
Gaussian Processes

Maurizio Filippone

EURECOM, Sophia Antipolis, France

February, 9th, 2017

Maurizio Filippone Gaussian Processes

EURECOM

Research Center in the French Riviera

Maurizio Filippone Gaussian Processes

Suggested readings

Gaussian Processes for Machine Learning
Carl E. Rasmussen and Christopher K. I. Williams

Pattern Recognition and Machine Learning
C. Bishop

Maurizio Filippone Gaussian Processes

Outline

Motivation – Examples
Introduction to Gaussian Processes

Weight space view
Function space view

Challenges
Modern Gaussian Processes

Maurizio Filippone Gaussian Processes

Part I

Motivation

Maurizio Filippone Gaussian Processes

Motivation
Quantification of Uncertainty with Expensive Models

Climate modeling

Kennedy and O’Hagan, RSS-B, 2001

Maurizio Filippone Gaussian Processes

Motivation
Quantification of Uncertainty with Expensive Models

Earthquake modeling

Kennedy and O’Hagan, RSS-B, 2001

Maurizio Filippone Gaussian Processes

Motivation
Quantification of Uncertainty with No Models

Classification of neurodegenerative diseases

Filippone et al., AoAS, 2012

Maurizio Filippone Gaussian Processes

Motivation
Quantification of Uncertainty with No Models

Coal mining disaster data

1860 1880 1900 1920 1940 1960
0

1

2

time (years)

ra
te

VB+Gaussian

VB+MCMC

MCMC

Hensman, Matthews, Filippone, Ghahramani, NIPS, 2015

Maurizio Filippone Gaussian Processes

Motivation
Quantification of Uncertainty with No Models

Regression example

−
3

−
2

−
1

0
1

2
3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
3

−
2

−
1

0
1

2
3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Maurizio Filippone Gaussian Processes

A Unified Framework

A model might be expensive to simulate/inaccurate
Emulate model/discrepancy using a surrogate

A model might not even be available
Replace it with a flexible model

Gaussian processes for Accurate Quantification of
Uncertainty

Maurizio Filippone Gaussian Processes

A Unified Framework

A model might be expensive to simulate/inaccurate
Emulate model/discrepancy using a surrogate

A model might not even be available
Replace it with a flexible model

Gaussian processes for Accurate Quantification of
Uncertainty

Maurizio Filippone Gaussian Processes

A Unified Framework

A model might be expensive to simulate/inaccurate
Emulate model/discrepancy using a surrogate

A model might not even be available
Replace it with a flexible model

Gaussian processes for Accurate Quantification of
Uncertainty

Maurizio Filippone Gaussian Processes

Part II

Gaussian Processes

Maurizio Filippone Gaussian Processes

Gaussian Processes

Gaussian Processes can be explained in two ways
Weight Space View

Bayesian linear regression with infinite basis functions
Function Space View

Defined as priors over functions

Maurizio Filippone Gaussian Processes

Gaussian Processes

Gaussian Processes can be explained in two ways
Weight Space View

Bayesian linear regression with infinite basis functions
Function Space View

Defined as priors over functions

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression

Modeling observations as noisy realizations of a linear
combination of the features:

p(y|w,X, σ2) = N (Xw, σ2I)

Gaussian prior over model parameters:

p(w) = N (0,S)

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression

Modeling observations as noisy realizations of a linear
combination of the features:

p(y|w,X, σ2) = N (Xw, σ2I)

Gaussian prior over model parameters:

p(w) = N (0,S)

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression

Bayes rule:

p(w|X, y) =
p(y|X,w)p(w)

p(y|X)

Posterior density: p(w|X, y)

Distribution over parameters after observing data
Likelihood : p(y|X,w)

Measure of “fitness”
Prior density: p(w)

Anything we know about parameters before we see any data
Marginal likelihood: p(y|X)

It is a normalization constant – ensures
∫
p(w|X, y) dw = 1.

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression

Bayes rule:

p(w|X, y) =
p(y|X,w)p(w)

p(y|X)

Posterior density: p(w|X, y)

Distribution over parameters after observing data

Likelihood : p(y|X,w)

Measure of “fitness”
Prior density: p(w)

Anything we know about parameters before we see any data
Marginal likelihood: p(y|X)

It is a normalization constant – ensures
∫
p(w|X, y) dw = 1.

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression

Bayes rule:

p(w|X, y) =
p(y|X,w)p(w)

p(y|X)

Posterior density: p(w|X, y)

Distribution over parameters after observing data
Likelihood : p(y|X,w)

Measure of “fitness”

Prior density: p(w)

Anything we know about parameters before we see any data
Marginal likelihood: p(y|X)

It is a normalization constant – ensures
∫
p(w|X, y) dw = 1.

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression

Bayes rule:

p(w|X, y) =
p(y|X,w)p(w)

p(y|X)

Posterior density: p(w|X, y)

Distribution over parameters after observing data
Likelihood : p(y|X,w)

Measure of “fitness”
Prior density: p(w)

Anything we know about parameters before we see any data

Marginal likelihood: p(y|X)

It is a normalization constant – ensures
∫
p(w|X, y) dw = 1.

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression

Bayes rule:

p(w|X, y) =
p(y|X,w)p(w)

p(y|X)

Posterior density: p(w|X, y)

Distribution over parameters after observing data
Likelihood : p(y|X,w)

Measure of “fitness”
Prior density: p(w)

Anything we know about parameters before we see any data
Marginal likelihood: p(y|X)

It is a normalization constant – ensures
∫
p(w|X, y) dw = 1.

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression - Finding posterior parameters

Ignoring normalizing constants, the posterior is:

p(w|X, y, σ2) ∝ exp
{
−1
2

(w − µ)TΣ−1(w − µ)

}

= exp
{
−1
2

(wTΣ−1w − 2wTΣ−1µ+ µTΣ−1µ)

}

∝ exp
{
−1
2

(wTΣ−1w − 2wTΣ−1µ)

}

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression - Finding posterior parameters

Ignoring non-w terms, the prior multiplied by the likelihood is:

p(y|w,X, σ2)

∝ exp
{
− 1
2σ2 (y − Xw)T(y − Xw)

}
exp
{
−1
2
wTS−1w

}

∝ exp
{
−1
2

(
wT
[
1
σ2X

TX + S−1
]
w − 2

σ2w
TXTy

)}

Posterior (from previous slide):

∝ exp
{
−1
2

(wTΣ−1w − 2wTΣ−1µ)

}

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression - Finding posterior parameters

Equate individual terms on each side.
Covariance:

wTΣ−1w = wT
[
1
σ2X

TX + S−1
]
w

Σ =

(
1
σ2X

TX + S−1
)−1

Mean:

2wTΣ−1µ =
2
σ2w

TXTy

µ =
1
σ2ΣX

Ty

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression

Posterior must be Gaussian

p(w|X, y, σ2) = N (µ,Σ)

Covariance:

Σ =

(
1
σ2X

TX + S−1
)−1

Mean:
µ =

1
σ2ΣX

Ty

Predictions – same tedious exercise as before:

p(y∗|X, y, x∗, σ2) = N (xT
∗µ, σ

2 + xT
∗Σx∗)

Maurizio Filippone Gaussian Processes

Introducing basis functions

Imagine transforming the inputs using a set of D functions

x→ φ(x) = (φ1(x), . . . , φD(x))>

The functions φ1(x) are also known as basis functions
Define:

Φ =



φ1(x1) . . . φD(x1)

...
. . .

...
φ1(xN) . . . φD(xN)




Maurizio Filippone Gaussian Processes

Introducing basis functions

Applying Bayesian Linear Regression on the transformed
features gives

p(w|X, y, σ2) = N (µ,Σ)

Covariance:

Σ =

(
1
σ2Φ

TΦ + S−1
)−1

Mean:
µ =

1
σ2ΣΦTy

Predictions:

p(y∗|X, y, x∗, σ2) = N (φT
∗µ, σ

2 + φT
∗Σφ∗)

Maurizio Filippone Gaussian Processes

Gaussian Processes

Linear models require specifying a set of basis functions
Polynomials, Trigonometric, . . .??

Can we use Bayesian inference to let data tell this to us?
Gaussian Processes work implicitly with an infinite set of basis
functions and learn a probabilistic combination of these

Maurizio Filippone Gaussian Processes

Gaussian Processes

Linear models require specifying a set of basis functions
Polynomials, Trigonometric, . . .??

Can we use Bayesian inference to let data tell this to us?

Gaussian Processes work implicitly with an infinite set of basis
functions and learn a probabilistic combination of these

Maurizio Filippone Gaussian Processes

Gaussian Processes

Linear models require specifying a set of basis functions
Polynomials, Trigonometric, . . .??

Can we use Bayesian inference to let data tell this to us?
Gaussian Processes work implicitly with an infinite set of basis
functions and learn a probabilistic combination of these

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine

We are going to show that predictions can be expressed
exclusively in terms of scalar products as follows

k(x, x′) = ψ(x)>ψ(x′)

This allows us to work with either k(·, ·) or ψ(·)
Why is this useful??

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine

Working with ψ(·) costs O(D2) storage, O(D3) time
Working with k(·, ·) costs O(N2) storage, O(N3) time

Pick the one that makes computations faster . . . or
What if we could pick k(·, ·) so that ψ(·) is infinite
dimensional?

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine

Working with ψ(·) costs O(D2) storage, O(D3) time
Working with k(·, ·) costs O(N2) storage, O(N3) time
Pick the one that makes computations faster . . . or

What if we could pick k(·, ·) so that ψ(·) is infinite
dimensional?

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine

Working with ψ(·) costs O(D2) storage, O(D3) time
Working with k(·, ·) costs O(N2) storage, O(N3) time
Pick the one that makes computations faster . . . or
What if we could pick k(·, ·) so that ψ(·) is infinite
dimensional?

Maurizio Filippone Gaussian Processes

Kernels

It is possible to show that for

k(x, x′) = exp
(
−‖x− x′‖2

2

)

there exists a corresponding ψ(·) that is infinite dimensional!!!
There are other kernels satisfying this property

Maurizio Filippone Gaussian Processes

Kernels
Proof that the Gaussian kernel induces an infinite dimensional ψ(·)

For simplicity consider one dimensional inputs x , y
Expand the Gaussian kernel k(x , y) as

exp
(
−(x − y)2

2

)
= exp

(
−x2

2

)
exp
(
−y2

2

)
exp (xy)

Focusing on the last term and applying the Taylor expansion of
the exp(·) function

exp (xy) = 1 + (xy) +
(xy)2

2!
+

(xy)3

3!
+

(xy)4

4!
+ . . .

Maurizio Filippone Gaussian Processes

Kernels
Proof that the Gaussian kernel induces an infinite dimensional ψ(·)

Define the infinite dimensional mapping

ψ(x) = exp
(
−x2

2

)(
1, x ,

x2
√
2!
,
x3
√
3!
,
x4
√
4!
, . . .

)>

It is easy to verify that

k(x , y) = exp
(
−(x − y)2

2

)
= ψ(x)>ψ(y)

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine
Proof

To show that Bayesian Linear Regression can be formulated
through scalar products only, we need Woodbury identity:

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

Do not memorize this!

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine
Proof

Woodbury identity:

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

We can rewrite:

Σ =

(
1
σ2Φ

TΦ + S−1
)−1

= S− SΦT
(
σ2I + ΦSΦT

)−1
ΦS

We set A = S, U = V> = ΦT, and C = 1
σ2
I

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine
Proof

Mean and variance of the predictions:

p(y∗|X, y, x∗, σ2) = N (φT
∗µ, σ

2 + φT
∗Σφ∗)

Rewrite the variance:

σ2 + φT
∗Σφ∗ =

σ2 + φT
∗ Sφ∗ − φT

∗ SΦ
T
(
σ2I + ΦSΦT

)−1
ΦSφ∗

. . . continued

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine
Proof

Mean and variance of the predictions:

p(y∗|X, y, x∗, σ2) = N (φT
∗µ, σ

2 + φT
∗Σφ∗)

Rewrite the variance:

σ2 + φT
∗ Sφ∗ − φT

∗ SΦ
T
(
σ2I + ΦSΦT

)−1
ΦSφ∗ =

σ2 + k∗∗ − k>∗
(
σ2I + K

)−1 k∗

Where the mapping defining the kernel is

ψ(x) = S1/2φ(x)

and

k∗∗ = k(x∗, x∗) = ψ(x∗)Tψ(x∗)
(k∗)i = k(x∗, xi) = ψ(x∗)Tψ(xi)
(K)ij = k(xi , xj) = ψ(xi)Tψ(xj)

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine
Proof

Mean and variance of the predictions:

p(y∗|X, y, x∗, σ2) = N (φT
∗µ, σ

2 + φT
∗Σφ∗)

Rewrite the mean:

φT
∗µ =

1
σ2φ

T
∗ΣΦTy

=
1
σ2φ

T
∗

(
S− SΦT

(
σ2I + ΦSΦT

)−1
ΦS
)
ΦTy

=
1
σ2φ

T
∗ SΦ

T
(
I−
(
σ2I + ΦSΦT

)−1
ΦSΦT

)
y

=
1
σ2φ

T
∗ SΦ

T


I−

(
I +

ΦSΦT

σ2

)−1
ΦSΦT

σ2


 y

. . . continued
Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine
Proof

Define H = ΦSΦT

σ2

The term in the parenthesis

I−

(
I +

ΦSΦT

σ2

)−1
ΦSΦT

σ2




becomes
(
I− (I + H)−1 H

)
= I− (H−1 + I)−1

Using Woodbury (A,U,V = I and C = H−1)

I− (H−1 + I)−1 = (I + H)−1

Maurizio Filippone Gaussian Processes

Bayesian Linear Regression as a Kernel Machine
Proof

Substituting into the expression of the predictive mean

φT
∗µ =

1
σ2φ

T
∗ SΦ

T


I−

(
I +

ΦSΦT

σ2

)−1
ΦSΦT

σ2


 y

=
1
σ2φ

T
∗ SΦ

T

(
I +

ΦSΦT

σ2

)−1

y

= φT
∗ SΦ

T
(
σ2I + ΦSΦT

)−1
y

= k>∗
(
σ2I + K

)−1 y

All definitions as in the case of the variance

ψ(x) = S1/2φ(x)

(k∗)i = k(x∗, xi) = ψ(x∗)Tψ(xi)
(K)ij = k(xi , xj) = ψ(xi)Tψ(xj)

Maurizio Filippone Gaussian Processes

Gaussian Processes

Gaussian Processes can be explained in two ways
Weight Space View

Bayesian linear regression with infinite basis functions
Function Space View

Defined as priors over functions

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

Consider an infinite number of Gaussian random variables
Think of them as indexed by the real line and as independent
Denote them as f (x)

K =

Maurizio Filippone Gaussian Processes

Kernel

Consider the Gaussian kernel again

k(x, x′) = α exp(−β‖x− x′‖2)

We introduced some parameters for added flexibility

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

Impose covariance using the kernel function

K =

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

Draw the infinite random variables again fixing one of them
(the one at x = 0)

K =

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

Draw the infinite random variables again allowing the one at
x = 0 to be random too

K =

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

This can be used as a prior over functions!

K =

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

Infinite Gaussian random variables with parameterized and
input-dependent covariance

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

The distribution of N random variables f (x1), . . . , f (xN)
depends exclusively on the corresponding rows and columns of
the infinite by infinite kernel matrix K

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

K =

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

The distribution of N random variables f (x1), . . . , f (xN)
depends exclusively on the corresponding rows and columns of
the infinite by infinite kernel matrix K

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

K =

n

n

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

The marginal distribution of f = (f (x1), . . . , f (xN))> is

p(f|X) = N (0,K)

The conditional distribution of f∗ given f

p(f∗|f, x∗,X) = N (m̄, s̄2)

with
m̄ = k>∗ K

−1f

s̄2 = k∗∗ − k>∗ K
−1k∗

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

Remember that when we modeled labels y in the linear model
we assumed noise with variance σ around wTx
We can do the same in Gaussian processes

p(y|f) =
N∏

i=1

p(y i |fi)

with
p(y i |fi) = N (y i |fi , σ2)

Likelihood and prior are both Gaussian - conjugate!

We can integrate out Gaussian process prior on f

p(y|X) =

∫
p(y|f)p(f|X)df

This gives
p(y|X) = N (0,K + σ2I)

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

Remember that when we modeled labels y in the linear model
we assumed noise with variance σ around wTx
We can do the same in Gaussian processes

p(y|f) =
N∏

i=1

p(y i |fi)

with
p(y i |fi) = N (y i |fi , σ2)

Likelihood and prior are both Gaussian - conjugate!
We can integrate out Gaussian process prior on f

p(y|X) =

∫
p(y|f)p(f|X)df

This gives
p(y|X) = N (0,K + σ2I)

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

We can derive the predictive distribution of the function:

p(f∗|y, x∗X) =

∫
p(f∗|f, x∗,X)p(f|y,X)dfdf∗ = N (m, s2)

with
m = k>∗

(
K + σ2I

)−1 y

s2 = k∗∗ − k>∗
(
K + σ2I

)−1 k∗

Same expression as in the “Weight-Space View” section

Maurizio Filippone Gaussian Processes

Gaussian Processes - Priors over Functions

We can also make predictions as follows:

p(y∗|y, x∗X) =

∫
p(t∗|f∗)p(f∗|f, x∗,X)p(f|y,X)dfdf∗

= N (my, s
2
y)

with
my = k>∗

(
K + σ2I

)−1 y

s2
y = σ2 + k∗∗ − k>∗

(
K + σ2I

)−1 k∗

Same expression as in the “Weight-Space View” section

Maurizio Filippone Gaussian Processes

Gaussian Processes - Regression example

Some data generated as a noisy version of some function

−
3

−
2

−
1

0
1

2
3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Maurizio Filippone Gaussian Processes

Gaussian Processes - Regression example

Draws from the posterior distribution over f∗ on the real line

−
3

−
2

−
1

0
1

2
3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Maurizio Filippone Gaussian Processes

Optimization of Gaussian Process parameters

The kernel has parameters that have to be tuned

k(x, x′) = α exp(−β‖x− x′‖2)

. . . and there is also the noise parameter σ2.
Define θ = (α, β, σ2)

How should we tune them?

Maurizio Filippone Gaussian Processes

Optimization of Gaussian Process parameters

Define Ky = K + σ2I
Maximize the logarithm of the likelihood

p(y|X,θ) = N (0,Ky)

that is
−1
2
log |Ky| −

1
2
yTK−1

y y + const.

Derivatives can be useful for gradient-based optimization

∂ log[p(y|X,θ)]

∂θi

Maurizio Filippone Gaussian Processes

Optimization of Gaussian Process parameters

Log-likelihood

−1
2
log |Ky| −

1
2
yTK−1

y y + const.

Derivatives can be useful for gradient-based optimization:

∂ log[p(y|X,θ)]

∂θi
= −1

2
Tr
(
K−1

y
∂Ky

∂θi

)
+

1
2
yTK−1

y
∂Ky

∂θi
K−1

y y

Maurizio Filippone Gaussian Processes

Part III

Challenges

Maurizio Filippone Gaussian Processes

Challenges

Non-Gaussian Likelihoods?
Scalability?

Maurizio Filippone Gaussian Processes

Marginal likelihood of GP models - non-Gaussian case

Marginal likelihood

p(y|X,θ) =

∫
p(y|f)p(f|X,θ)df

can only be computed if p(y|f) is Gaussian
What if p(y|f) is not Gaussian?

Maurizio Filippone Gaussian Processes

Tackling non-Gaussian case

Approximation options:
Local variational bounds (classification only)

Gibbs and MacKay, IEEE TNN, 2000

Laplace Approximation
Williams and Barber, IEEE TPAMI, 1998

Expectation Propagation
Minka, PhD thesis, 2001

Variational Bayes
Nickisch and Rasmussen, JMLR, 2008
Opper and Archambeau, Neural Comp, 2009

Markov chain Monte Carlo
Murray and Adams, NIPS, 2010
Filippone and Girolami, IEEE TPAMI, 2014

Maurizio Filippone Gaussian Processes

Tackling non-Gaussian case

Approximation options:
Local variational bounds (classification only)

Gibbs and MacKay, IEEE TNN, 2000
Laplace Approximation

Williams and Barber, IEEE TPAMI, 1998

Expectation Propagation
Minka, PhD thesis, 2001

Variational Bayes
Nickisch and Rasmussen, JMLR, 2008
Opper and Archambeau, Neural Comp, 2009

Markov chain Monte Carlo
Murray and Adams, NIPS, 2010
Filippone and Girolami, IEEE TPAMI, 2014

Maurizio Filippone Gaussian Processes

Tackling non-Gaussian case

Approximation options:
Local variational bounds (classification only)

Gibbs and MacKay, IEEE TNN, 2000
Laplace Approximation

Williams and Barber, IEEE TPAMI, 1998
Expectation Propagation

Minka, PhD thesis, 2001

Variational Bayes
Nickisch and Rasmussen, JMLR, 2008
Opper and Archambeau, Neural Comp, 2009

Markov chain Monte Carlo
Murray and Adams, NIPS, 2010
Filippone and Girolami, IEEE TPAMI, 2014

Maurizio Filippone Gaussian Processes

Tackling non-Gaussian case

Approximation options:
Local variational bounds (classification only)

Gibbs and MacKay, IEEE TNN, 2000
Laplace Approximation

Williams and Barber, IEEE TPAMI, 1998
Expectation Propagation

Minka, PhD thesis, 2001
Variational Bayes

Nickisch and Rasmussen, JMLR, 2008
Opper and Archambeau, Neural Comp, 2009

Markov chain Monte Carlo
Murray and Adams, NIPS, 2010
Filippone and Girolami, IEEE TPAMI, 2014

Maurizio Filippone Gaussian Processes

Tackling non-Gaussian case

Approximation options:
Local variational bounds (classification only)

Gibbs and MacKay, IEEE TNN, 2000
Laplace Approximation

Williams and Barber, IEEE TPAMI, 1998
Expectation Propagation

Minka, PhD thesis, 2001
Variational Bayes

Nickisch and Rasmussen, JMLR, 2008
Opper and Archambeau, Neural Comp, 2009

Markov chain Monte Carlo
Murray and Adams, NIPS, 2010
Filippone and Girolami, IEEE TPAMI, 2014

Maurizio Filippone Gaussian Processes

Marginal likelihood in GP models - Gaussian case and n�

Marginal likelihood

p(y|X,θ) =

∫
p(y|f)p(f|X,θ)df

can only be computed if p(y|X, f) is Gaussian
... even then

log[p(y|X,θ)] = −1
2
log |Ky| −

1
2
yTK−1

y y + const.

where Ky = K (X,θ) is a n × n dense matrix!
Complexity of exact method is O(n3) time and O(n2) space!

Maurizio Filippone Gaussian Processes

Tackling Gaussian case and n�

Low-Rank Approximation options - O(nm2)

Call P as a low rank approximation to Ky

Woodbury identity exploits low rank structure of P

Preconditioning Kernel Matrices
K. Cutajar1, M. A. Osborne2, J. P. Cunningham3, M. Filippone1

1 - EURECOM, Sophia Antipolis, France
2 - University of Oxford, Oxford, UK 3 - Columbia University, New York City, USA

Kernel Machines and Solving Linear Systems
! Operate in a high-dimensional, implicit feature space;

! Rely on the construction of an n × n Gram matrix K;

! Popular kernels:

– RBF : k (xi,xj) = σ2 exp
(
− 1

2d2
)
;

– Matérn : kv= 3
2

(xi,xj) = σ2
(
1 +

√
3d

)
exp

(
−

√
3d

)
;

where d2 = (xi − xj)
⊤

Λ (xi − xj).

! Involve the solution of linear systems Kz = v;

! Cholesky Decomposition:

– O(n2) space and O(n3) time - unfeasible for large n.

Fig. 1: Kernel machines enable
non-linear separation of data.

! Conjugate Gradient (CG):

– Numerical solution of linear systems constructed
using matrix-vector multiplications;

– O(tn2) for t CG iterations - in theory t = n
(possibly worse).

z

z0

Fig. 2: CG

! Preconditioned Conjugate Gradient (PCG):

– Transforms linear system to be better conditioned,
improving convergence;

– Yields a new linear system of the form
P−1Kz = P−1v;

– O(tn2) for t PCG iterations - in practice t ≪ n.

z

z0

Fig. 3: Preconditioned CG

Preconditioning Approaches
! Suppose we want to precondition Ky = K + λI ;

! Our choice of preconditioner should:

– Approximate Ky as closely as possible;

– Be easy to invert.

! For low-rank preconditioners we employ the Woodbury inversion lemma:

Ky = P =

P−1 =

! For other preconditioners we solve inner linear systems once again using CG!

Formulation Strategy

Nyström P = KXUK−1
UUKUX + λI where U ⊂ X Woodbury

FITC P = KXUK−1
UUKUX + diag

(
K − KXUK−1

UUKUX

)
+ λI Woodbury

PITC P = KXUK−1
UUKUX + bldiag

(
K − KXUK−1

UUKUX

)
+ λI Woodbury

Spectral Pij = σ2

m

∑m
r=1 cos

[
2πs⊤

r (xi − xj)
]
+ λIij Woodbury

Partial SVD K = AΛA⊤ ⇒ P = A[·,1:m]Λ[1:m,1:m]A
⊤
[1:m,·] + λI Woodbury

Block Jacobi P = bldiag (K) + λI Block Inverse

SKI P = WKUUW⊤ + λI where KUU is Kronecker Inner CG

Regularization P = K + δI + λI Inner CG

Preconditioning Kernel Matrices

Concrete Dataset Power plant Dataset Protein Dataset
(n = 1030, d = 8) (n = 9568, d = 4) (n = 45730, d = 9)

-3 -2 -1 0 1 2
log10(l)

-2

-4

-6

lo
g 1

0(
�
)

-3 -2 -1 0 1 2
log10(l)

-2

-4

-6

lo
g 1

0(
�
)

-3 -2 -1 0 1 2
log10(l)

-2

-4

-6

lo
g 1

0(
�
)

log10(nit)

0

5

-3 -2 -1 0 1 2

-2

-4

-6

+ + � + + +

� � � + + +

� � � � + +

Block Jacobi

-3 -2 -1 0 1 2

-2

-4

-6

� � � � � �
� � � � � �
� � � � + �

PITC

-3 -2 -1 0 1 2

-2

-4

-6

� � + � � �
+ � + � � �
+ + + � � �

FITC

-3 -2 -1 0 1 2

-2

-4

-6

� + + � � �
� + + � � �
� + + � � �

Nystrom

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + � �
+ + + + � �
+ + + + � �

Spectral

-3 -2 -1 0 1 2

-2

-4

-6

+ + + � � �
+ + + + � �
+ + + + � �

Randomized SVD

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + + +

+ + + + + +

+ + + + + +

Regularized

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + + +

+ + + + + +

+ + + + + +

SKI

-3 -2 -1 0 1 2

-2

-4

-6

� � + + + +

� � � + + +

� � � + + +

Block Jacobi

-3 -2 -1 0 1 2

-2

-4

-6

� � + � � �
� � + � � �
� � + � � �

PITC

-3 -2 -1 0 1 2

-2

-4

-6

� � + � � �
� � + � � �
� � + � � �

FITC

-3 -2 -1 0 1 2

-2

-4

-6

+ + + � � �
+ + + � � �
+ + + � � �

Nystrom

-3 -2 -1 0 1 2

-2

-4

-6

+ + + � � �
+ + + � � �
+ + + + + �

Spectral

-3 -2 -1 0 1 2

-2

-4

-6

+ + + � � �
+ + + � � �
+ + + � � �

Randomized SVD

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + + +

+ + + + + +

+ + + � + +

Regularized

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + + �
+ + + + + �
+ + + � + +

SKI

-3 -2 -1 0 1 2

-2

-4

-6

� � + + + +

� + � + + +

� + � � + +

Block Jacobi

-3 -2 -1 0 1 2

-2

-4

-6

� � + � � �
� + + � � �
� + + � � +

PITC

-3 -2 -1 0 1 2

-2

-4

-6

� � + � � �
� + + � � �
+ + + � � �

FITC

-3 -2 -1 0 1 2

-2

-4

-6

� � + � � �
� + + � � �
� + + � � �

Nystrom

-3 -2 -1 0 1 2

-2

-4

-6

+ + + + � �
+ + + + � �
+ + + � + �

Spectral

-3 -2 -1 0 1 2

-2

-4

-6

+ � � � � �
+ + � � � �
+ + � � � �

Randomized SVD

-3 -2 -1 0 1 2

-2

-4

-6

Too Expensive!

Regularized

-3 -2 -1 0 1 2

-2

-4

-6

Too Expensive!

SKI

Loss

−2

−1

0

1

2

Gain

Figure 1. Comparison of preconditioners for different settings of kernel parameters. The lengthscale l and the noise variance λ are shown
on the x and y axes respectively. The top figure indicates the number of iterations required to solve the corresponding linear system using
CG, whilst the bottom part of the figure shows the rate of improvement (negative - blue) or degradation (positive - red) achieved by using
PCG to solve the same linear system. Parameters and results are reported in log10. Symbols added to facilitate reading in B/W print.

tioner requires one matrix-vector product, and we add this
to the overall count of such computations. For this precon-
ditioner, we add a diagonal offset δ to the original matrix,
equivalent to two orders of magnitude greater than the noise
of the process. In general, although the complexity of PCG
is indeed no different from that of CG, we emphasize that
experiencing a 2-fold or 5-fold (in some cases even an order
of magnitude) improvement can be very substantial when
plain CG takes very long to converge or when the dataset is
large.

We focus on an isotropic RBF variant of the kernel in eq. 1,
fixing the marginal variance σ2 to one. We vary the length-
scale parameter l and the noise variance λ in log10 scale.
The top part of fig. 1 shows the number of iterations that
the standard CG algorithm takes, where we have capped
the number of iterations to 100,000.

The bottom part of the figure reports the improvement of-
fered by various preconditioners measured as

log10

(
PCG iterations

CG iterations

)
.

It is worth noting that when both CG and PCG fail to con-
verge within the upper bound, the improvement will be
marked as 0, i.e. neither a gain or a loss within the given
bound. The results plotted in fig. 1 indicate that the low-
rank preconditioners (PITC, FITC and Nyström) achieve

significant reductions in the number of iterations for each
dataset, and all approaches work best when the lengthscale
is longer, characterising smoother processes. In contrast,
preconditioning seems to be less effective when the length-
scale is shorter, corresponding to a kernel matrix that is
more sparse. However, for cases yielding positive results,
the improvement is often in the range of an order of mag-
nitude, which can be substantial when a large number of
iterations is required by the CG algorithm.

The results also confirm that, as alluded to in the previous
section, Block Jacobi preconditioning is generally a poor
preconditioner, particularly when the corresponding kernel
matrix is dense. The only minor improvements were ob-
served when CG itself converges quickly, in which case
preconditioning serves very little purpose either way.

The regularization approach with flexible conjugate gradi-
ent does not appear to be effective in any case either, partic-
ularly due to the substantial amount of iterations required
for solving an inner system at every iteration of the PCG
algorithm. This implies that introducing additional small
jitter to the diagonal does not necessarily make the sys-
tem much easier to solve, whilst adding an overly large
offset would negatively impact convergence of the outer al-
gorithm. One could assume that tuning the value of this
parameter could result in slightly better results; however,
preliminary experiments in this regard yielded only minor

Fig. 4: Comparison of preconditioners for different settings of kernel parameters across multiple datasets. Top: Number of
iterations required to solve the corresponding linear system using CG. Bottom: Rate of improvement (blue) or degradation
(red) achieved by using PCG to solve the same linear system.

Motivating Example - Gaussian Processes
! Marginal likelihood:

log[p(y|par)] = −1

2
log |Ky| − 1

2
y⊤K−1

y y + const.

! Derivatives wrt par:

∂ log[p(y|par)]

∂pari

= −1

2
Tr

(
K−1

y

∂Ky

∂pari

)
+

1

2
y⊤K−1

y

∂Ky

∂pari

K−1
y y

! Stochastic estimate of the trace - assuming E[rr⊤] = I , then:

Tr

(
K−1

y

∂Ky

∂pari

)
= Tr

(
K−1

y

∂Ky

∂pari

E[rr⊤]

)
= E

[
r⊤K−1

y

∂Ky

∂pari

r

]
≈ 1

Nr

Nr∑

i=1

r(i)⊤
K−1

y

∂Ky

∂pari
r(i)

! Linear systems only!

! Laplace approximation for non-Gaussian likelihoods may be formulated in a similar way!

Experimental Setup and Results
! Exact gradient-based optimization using Cholesky decomposition (CHOL);

! Stochastic gradient-based optimization using ADAGRAD - using CG and PCG;

! GP Approximations:

– Variational learning of inducing variables (VAR);

– Fully Independent Training Conditional (FITC);

– Partially Independent Training Conditional (PITC).

Classification
Spam Dataset (n = 4061, d=57)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
04

0.
08

0.
12

log10(seconds)

Er
ro

r R
at

e

−1 0 1 2 3

15
25

35

log10(seconds)

N
eg

at
ive

 T
es

t L
og
−L

ik

EEG Dataset (n = 14979, d=14)

1.0 1.5 2.0 2.5 3.0 3.5

0.
05

0.
15

0.
25

log10(seconds)

Er
ro

r R
at

e

0 1 2 3 4

20
30

40
50

60

log10(seconds)

N
eg

at
ive

 T
es

t L
og
−L

ik

Regression
Power plant Dataset (n = 9568, d=4)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
18

0.
20

0.
22

log10(seconds)

R
M
SE

0 1 2 3

−4
0

−2
0

0

log10(seconds)

N
eg

at
ive

 T
es

t L
og
−L

ik

Protein Dataset (n = 45730, d=9)

1.5 2.0 2.5 3.0 3.5 4.0
0.
60

0.
64

0.
68

0.
72

log10(seconds)

R
M
SE

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

20
0

30
0

40
0

log10(seconds)

N
eg

at
ive

 T
es

t L
og
−L

ik

PCG CG CHOL FITC PITC VAR

Fig. 5: Error and negative log likelihood on
√

n held out test data over time. Curves are averaged over multiple repetitions.

Conclusions
! Our solution:

✓ Exact in the limit of iterations;

✓ Straightforward to construct and easy to tune;

✓ Scalable to large datasets - no need to store K;

✓ Competitive with exact Cholesky decomposition;

✓ Superior to approximate methods.

! Ongoing work:

– Extending this work to other kernel functions and models;

– Implementation on a distributed framework;

– Exploiting PCG in the solution of f(K) z = v.

1

Maurizio Filippone Gaussian Processes

Tackling Gaussian case and n�

Low-Rank Approximation options - O(nm2)
Subset-of-data ’sparse’ methods

Smola and Bartlett, NIPS, 2001
Seeger and Williams, AISTATS, 2003

Pseudo-inputs introduced
Snelson and Ghahramani, NIPS, 2005

A unifying view brings several ideas together
Quiñonero-Candela and Rasmussen, JMLR, 2005

Variational approach for better placement of pseudo points
Titsias, AISTATS, 2009

Random feature expansions
Rahimi and Recht, NIPS, 2008
Lazaro-Gredilla et al., JMLR, 2010

Maurizio Filippone Gaussian Processes

Tackling Gaussian case and n�

Low-Rank Approximation options - O(nm2)
Subset-of-data ’sparse’ methods

Smola and Bartlett, NIPS, 2001
Seeger and Williams, AISTATS, 2003

Pseudo-inputs introduced
Snelson and Ghahramani, NIPS, 2005

A unifying view brings several ideas together
Quiñonero-Candela and Rasmussen, JMLR, 2005

Variational approach for better placement of pseudo points
Titsias, AISTATS, 2009

Random feature expansions
Rahimi and Recht, NIPS, 2008
Lazaro-Gredilla et al., JMLR, 2010

Maurizio Filippone Gaussian Processes

Tackling Gaussian case and n�

Low-Rank Approximation options - O(nm2)
Subset-of-data ’sparse’ methods

Smola and Bartlett, NIPS, 2001
Seeger and Williams, AISTATS, 2003

Pseudo-inputs introduced
Snelson and Ghahramani, NIPS, 2005

A unifying view brings several ideas together
Quiñonero-Candela and Rasmussen, JMLR, 2005

Variational approach for better placement of pseudo points
Titsias, AISTATS, 2009

Random feature expansions
Rahimi and Recht, NIPS, 2008
Lazaro-Gredilla et al., JMLR, 2010

Maurizio Filippone Gaussian Processes

Tackling Gaussian case and n�

Low-Rank Approximation options - O(nm2)
Subset-of-data ’sparse’ methods

Smola and Bartlett, NIPS, 2001
Seeger and Williams, AISTATS, 2003

Pseudo-inputs introduced
Snelson and Ghahramani, NIPS, 2005

A unifying view brings several ideas together
Quiñonero-Candela and Rasmussen, JMLR, 2005

Variational approach for better placement of pseudo points
Titsias, AISTATS, 2009

Random feature expansions
Rahimi and Recht, NIPS, 2008
Lazaro-Gredilla et al., JMLR, 2010

Maurizio Filippone Gaussian Processes

Tackling Gaussian case and n�

Low-Rank Approximation options - O(nm2)
Subset-of-data ’sparse’ methods

Smola and Bartlett, NIPS, 2001
Seeger and Williams, AISTATS, 2003

Pseudo-inputs introduced
Snelson and Ghahramani, NIPS, 2005

A unifying view brings several ideas together
Quiñonero-Candela and Rasmussen, JMLR, 2005

Variational approach for better placement of pseudo points
Titsias, AISTATS, 2009

Random feature expansions
Rahimi and Recht, NIPS, 2008
Lazaro-Gredilla et al., JMLR, 2010

Maurizio Filippone Gaussian Processes

Tackling Gaussian case and n�

Approximation options:
Structured approximations based on Toeplitz/circulant
matrices - O(dn

d+1
d) time

Wilson and Nickisch, ICML, 2015
Gilboa et al., IEEE TPAMI, 2015

Stochastic-gradient optimization/inference without model
approximations - O(n2) time and O(n) space

Filippone and Engler, ICML, 2015
Cutajar, Osborne, Cunnningham, Filippone, ICML, 2016

Maurizio Filippone Gaussian Processes

Tackling Gaussian case and n�

Approximation options:
Structured approximations based on Toeplitz/circulant
matrices - O(dn

d+1
d) time

Wilson and Nickisch, ICML, 2015
Gilboa et al., IEEE TPAMI, 2015

Stochastic-gradient optimization/inference without model
approximations - O(n2) time and O(n) space

Filippone and Engler, ICML, 2015
Cutajar, Osborne, Cunnningham, Filippone, ICML, 2016

Maurizio Filippone Gaussian Processes

Teaser - Stochastic Gradients in GP regression

Marginal likelihood

log[p(y|X,θ)] = −1
2
log |Ky| −

1
2
yTK−1

y y + const.

Derivatives wrt θ

∂ log[p(y|X,θ)]

∂θi
= −1

2
Tr
(
K−1

y
∂Ky

∂θi

)
+

1
2
yTK−1

y
∂Ky

∂θi
K−1

y y

Filippone and Engler, ICML, 2015 - Cutajar, Osborne, Cunningham, Filippone, ICML, 2016

Maurizio Filippone Gaussian Processes

Teaser - Stochastic Gradients in GP regression

Stochastic estimate of the trace

Tr
(
K−1∂Ky

∂θi

)
= Tr

(
K−1

y
∂Ky

∂θi
E[rrT]

)
= E

[
rTK−1

y
∂Ky

∂θi
r
]

with E[rrT] = I

Stochastic gradient

− 1
2Nr

Nr∑

i=1

r(i)
T
K−1

y
∂Ky

∂θi
r(i) +

1
2
yTK−1

y
∂Ky

∂θi
K−1

y y

Linear systems only!

Filippone and Engler, ICML, 2015 - Cutajar, Osborne, Cunningham, Filippone, ICML, 2016

Maurizio Filippone Gaussian Processes

Teaser - Stochastic Gradients in GP regression

Stochastic estimate of the trace

Tr
(
K−1∂Ky

∂θi

)
= Tr

(
K−1

y
∂Ky

∂θi
E[rrT]

)
= E

[
rTK−1

y
∂Ky

∂θi
r
]

with E[rrT] = I

Stochastic gradient

− 1
2Nr

Nr∑

i=1

r(i)
T
K−1

y
∂Ky

∂θi
r(i) +

1
2
yTK−1

y
∂Ky

∂θi
K−1

y y

Linear systems only!

Filippone and Engler, ICML, 2015 - Cutajar, Osborne, Cunningham, Filippone, ICML, 2016

Maurizio Filippone Gaussian Processes

Teaser - Preconditioning Kernel Matrices

Stochastic Gradient Optimization

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
18

0.
20

0.
22

Power Plant − ARD kernel

log10(seconds)

R
M

S
E

1.0 1.5 2.0 2.5 3.0 3.5

0.
05

0.
15

0.
25

EEG − ARD kernel

log10(seconds)
E

rr
or

 R
at

e

PCG CG CHOL FITC PITC VAR

Cutajar, Osborne, Cunningham, Filippone, ICML, 2016

Maurizio Filippone Gaussian Processes

Challenges

Non-Gaussian Likelihoods?
Scalability?

Modern GP works tackle both

Maurizio Filippone Gaussian Processes

Part IV

Modern Gaussian Processes

Maurizio Filippone Gaussian Processes

Desirable properties

Mini-batch-based learning - O(1) time for each iteration!
Exploit GPU and distributed computing
Automatic differentiation
Application-specific representations (e.g., convolutional)

Maurizio Filippone Gaussian Processes

Stochastic Gradient Optimization

Robbins and Monro, AoMS, 1951

Maurizio Filippone Gaussian Processes

Modern GPs - Any likelihood and n�

Approximation options:
Scalable Expectation Propagation

Bui et al., ICML, 2016

Inducing points methods
Hensman et al., AISTATS, 2013
Hensman, Matthews, Ghahramani, Filippone, NIPS, 2015

Random feature expansions
Gal, Ghahramani, ICML, 2016
Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017

Maurizio Filippone Gaussian Processes

Modern GPs - Any likelihood and n�

Approximation options:
Scalable Expectation Propagation

Bui et al., ICML, 2016
Inducing points methods

Hensman et al., AISTATS, 2013
Hensman, Matthews, Ghahramani, Filippone, NIPS, 2015

Random feature expansions
Gal, Ghahramani, ICML, 2016
Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017

Maurizio Filippone Gaussian Processes

Modern GPs - Any likelihood and n�

Approximation options:
Scalable Expectation Propagation

Bui et al., ICML, 2016
Inducing points methods

Hensman et al., AISTATS, 2013
Hensman, Matthews, Ghahramani, Filippone, NIPS, 2015

Random feature expansions
Gal, Ghahramani, ICML, 2016
Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017

Maurizio Filippone Gaussian Processes

Teaser - Modern GPs - Any likelihood and n�

EEG dataset
(n = 14979, d = 14)

2 2.5 3 3.5
0

0.1

0.2

log10(sec)

Error rate

2 2.5 3 3.5

0.2

0.4

log10(sec)

MNLL

dgp-rbf dgp-arc dgp-ep dnn var-gp

Maurizio Filippone Gaussian Processes

Teaser - Modern GPs - Any likelihood and n�

Composition of processes - Deep Gaussian Processes

(f ◦ g)(x)??

Damianou and Lawrence, AISTATS, 2013 – Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017

Maurizio Filippone Gaussian Processes

Teaser - Modern GPs - Any likelihood and n�

Composition of processes

F(1)

Y

Θ(1) X

F(2)

θ(1)

Damianou and Lawrence, AISTATS, 2013 – Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017

Maurizio Filippone Gaussian Processes

Teaser - Modern GPs - Any likelihood and n�

Airline dataset
(n = 5M+, d = 8)

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Random Feature Expansions for Deep Gaussian Processes

2 3 4 5

0.2

0.3

0.4

0.5

log10(sec)

Error rate

2 3 4 5

0.45

0.5

0.55

0.6

log10(sec)

MNLL

2 10 20 30

2.6

2.7

·106

Layers

Neg. Lower Bound

2 layers 10 layers 20 layers 30 layers SV-DKL

Figure 4. Left and central panels - Performance of our model on
the AIRLINE dataset as function of time for different depths. The
baseline (SV-DKL) is taken from ?. Right panel - The box plot
of the negative lower bound, estimated over 100 mini-batches of
size 50, 000, confirms that this is a suitable objective for model
selection.

the test set using one hidden layer. Given the size of this
dataset, there are only few reported results for other GP
models. Most notably, ? recently obtained 99.11% accu-
racy with the AutoGP framework, which is comparable to
the result obtained by our model.

Meanwhile, the AIRLINE dataset contains flight informa-
tion for 5+ million flights in the US between Jan and Apr
2008. Following the procedure described in ? and ?, we use
this 8-dimensional dataset for classification, where the task
is to determine whether a flight has been delayed or not. We
construct the test set using the scripts provided in ?, where
100, 000 data points are held-out for testing. We construct
our DGP models using 100 random features at each layer,
and set the dimensionality to DF (l) = 3. As shown in Ta-
ble 1, our model works significantly better when the RBF
kernel is employed. In addition, the results are also directly
comparable to those obtained by ?, which reports accuracy
and MNLL of 78.1% and 0.457, respectively. These results
give further credence to the tractability, scalability, and ro-
bustness of our model.

4.3. Model Depth

In this final part of the experiments, we assess the scala-
bility of our model with respect to additional hidden layers
in the constructed model. In particular, we re-consider the
AIRLINE dataset and evaluate the performance of DGP-RBF
models constructed using up to 30 layers. In order to cater
for the increased depth in the model, we feed-forward the
original input to each hidden layer, as suggested in ?.

Figure 4 reports the progression of error rate and MNLL
over time for different number of hidden layers, using the
results obtained in ? as a baseline (reportedly obtained in
about 3 hours). As expected, the model takes longer to train
as the number of layers increases. However, the model con-
verges to an optimal state in every case in less than a couple
of hours, with an improvement being noted in the case of
10 and 20 layers over the shallower 2-layer model. The
box plot within the same figure indicates that the negative

lower bound is a suitable objective function for carrying out
model selection.

5. Conclusions
In this work, we have proposed a novel formulation of
DGPs which exploits the approximation of covariance func-
tions using random features, as well as stochastic varia-
tional inference for preserving the probabilistic representa-
tion of a regular GP. We demonstrated how inference using
this model is not only faster, but also frequently superior
to other state-of-the-art methods, with particular empha-
sis on competing DGP models. The results obtained for
both the AIRLINE dataset and the MNIST8M digit recogni-
tion problem are particularly impressive since such large
datasets have been generally considered to be beyond the
computational scope of DGPs. We perceive this to be a
considerable step forward in the direction of scaling and
accelerating DGPs.

The results obtained on higher-dimensional datasets
strongly suggest that approximations such as Fastfood (?)
could be instrumental in the interest of using more random
features. We are also currently investigating ways to miti-
gate the decline in performance observed when optimizing
⌦ variationally with resampling. The obtained results also
encourage the extension of our model to include residual
learning or convolutional layers suitable for computer vi-
sion applications.

Maurizio Filippone Gaussian Processes

Other interesting topics

Bayesian Optimization
Jones et al., JoGO, 1998

Unsupervised Learning
Lawrence, NIPS, 2004

Deep Gaussian Processes
Damianou and Lawrence, AISTATS, 2013
Cutajar, Bonilla, Michiardi, and Filippone, ICML, 2017

Convolutional Gaussian Processes
Wilson et al., AISTATS, 2015
Wilson et al., NIPS, 2016
van der Wilk et al., NIPS, 2017

Structured output
Galliani et al., AISTATS, 2017

Probabilistic Numerics
Fitzsimons, Cutajar, Osborne, Roberts, Filippone, UAI, 2017

Maurizio Filippone Gaussian Processes

Other interesting topics

Bayesian Optimization
Jones et al., JoGO, 1998

Unsupervised Learning
Lawrence, NIPS, 2004

Deep Gaussian Processes
Damianou and Lawrence, AISTATS, 2013
Cutajar, Bonilla, Michiardi, and Filippone, ICML, 2017

Convolutional Gaussian Processes
Wilson et al., AISTATS, 2015
Wilson et al., NIPS, 2016
van der Wilk et al., NIPS, 2017

Structured output
Galliani et al., AISTATS, 2017

Probabilistic Numerics
Fitzsimons, Cutajar, Osborne, Roberts, Filippone, UAI, 2017

Maurizio Filippone Gaussian Processes

Other interesting topics

Bayesian Optimization
Jones et al., JoGO, 1998

Unsupervised Learning
Lawrence, NIPS, 2004

Deep Gaussian Processes
Damianou and Lawrence, AISTATS, 2013
Cutajar, Bonilla, Michiardi, and Filippone, ICML, 2017

Convolutional Gaussian Processes
Wilson et al., AISTATS, 2015
Wilson et al., NIPS, 2016
van der Wilk et al., NIPS, 2017

Structured output
Galliani et al., AISTATS, 2017

Probabilistic Numerics
Fitzsimons, Cutajar, Osborne, Roberts, Filippone, UAI, 2017

Maurizio Filippone Gaussian Processes

Other interesting topics

Bayesian Optimization
Jones et al., JoGO, 1998

Unsupervised Learning
Lawrence, NIPS, 2004

Deep Gaussian Processes
Damianou and Lawrence, AISTATS, 2013
Cutajar, Bonilla, Michiardi, and Filippone, ICML, 2017

Convolutional Gaussian Processes
Wilson et al., AISTATS, 2015
Wilson et al., NIPS, 2016
van der Wilk et al., NIPS, 2017

Structured output
Galliani et al., AISTATS, 2017

Probabilistic Numerics
Fitzsimons, Cutajar, Osborne, Roberts, Filippone, UAI, 2017

Maurizio Filippone Gaussian Processes

Other interesting topics

Bayesian Optimization
Jones et al., JoGO, 1998

Unsupervised Learning
Lawrence, NIPS, 2004

Deep Gaussian Processes
Damianou and Lawrence, AISTATS, 2013
Cutajar, Bonilla, Michiardi, and Filippone, ICML, 2017

Convolutional Gaussian Processes
Wilson et al., AISTATS, 2015
Wilson et al., NIPS, 2016
van der Wilk et al., NIPS, 2017

Structured output
Galliani et al., AISTATS, 2017

Probabilistic Numerics
Fitzsimons, Cutajar, Osborne, Roberts, Filippone, UAI, 2017

Maurizio Filippone Gaussian Processes

Other interesting topics

Bayesian Optimization
Jones et al., JoGO, 1998

Unsupervised Learning
Lawrence, NIPS, 2004

Deep Gaussian Processes
Damianou and Lawrence, AISTATS, 2013
Cutajar, Bonilla, Michiardi, and Filippone, ICML, 2017

Convolutional Gaussian Processes
Wilson et al., AISTATS, 2015
Wilson et al., NIPS, 2016
van der Wilk et al., NIPS, 2017

Structured output
Galliani et al., AISTATS, 2017

Probabilistic Numerics
Fitzsimons, Cutajar, Osborne, Roberts, Filippone, UAI, 2017

Maurizio Filippone Gaussian Processes

Acknowledgments

Thank you!

Maurizio Filippone Gaussian Processes

	anm0:
	anm1:

