag (instead of just one bit), and ignore overflows. For the sake of simplicity
we will use state(PC, R) as a shortcut for mess(ch, f(PC, R)) as was done before. Under these
assumptions, the Horn clauses generated for the instructions would be:

state(0,(R1, R2, R3, R4))

—  state(1, (R1, R2, R3,0))
state(1,(R1, R2, R3, R4))

~  state(2, (R1, R2, R3, R3 + R4))
state(2,(R1, R2,1, R4))

—  state(3,(R1,1,0, R4))

R3#A1 A state(2, (R1, R2, R3, R4)) (5.4)

—  state(3,(R1,0,R3 — 1, R4))
state(3,(R1,0, R3, R4))

—  state(1, (R1,0, R3, R4))

R2#0 A state(3,(R1, R2, R3, R4))
—  state(4, (R1, R2, R3, R4)).

If we allow execution of the routine only from the beginning this would add a clause:
attacker(R1) A attacker(R2) A attacker(R3) (5.5)

Nattacker(R4) — state(0, (R1, R2, R3, R4)).

As mentioned earlier, the solving algorithm of ProVerif will only unify two clauses if the premises
of the first one are all of the form attacker(xz). In our context, this means it will start the
unification with the clause describing how the attacker could call the routine (the last clause
given above). Tts conclusion is of the form state(0,...) so it could only be unified with a clause
with a state(0, ...) premise (the first one). Unifying these two clauses will result in:

attacker(R1) A attacker(R2) A  attacker(R3)

—  state(1, (R1, R2, R3,0)). (5.6)

Once again, this clause is the only one that could be used for unification so it will be unified
with the clause corresponding to instruction 1:

attacker(R1) A attacker(R2) A  attacker(R3)

—  state(2, (R1, R2, R3, R3)). (5.7)

Here, this clause could be unified with either of the two clauses corresponding to instruction 2

so exploration will fork and follow each of the two branches depending on the value of R3:

attacker(R1) —  state(3,(R1,1,0,1)).
attacker(R1) A attacker(R3) A R3#0 (5.8)
—  state(3, (R1,0,R3 — 1, R3)).

We could make a parallel between this behavior and symbolic execution: In symbolic ex-
ecution, input variables that the attacker can control are marked as symbolic and a symbolic
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execution engine executes the program, forwarding and constraining symbolic values along the
different possible paths. When the execution must split according to the value of a symbolic
variable, the constraints on the symbolic value for each path are remembered and two separate
instances of the execution engine continue the analysis.

Our method shares some similarities: Variables controlled by the attacker are used without
giving them concrete values until a conditional instruction—that has been translated into two
clauses—is met. The unification process then follows two different paths where premises have
been added that constrain the value of the variable.

5.2.2.3 The hardware part

The instruction-accurate description of software presented above enables us—to some extent—to
bring hardware customization into the verification process. There are two ways the verifier can
use to describe hardware customizations.

First, we designed SMASHUP in a modular way. Each module would represent a hardware
component, such as an interrupt controller or a MMU. Concretely, each module is described as
a Python class that extends a common interface. Modules can add predicates to the state of the
system (like PC; R or M EM described above) that can be used and updated by instructions.
The effect of the instructions can also be altered by custom hardware by using hooks in some
method of the translation process. For instance, an interrupt controller could add a register to
remember whether interrupts are enabled or disabled. Also, a module can add new instructions
and provide a corresponding implementation for each of them. This implementation describes
how the instruction impacts the state of the system and the knowledge of the attacker. We show
in Listing 5.1 the python class used to express the impact of an interrupt controller on software
verification. The overridden methods state, stateInit and processDecl are hooks used by
smashup at different points during the translation of assembly code to a ProVerif specification.
In particular, processDecl enables the module to add two ProVerif modules (call_interrupt
and return_interrupt) which are used to describe the ability of the attacker to interrupt the
routine and to modify its state before resuming the execution. Also, methods are added for two
instructions so that the module is queried when the translation algorithm needs to handle these
instructions (EINT and DINT).

1 class INT_UNIT (HWModule):

2 def __init__(self):

3 super (INT_UNIT, self).__init__(’INT_UNIT')
4

) self.addInstruction(’EINT’, self._astEINT)
6 self.addInstruction(’DINT’, self._astDINT)
7

8 self.dependancies = ['CPU’]

9

10 @ifInstantiated

11 def state(self, parser):

12 return ’gie: bit’, ’'gie’

13

14 @ifInstantiated

15 def stateInit(self, parser):

16 return ’gie: bit’, ’'gie’

17

18 @ifInstantiated
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def

def

def

processDecl(self, parser, rcount, bitwidth, memrange, stateAll, id):
declarations = []

stateIn = [s[1] for s in stateAll]

stateOutPlusOne = [(s[0], s[2]) for s in stateAll]

+ 7, ’.join(s[1].split(’, ’)[1:1) if s[0] == "CPU’ \

else s[1] for s in stateOutPlusOne]

stateOut = ['r0,

declarations.append(parser.ASTNode( \
’let call_interrupt =\n’ + \

in (ch, enc_state: bitstring);\n’ + \

! let (* + 7, ’.join(stateIn) + ’) = dummydec(enc_state) in\n\n’ + \
’ if gie = ’ + parser.bitrepr[1] + ’ then\n\n’ + \
’ out (ch, (7 + ’, ’.join(stateOut) + ’)).\n’))

declarations.append(parser.ASTNode( \
’let return_interrupt =\n’ + \

in (ch, enc_state: bitstring);\n’ + \

’ let (’+’, ’.join([s.replace(’:’, ’_orig:’) for s in stateIn]) + \
’) = dummydec (enc_state) in\n’ + \
’ in (ch, (" + 7, ’.join([ \
*, ’.join(s[1].split(’, ’)[1:1) if s[0] == ’'CPU’ \
else s[1] for s in stateAll]) + ’));\n\n’ + \
! if gie_orig = ’ + parser.bitrepr[1] + ’ then\n\n’ + \
’ out (ch, dummyenc(’ + ’, ’.join([ \
'N(r®_orig), * + ', ’.join(s[1].split(’, ’)[1:]) if s[0] == ’CPU’ \

else s[1] for s in stateOutPlusOne]) + ’)).\n’))

return [’'call_interrupt’, ’return_interrupt’], declarations

_astEINT(self, parser, args, rcount, bitwidth, memrange, state, id):
state = [s[1] for s in state]

name = 'EINT’

state[id] = parser.bitrepr[1]

return (name, parser.ASTNode (’out (ch, dummyenc(’ + ’, ’.join(state) + ’))’))

_astDINT(self, parser, args, rcount, bitwidth, memrange, state, id):
state = [s[1] for s in state]

name = 'EINT’

state[id] = parser.bitrepr[0]

return (name, parser.ASTNode (’out (ch, dummyenc(’ + ’, ’.join(state) + ’))’))

Listing 5.1 — Python class describing the impact of an interrupt controller on software
verification.

Creating new modules enables to capture a hardware behaviour for a customized hardware
module. However, it requires the designer to concretely model how this new hardware module
will impact software verification. In order to allow hardware customization by non-expert de-
signers, we provide a first set of standard modules (such as an interrupt controller) which enable
SMASHUP’s users to provide a high-level description of the architecture of the hardware by in-
stantiating different modules. Users would then be able to create modules for specific hardware

and deliver them as libraries that could be used by other designers.
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5.2.3 Example

We illustrate the capability of SMASHUP to find vulnerabilities coming from both software and
hardware specificities through an example of a simple system composed of a hardware part and a
software part. This example consists of a hardware and a software model that can be downloaded
together with the SMASHUP tool. The former one is described in Listing 5.2. It only features
an execution core and a standard memory.

1 CPU (

2 width: 4,
3 rcount: 5
4 )

5

6 MEMORY (

7 width: 4,
8 )

9

10 # uncomment the following module to test
11 # interrupts
12 # INT_UNIT ()

Listing 5.2 — Hardware Description of the System.

The software part described in Listing 5.3 shows that a secret (initially stored in register r1)
is written in memory a certain amount of time (controlled by r3). Then the secret is cleared
from all the addresses where it was stored.

1 .section .do_mac.call,"ax"

2 mov.w #0z20000, T4
3 10:

4 cmp r3, ré
5 jeq 11

6 mov.w rl, er4
7 add.w #1, 4
8 jmp 10

9 11:

10 mov.w #02z0000, T4
11 mov.w #0z0000, r1
12 ; uncomment the following instruction to test
13 ; integer overflow

14 B add.w #1, r3
15 12:

16 cmp r3, ré
17 jeq 13

18 mov.w #020000, or4
19 add.w t1, 4
20 jmp 12
21 13:
22 nop

Listing 5.3 — Software Description of the System.

With this description, we can use SMASHUP and ProVerif to assert that the secret is not
leaked:

$ ./smashup.py -o test.pv -s .do_mac.call \

$ --clauses examples/test.s43
$ time proverif test.pv
[...]

Starting query not attacker(secret[])
RESULT not attacker (secret[]) is true.
proverif test.pv 0,22s user 0,00s system

The output of ProVerif matches the expected answer: the secret is not leaked. We can then
modify the system to model the presence of interruptions. In such case, the secret is leaked when
an attacker interrupts the routine just after the secret was written to memory. The memory
range that is cleared after the secret has been written to memory can also be extended by adding
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a software instruction (line 14) to increase the size of the memory range to be cleared by one
unit. In this case, an integer overflow could happen if r3 contains the maximum integer value
and the secret would not be cleared from memory at all. This is confirmed by SMASHUP and
ProVerif:

$ ./smashup.py -o test.pv -s .do_mac.call \
$ --clauses examples/test.s43

$ time proverif test.pv

[...]

Starting query not attacker (secret[])

[

The attacker has the message secret.

A trace has been found.

RESULT not attacker (secret[]) is false.
proverif test.pv 0,27s user 0,00s system

5.3 Limitations and conclusion

5.3.1 Limitations

We present here a few limitations of this method. Some are inherent to the method, some could
be improved in future works.

5.3.1.1 Working with concrete types

For the method to be efficient, the number of instructions generating multiple Horn clauses, and
the number of clauses generated for each of such instruction should remain small. However,
ProVerif has no semantic for concrete types (such as bit vectors or even numbers), and it is up
to the user to model them. But this modeling is not obvious in ProVerif. Indeed, the definition
of functions such as the addition of two bit vectors can be done in two ways.

e Either by constructors that construct new values so it would not be possible to express for
instance that 14+ 0 = 1.

e Or by destructors, which do not allow recursive definition, so we would need to explicitly
give the result for each possible addition. In this case, if we have an instruction add
r2, r3 where r2 and r3 are controlled by the attacker and can take either of n and m
values respectively, this instruction will be translated into n.m Horn clauses which will
considerably increase the complexity of the analysis.

An efficient representation of numbers should enable a translation of one instruction into only
one clause (except for conditional instructions). We could imagine modifying ProVerif to add
a new type of function operating over literals. This function would be ignored by the core
algorithm of ProVerif. When trying to unify clauses, instead of simply looking for clauses with
a conclusion and a premise that a substitution could make equal, ProVerif would call an SMT
solver (as it is done by symbolic execution engines). If the solver could find an assignment of the
symbolic variables that enables unification, it would add the constraint to the premises of the
newly generated clause.

Implementing this modification could be part of future work. We believe it would benefit
other applications, for instance, protocols that compute arithmetic expressions.

Another solution would be to find a language that shares some of the expected features
presented in Section 5.2.1.1: an interesting attacker model, a simple reasoning and trace recon-
struction. The closest language that comes to our mind is Prolog [73]. Like ProVerif, Prolog
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enables users to provide clauses to relate predicates. Unlike ProVerif, it is able to work with
numbers and to deal with recursive definition of compound terms. Both of these would be inter-
esting for our setup. However, Prolog does not target specifically security properties. As such,
trace reconstruction and security properties—not only confidentiality, but also authenticity—
may need to be pre-processed to fit our purpose. Another important difference between ProVerif
and Prolog is that the former tries to unify clauses to expand the knowledge of the attacker,
whereas the latter unifies clauses that can result in the required property. This means that in a
simple setup, Prolog would start unifying clauses from the end of the software. If the program
contains an indirect jump which can only point to two locations, a backward analysis of the
program would need to consider at each step that the indirect jump could potentially target the
current instruction. Evaluating the consequence of this process on performance is left for future
work.

5.3.1.2 Working with machine code

Our goal was to be able to model complex attack scenarios that would take advantage of the
concrete representation of data and code. While having an instruction-accurate model is a first
step, we are still not working on a sufficiently low level to model attacks such as return-oriented
programming, which would require a representation that preserves the dual semantic of bit
vectors and instructions.

5.3.1.3 Reconstructing attack traces

As ProVerif is able to output a trace leading to a violation of a required property, we could
automate the process of translating such a trace into a succession of software-related events that
would make more sense in our context. This could be valuable for the designer to distinguish
between valid attacks and spurious traces.

5.3.2 Comparison with other similar projects

Formal verification of hardware-assisted security solutions has been performed and presented in
various publications. We present in this section some of the ones that are most similar to our
approach.

In [51], Cabodi et al. show how formal verification can be performed on various hardware-
assisted remote attestation schemes. To do this, an existing CPU model is leveraged and
hardware-specific clauses are added to this model to express the hardware specificities. Then,
taint propagation verification is performed on this model using the VIS and PdTrav model check-
ers. This approach is close to ours as it gives a formal description of how hardware specificities
impact the proof of the whole system. However, this work focus on a specific system design and
the hardware model is manually modified. Contrary to our translation algorithm, the integration
of hardware specificities into the model of the system based on a higher-level description of the
hardware is not automated.

In [93], Delaune et al. model the functionalities offered by a TPM as first-order Horn clauses
and show that a key sealed by the TPM cannot be recovered even for unbounded reboots and
PCR extends. Since the interaction between the hardware (TPM) and the rest of the world
is clearly defined (as functions to extend PCRs for instance), it is possible to manually give a
formal definition of the hardware. As the previous work, it does not focus on providing an au-
tomated translation from high-level hardware model to formal models impacting the verification
algorithm.
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In [157], Kroening et al. present a translation algorithm that takes as input a description
of a system using SystemC and issues labeled Kripke structures suitable for verification. The
description of the system contains hardware and software modules and the transformation algo-
rithm compose these modules by considering each possible synchronisation scenario. Contrary
to our method, this transformation algorithm is able to work on a low-level hardware descrip-
tion (in SystemC). However, the composition of hardware and software modules rely on thread
synchronisation points. These synchronisation points are the way hardware and software can
communicate so there is no possibility to described and verify more tightly-coupled systems (for
instance when a hardware module modify the execution of a software instruction).

5.3.3 Conclusion

The presented method targets formal verification of security properties on hardware/software
designs. While the software part of the system is expressed in an implementation language, the
hardware part is described as a higher-level model. This modeling language has been created
to be modular and thus enable verifying systems presenting some hardware customization. This
trade-off between hardware expressiveness, efficiency of the verification and manual interaction
to guide the proof—by providing new hardware classes here—is suitable for verifying hardware-
assisted security solutions where hardware and software components cannot be modeled as loosely
interacting actors.
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Chapter 6

Conclusion and perspectives

In this thesis we were interested in the role of automated formal security verification in the context
of embedded system design. We have seen that the terms of this problem were very different
depending on how hardware and software components interacted. Indeed, one characteristic of
design for embedded system is that the constraints in terms of size, power consumption, reliability
often require to use customized hardware, or even develop new hardware components. These
customized hardware components may deeply affect how software executes and, therefore, how
it should be analyzed.

As discussed in the introduction, a formal proof of software is always done with respect to a
model of the environment and of a hardware which is an abstract representation of the hardware
that would be executing the software. To formally verify a design described as a set of software
and hardware components, it is thus possible to use existing software—or other high-level—
verification tools only when the hardware components do not invalidate the proof performed
on the software components. This consideration enabled us to address the problem of formal
verification of embedded systems in two approaches:

e How is it possible to integrate automated formal security verification to the process of
embedded system design when the high-level functionalities can be partitioned as hardware
and software components?

e How is it possible to provide an automated formal verification method that would accept a
description of hardware customization to verify a piece of software running on this modified
hardware?

6.1 Contributions

Integrating formal security verification to embedded system design models

The specificity of embedded system hardware/software partitioning with respect to formal verifi-
cation is also relevant from a high-level description. Indeed when a system is described in a PIM
as abstract interacting components, the mapping of these high-level components to a physical
architecture (described in a PSM) affects how the communication channels will be implemented.
The channel could be implemented as an inter-process communication channel (queue, shared
memory) if the two communicating components are mapped on the same physical processing
unit, or it could be implemented as a physical bus if the components are mapped to different
physical elements.
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This difference in implementation entails a difference in terms of attacker model. A software
channel may be considered secure—meaning that an attacker would not be able to spy on this
channel—if the software implementing it (e.g., OS) is trusted. On the opposite, a software-
implemented channel may be untrusted if it is implemented by an untrusted privileged software.
Likewise, physical buses can be considered trusted or untrusted depending on whether an attacker
could physically access it or not. The mapping of high-level functional elements to physical
components therefore impacts the security of the whole system.

Security is thus—as safety or performance—a criteria that should be evaluated by an embed-
ded system designer during system conception. This is why automated formal security verifica-
tion is valuable during the conception phase to systematically and reliably evaluate the impact of
early development choices made by an embedded system designer. Integrating formal verification
to the design process of embedded systems thus appears to be an essential step toward secure
embedded system design.

In chapter 4, we have proposed to leverage an existing embedded system modeling language
featuring security artifacts to perform automated formal verification during the partitioning and
software design phase. The design models are used to perform security, safety and performance
analysis, thus minimizing the manual work needed to perform formal verification.

The algorithm implemented translates these design models into a specification suitable to be
verified by the ProVerif tool. This translation is automated to enable system designers to perform
formal verification with little specific knowledge. The verification results are backtraced to the
design diagrams and a trace is provided when available, which helps designers in debugging and
correcting their models.

Formal verification of tightly coupled hardware and software

When the hardware description modifies how the software is interpreted, a general-purpose model
of the hardware cannot be assumed by the verification tool anymore. In order to enable hardware
customization to be taken into account in the formal proof of the whole, the verification tool
needs to be adapted to fit the hardware. This adaptation can be either static (once for all)
or dynamic. An example of static adaptation would be to port a software verification tool to
support another architecture. In this case, the tool is manually modified so that it takes the
specificities of another hardware architecture.

In the case of embedded system design, the problem of formally verifying a system does
not (only) come from the different processor architectures involved. The difficulties to verify
such hardware/software systems are due to the amount of hardware customization available
to the designer. This customization can take the form either of architecture customization
or components customization. The hardware model that should be assumed by the software
verification tool is dynamically evolving as the system is being designed.

In chapter 5, we have presented a translation algorithm which enables the designer to describe
her system in the form of a software implementation and of a hardware architecture and transform
it to a ProVerif specification suitable for formal verification. The hardware architecture can be
customized to affect how the translation algorithm operates and thus how the software part will
be verified.

6.2 Perspectives
The work presented here opens up perspectives for future work concerning the formal analysis of

security properties of embedded systems. Some of these perspectives are generic and some are
specific to the three domains that were explored during this thesis.
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6.2.1 Environment for the security analysis of communicating systems

Articulation of the verification techniques

In this thesis, we have shown how to formally verify security properties on high-level models of
embedded systems. We have also proposed a method to analyze tightly coupled hardware and
software by relying on a low-level description of software. One of the perspectives opened by our
contributions is thus to work on how these different verification methods could articulate. In
particular, how is it possible to link security properties on high-level models to security properties
on lower-level implementation, be it hardware/software system as presented in chapter 5 or
traditional hardware or software implementation.

To do this, one would need to first detail the properties that are assumed by the high-level
models. An example of such a property would be that all computations made internally by a
component are trusted to be private and authentic. In order to provide a coherent proof of
the design, verifying that this property holds for the refined implementations of the components
would be valuable. In order to verify these properties, other formal verification methods could
be used: either automated verification (model checking, symbolic execution) or partly manual
verification with interactive theorem provers. This could be integrated to the TTool modeling and
verification tool by automatically generating proof objectives or by including symbolic execution
properties to automatically generated prototypes.

6.2.2 Trusted path on Intel SGX

Formally verifying the trusted path design

In section 4.3.2, we have presented a formal proof of the high-level protocol used for key exchange
in the architecture proposed for trusted path. While this proof is interesting as it guarantees
the confidentiality of a message sent by the enclave with the established key, the proof does not
guarantee the security of the whole system. Proving that the policy enforcement implemented
in the DMA remapping unit does prevent the OS from accessing enclave pages would be another
interesting case of security verification of a hardware/software system.

As Intel SGX does not considerably affect how most of the machine instructions behave (apart
from memory access control), it should be possible to model most of the system with SysML-
Sec diagrams and perform formal verification according to the method presented in chapter 4.
However, SysML-Sec currently lacks the ability to directly model tables, which would make
modeling I/O page tables harder. As ProVerif has introduced capabilities to model tables,
working on how these tables can be modeled on high-level design diagrams would be valuable.

Performance evaluation of the proposed solution

In chapter 3, we exposed various scenarios to progressively build a secure architectural solution
to the problem of trusted path in an Intel SGX architecture. While some of these scenarios
would require hardware modifications to the Intel SGX architecture and are thus difficult for us
to implement, most could be implemented with existing components (like an Intel SGX enabled
processor) and FPGAs.

Implementing them would enable to run benchmark tests to evaluate the performance of
establishing an application—peripheral secure channel. We also expect that the performance
would vary depending on the communication pattern of the application (streaming or through
bursts, large contiguous memory chunks or small data packets). Evaluating these scenarios
against different kind of application (HW accelerator, GPU, input controller) would be interesting
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too. Note that a first estimation of the performance could be made with dedicated tools (the
one proposed by TTool for instance).

6.2.3 Formal security analysis from design diagrams

Simplifying semantics of security properties

To enable system designers to quickly perform formal verification on design models, the ability
to simply express expected security properties is essential. While ProVerif enables us to express
some security properties straight-forwardly, some have a semantics that is hard to grasp for
untrained designer.

The best example of this is the authenticity property. Intuitively, a received message is said
to be authentic if it was crafted by the expected sender at the expected time. In ProVerif an
authenticity property can thus be expressed as a logical implication: if message m was received
on state r then sometimes before, m was sent on state s. In SysML-Sec, it is possible to express
an authenticity property to verify as a 4-uple containing;:

e the state s of a state machine of a block,
e the attribute m; that holds m in state s,
e the state r and

e the attribute mso that holds m in state r.

Let us imagine that a designer is modeling a situation where a client and a server application
are exchanging messages. The server has initially no knowledge about the client it is going to
talk to. At the start of the protocol the client and the server exchange a key to protect their
communication. Then a first secret message is sent by the client and received by the server. The
designer would be interested in proving that (intuitively) once a key has been shared, an attacker
is not able to impersonate the client. Modeling this property is not obvious. Indeed, a first idea
would be to use the authenticity property as previously described. However, since the server
accepts communication requests from anyone, the message received by the server at the end of
the key exchange protocol does not necessarily come from the client. In particular, the attacker
could contact the server as a genuine client while this would not be considered as a vulnerability
of the protocol.

Working on how security properties can be intuitively expressed by the designers to efficiently
convey their expectations would be an interesting work that was not addressed during this thesis
and is left for future work.

Improving reconstruction of traces

Formal verification of a security property is valuable to a designer as it enables her to correct
a vulnerable design. As such, the results issued by the verification method would preferably
help the designer in precisely pinpointing and understanding the origin of a vulnerability. As
mentioned in chapter 4, we have implemented a translation algorithm to provide traces on design
diagrams based on the output of ProVerif.

However, traces are complicated by the artifacts added during the SysML-Sec-to-ProVerif
translation and by the approximation made by ProVerif. A simple example of that is: when a
property may be proved false by a trace where component a receives a message m from component
b, ProVerif will generate two steps. In the first step, the attacker receives m from b and in the
second step, the attacker sends m to a. The attacker will thus appear in the trace while its
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action is not needed. Conversely, if the trace relies on the fact that a may receive m twice,
then the attacker will have to be present to replay the message m. This is just an example of
why translating ProVerif traces back to high-level design diagrams is non obvious. Note that
while these traces may confuse a designer who would not be familiar with the translation and
verification algorithms, they are valid attack traces.

Exploring other verification back-ends

While ProVerif was a suitable tool for our purpose (ability to model cryptographic primitives,
attacker model, channel semantics), its inability to work with concrete types (such as bit vectors)
limits the extent of SysML-Sec features that can be taken into account by the proof. It would
thus be interesting to either

e add to ProVerif the ability to work with concrete types or
e explore other back-ends for the verification of security properties.

In the first case, it would probably be possible to modify the clauses unification algorithm
implemented by ProVerif to rely on a theory-specific solver. This would be both beneficial
to verification of SysML-Sec diagrams and to direct verification of pi-calculus cryptographic
protocols using concrete types.

In the second case, other verification languages and other verification tools could be interesting
for our purpose. Such a language could for instance be Prolog, which enables to work with
concrete types. However, Prolog is not specifically targeting security properties and so the
generation of attacker clauses and of security properties would need to be manually implemented.

6.2.4 Formal verification of tightly coupled hardware and software

Other verification algorithms

Likewise, SMASHUP suffers from the inability of ProVerif to deal with concrete types. Also, while
the simplicity of the ProVerif specification language is suitable to model specificities introduced by
customized hardware, it does not originally target software verification. It would be interesting,
from a performance point of view to evaluate other verification methods specifically targeting
software implementations. One such example would be symbolic execution.

In order to include customized hardware specificities to the verification algorithm, an existing
software verification tool would need to be modified to consider hardware specificities when
verifying software. As we did with SMASHUP, a hardware description language would need to
be defined (or the one we defined could be reused) and the interface between this language and
the verification tool would need to be implemented.

Expressiveness of the hardware description language

SMASHUP hardware description language is a high-level description of an architecture composed
of parametrizable modules. While this enables to model some hardware customization, it would
be beneficial to rely on a lower-level description of the hardware. There are two reasons why:

e Low-level description languages enable to model highly customized designs.

e It is more difficult to—formally or intuitively—verify that an implementation is conform
to a high-level model than to a lower-level implementation.
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We do not believe that the hardware description language could be as low-level as traditional
register transfer languages (verilog, VHDL or even SystemC when it is used as a hardware
description language) as expressing how the hardware modifications impact software verification
would probably be too difficult. Nonetheless, a lower-level description of the hardware would
increase the confidence the designer can put in the overall proof.

Verification of the hardware

Last but not least, it could be interesting to study how this verification method could articulate
with a hardware formal verification technique. Indeed, while integrating the hardware customized
architecture to the verification of software is valuable to enable designer to quickly see the
impact of hardware modification on security, it does not cover a system down to a low-level
implementation. The high-level hardware description model assumes some properties on the
hardware modules (reflected by how they affect software verification) but there is no proof that
the low-level implementation will comply to these abstract properties.

This proof could thus be extended by verifying that the hardware implementation is a refine-
ment of the high-level model. The higher-level the hardware description model, the harder this
refinement proof would be. Working on how formal hardware verification method can articulate
with the hardware description language is therefore another interesting question that is left for
future work.
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Appendix A

Proof of correctness of the
SysML-Sec to ProVerif translation
algorithm

We give in this appendix a formal proof of Theorem 1.

A.1 Objective

To simplify the presentation we say that—given the parallel composition of a SysML-Sec design
C and the ProVerif process Py resulting from the translation of C through the algorithm formally
described in this chapter—7p, is a trace of P if it is a trace of Fy from Sy where S is the set
containing the names of all channels used in input and output actions in C (we do not consider
private channels). The notations C, Sy and Py will be used in the proof and they will always keep
this meaning. Also, we will use the notations introduced during the presentation of the translation
algorithm. In particular, &, is the set which contains all the states of all the blocks of the design
which are roots of a basic block (for instance in Figure 4.6, the roots of the basic blocks are the
initial state, sg and s7). Note also that if o = {(z1, M1), ..., (xn, M,)} is a substitution and P a
process, we note Po the result of the substitution applied to P: Po = P{M;/x1,...., My, /x,}.
The essence of the proof is to show that Vn € N the following property H,, holds:

Property 1 H, : For any trace of C of length n
Te =N1,21,K1,00 = ... = Ny, 2, Knyon
Jk € N and there exists a trace of Py
T, =&1,P1,81 — .. = &k, Pr,Sk

such that
o & =8y, Pr ={FP} and &1 = So,
o N, C &
o’Pk:U {Mgl? } U U { [s]°on }
q€€, SES,
o IC,, C Sk
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APPENDIX A. PROOF OF CORRECTNESS OF THE SYSML-SEC TO PROVERIF TRANSLATION
ALGORITHM

A.2 Proof

We show this property by induction on the length of the trace n.

A.2.1 Base case

First we show that Hy holds. The main process Py is defined on page 99 as:

Maing (D) = ( @ < @ "new a;" @ "in(chctrl, nonce);

beblock(D) a€catt(b)

out (chctrl7 tok(token_]L(qo), nonce, args)) ") )

"q€$v (" ! procIabeI_]L(q)")

If we apply the reduction rule Red Par (see the definition on page 97) once for each ¢ € &,
we get a trace:

81,7)1,81 RedPar RedPar 51, U {][[qﬂp}

qeEy

U { EB ( @ "new a;" @ "in(chctrl, nonce);

beblock(D) “a€catt(b)
out (chctrl, tok (token_IL(go), nonce, ?aeatt(b))) "> }7
S
From here on, we will use the notation
— &E,P,S

to mean that the configuration £,P,S can be reduced from the last presented step by applying
one or more reduction rules. The reduction rules that need to be applied will be explicitly stated
at each step.

The rule Red Repl is then applied once for each b € block(D) to the process created from the
initial state of b, i.e., [qo(b)]?. We obtain:

&, J{mry v U {lo®}

q€E,y beblock(D)

U { D (%"newa;--@--in@hctrl, nonce)

beblock(D) “a€catt(b)
out (chctrl, tok (token_L(go), nonce, ?“eatt(b)n ") } ,
S1

For each block b € block(D), several reduction rules are applied sequentially in the following
order:

e the rule Red Restr is applied for each a € att(d),
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e the rule Red Restr is applied for the nonce of [qo(b)]?,
e the rule Red QOut is applied to the out of the nonce that was just restricted,

e the rule Red In is applied so that the name nonce is replaced by the name that was extracted
from the other process,

e the rules Red Out and Red In are again applied to pass the token,

e the rule Red Let! is applied to [go]P to remove the token function and to test equality of
the label of the process and of the nonce.

—& U U ate) v &,

beblock(D)
U {Mad”} v U {lw®]},
q€EE,y beblock(D)
S U &

Where &’ contains all nonces created by the processes and S’ contains all these nonces and all
the tokens exchanged.
All traces of C start from the state:

( U et , U {eo®}, 0, Id)

beblock(D) beblock(D)

where Id is the identity function.
So the trace that was just constructed verifies Hy.

A.2.2 Induction step
Let now n € N and suppose H,,. Let 7¢ be a trace of C of length n + 1:

721 :N1,21,]C1,0'1 — . Nnaznalcnvo—n
By H,,, 3k € N and there exists a trace of Py

TP0:51,P1,51 — . = gk,Pk,Sk

such that
o Nn C &
e Pe=J {Ma*} v U {[s]°0on }
qe&, SEX,
o I, C Sk

By definition of C, the transition N,,, %, Kpn,0n — Nut1, Xnt1,Knt1,0ne1 can only be of
two types:

e cither it corresponds to atkyew, t0 atkpyunction Or to a transition from the state machine of
a block be B

e or it corresponds to two transitions in the original state machines: one bearing an input
action (of a block or atk;,) and one bearing an output action (of a block or atk,y:)-
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A.2.2.1 One transition was triggered

In the first case, there are three sub-cases: the transition in C corresponds to either atkyeq, to
atk function OF to a transition in the state machine of a block.

Sub-case 1: atk,cy

If the transition corresponds to atk,.., then this means that the attacker has created a new
name a. By definition, we have:

o Nop1 = NoU{a)
e Xni1 =X,
o Kni1 =K, U{a}
® Optl1 =O0n

By applying the rule Red New to the current state &, Py, Sk we obtain & U {a}, Pk, S U {a}.
Note that:

e Since N,, C &, we have N, 11 C Epr1 = E U {a}

o Pii1 =Py = U {Mal” } U U { [s]°0n+1 }  (since Bpq1 =3, and oyq1 = 03)

qeéy, SEXn41

e Since K,, C Sk, we have K41 C Sky1 = Sk U {a}

Sub-case 2: atkjunction

In the second sub-case, the transition corresponds to atkfynction. The attacker has applied a
function f to known terms My, ..., M,,. We have:

e Nup1 =N,
e Y, 11 =%,
e K1 =K, U {f(Ml7 ...7Mm)}
® Ont1 =0n

The function can be either a constructor or a destructor. In both cases it is possible to construct
a trace which guarantees the expected properties by applying respectively the rules Red Constr
or Red Destr.

Sub-case 3: Transition in the state machine of a block

In the third sub-case, 3b € block(D) such that the transition in C corresponds to a transition in
b. Let us call this transition e. If ,, = (s}, ..., s7") then Ji € [1,m], s!, = source(e). In this case
we have X, 11 = (shq,....,s0) and Vj € [I,m], j #i = s} ., =s) and s, = target(e).
It should also be noted that since s}, is the source of an edge, it is not the final state of its state
machine. Finally, since only one transition was triggered, it means that the action on the edge
is not an in or out action. This transition will thus not increase the knowledge of the attacker:

’Cn+1 = ICn-

142



APPENDIX A. PROOF OF CORRECTNESS OF THE SYSML-SEC TO PROVERIF TRANSLATION
ALGORITHM

We have Pj, = U {Wq"} U U { [s.]°0n }. We apply the rule Red Event to
qEE, j€E[1,m]
[si]°c,, which yields a trace to a configuration where [si]°c, has been reduced to either
[si,e]ton if UniqueOut(s?) or [si]™0,, otherwise.
If 5! has multiple outgoing transitions, we apply for each ¢/ € Qut(s?,) the rules Red Restr
and Red Out to [s!]™0,. We have then a trace of Py:

51,7)1,81 — ... = gk,Pk,Sk — ...

- & U U {xe/},

e’eOul(si)

U {mwry v U {0k}

q€Ey JEll,m],j#i

U {"in(chctrl,c);" @ ("if C= Ter then"@[[Siwe/]]tUn)}v

e’coul(si)

Sk U U {xe/}

e’ cOul(si)

We then apply the rule Red In to substitute ¢ with z., then the rule Red Let2 for each ¢’ # ¢
and finally the rule Red Letl. Then 3k’ € N such that

— gk’>
U {Mq*} U U { [s3)P0n } U {[s,.€el'on},
qEE, ]ElI]-,m]]J;él
Sk

with & C & and Sy C Skr- Note that this result is true also if UniqueOut(s?)).

If the guard on e was not empty, then its result for the current value of the attributes will
evaluate to true as the transition e was triggered in the valid trace T¢. This means that the rule
Red Let! can be applied to consume the guard. We obtain then:

— gk:’u
U {Mar} v U {5000 } U {lsie]onl,
qEE, F€[1,m],j#i
Swr

We now need to consume the action. The reduction rule to apply depends on the action:
o If action(e) = x := exp then exp is either

— the application of a destructor to attributes g(ai, ..., a;),

— the application of a constructor to attributes f(a,...,a;) or

— the affectation of the value of an attribute a.
If we consider the simple destructor M — M, these three cases can be grouped under
a common case of a destructor applied to terms which can be either an attribute or a
constructor applied to attributes. Moreover, since the transition e was triggered, it means

that the eventual destructors present in exp could be reduced (there was a term M such
that g(ai,...,a;)o, — M). In the last two cases, M respectively equals f(a1,...,a;)on
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and o, (a). M is a term over the elements of N,, and after the transition the attribute z
recieves the value M so 0,41 = 0, {M/x}. We can apply the rule Red Let! and obtain:

- gk/a
U {mar} v U {0} U {Ttarget(e)]on{M/x}},
qe€y Jelt,m].j#
Sp

Moreover, since all blocks manipulate disjoints sets of attributes, we have
vielm], j#i = [[SMSUTL = [[5514-1}]5‘% = [5i+1ﬂs‘7n+1
We also have NV,,;1 =N, C &

e If action(e) = wv.x then we have 0,11 = 0, and N1 = N, U {z}. If we apply the rule
Red Restr, we obtain:

— & U {SL’},
U ("} v U {si00n } U {[target(e)]°on},
q€EE, JE[1,m],j#1
Sy
Since N, C & C Exr, we have Ny C & U {z}

e If action(e) = ¢, nothing needs to be done.

In all of these cases, we have shown that 3k” € N and there is a trace of Py

- &, '
U (P} v U AEalown } U {[shalonn},
q€EE, JE[1,m],j#t
Sk”

with Nn+1 C & and K1 C Sk//..
If Uniqueln(s}, 1), [s},41]° = [$},41]° so we have found a trace with the expected properties.
Otherwise, s}, ; € &,

— gku,
U {Mar}t v U Al
q€E, jell,m],ji
U {"in(chctrl, nonce); out (chctrl,tok(token_]L(sle), nonce, 7“€att(b)an+1)) ."},
Sk)”

We apply the rule Red Repl to [ ]P.

We apply the rule Red Restr to consume the nonce created by [s?,,,]".

We apply the rules Red Out and Red In to transmit the nonce.

We apply the rules Red Out and Red In to transmit the token.

e The rule Red Letl is applied to [s’_,]? to remove the token function and to test equality
of the label of the process and of the nonce.
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Eventually we obtain (k" € N):

— gk///7
U {al*} U U { [s]°0ns1 },
qe&, SEX 41
Sk’”

with Nn+1 C &k C Ep and IC7L+1 C S C Sprr.

A.2.2.2 Two transition were triggered

In the second case where two transitions are triggered simultaneously, the proof is mostly identi-
cal. The difference lies in the fact that for one induction step, both transitions must be considered
and that the Red In and Red Out rules need to be applied to consume the actions. This concludes
the proof of H,, for all n € N.

A.3 Conclusion

Let C be the parallel composition of a SysML-Sec design and P, be its translation in ProVerif
language. Let a be a non-confidential attribute of C. By definition, there exists a trace of length
n

%:vazlvlcl,al — . NnaEnaICn707L
such that a € KC;;. According to H,,, there is a trace of P

TP0:51,P1,51 — . = 5k,7)k,5k

such that K,, C Sk. So a € Si and thus a is not confidential in the ProVerif specification.
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