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Motivation — Examples
Introduction to Gaussian Processes

o Weight space view
e Function space view

Challenges

Modern Gaussian Processes
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Motivation

Quantification of Uncertainty with Expensive Models

e Climate modeling

Schematic for Global
Atmospheric Model

‘ Horizontal Grid (Latitude-Longitude)

Kennedy and O'Hagan, RSS-B, 2001
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Motivation

Quantification of Uncertainty with Expensive Models

o Earthquake modeling

Kennedy and O'Hagan, RSS-B, 2001
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Motivation

Quantification of Uncertainty with No Models

o Classification of neurodegenerative diseases

Healthy?

Needs
treatment?

Filippone et al., AoAS, 2012
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Motivation

Quantification of Uncertainty with No Models

@ Coal mining disaster data
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Hensman, Matthews, Filippone, Ghahramani, NIPS, 2015
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Motivation

Quantification of Uncertainty with No Models

@ Regression example

A
N \«V \\\ ]
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A Unified Framework

A model might be expensive to simulate/inaccurate

e Emulate model/discrepancy using a surrogate
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A Unified Framework

A model might be expensive to simulate/inaccurate

e Emulate model/discrepancy using a surrogate

A model might not even be available

@ Replace it with a flexible model
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A Unified Framework

A model might be expensive to simulate/inaccurate

e Emulate model/discrepancy using a surrogate

A model might not even be available

@ Replace it with a flexible model

Gaussian processes for Accurate Quantification of
Uncertainty
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Gaussian Processes
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Gaussian Processes

Gaussian Processes can be explained in two ways
@ Weight Space View
o Bayesian linear regression with infinite basis functions
@ Function Space View
o Defined as priors over functions
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Gaussian Processes

Gaussian Processes can be explained in two ways
o Weight Space View
o Bayesian linear regression with infinite basis functions
@ Function Space View
o Defined as priors over functions
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Bayesian Linear Regression

e Modeling observations as noisy realizations of a linear
combination of the features:

p(y|w, 702):/\[( W,O’2|)
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Bayesian Linear Regression

e Modeling observations as noisy realizations of a linear
combination of the features:

2 2
p(ylw, X, 0°) = N (Xw, sl)
e Gaussian prior over model parameters:

p(w) = N(0,S)
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Bayesian Linear Regression

@ Bayes rule:
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Bayesian Linear Regression

@ Bayes rule:

e Posterior density: p(w|X,y)
o Distribution over parameters after observing data
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Bayesian Linear Regression

@ Bayes rule:

e Posterior density: p(w|X,y)
o Distribution over parameters after observing data
e Likelihood : p(y|X,w)

e Measure of “fitness”
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Bayesian Linear Regression

@ Bayes rule:
_ Py, w)p(w)
p(w[X,y) =
p(y[X)

e Posterior density: p(w|X,y)

o Distribution over parameters after observing data
e Likelihood : p(y|X,w)

e Measure of “fitness”
e Prior density: p(w)

o Anything we know about parameters before we see any data
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Bayesian Linear Regression

@ Bayes rule:
_ Py, w)p(w)
p(w[X,y) =
p(y[X)

e Posterior density: p(w|X,y)

o Distribution over parameters after observing data
e Likelihood : p(y|X,w)

e Measure of “fitness”
e Prior density: p(w)

o Anything we know about parameters before we see any data
e Marginal likelihood: p(y|X)

o It is a normalization constant — ensures [ p(w|X,y) dw = 1.
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Bayesian Linear Regression - Finding posterior parameters

@ Ignoring normalizing constants, the posterior is:

1 _
pwl,.o?) e { 3w W)TE Hw )}
= exp {—;(WTZ_lw —ow'x 4+ ;J,T):_lu)}

1
X exp {—2(WTZ_1W - ZWTZ_IH)}
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Bayesian Linear Regression - Finding posterior parameters

@ Ignoring non-w terms, the prior multiplied by the likelihood is:

p(ylw, X, 0?)
oo {5l =)l = w) bexp { - JwTS

1 1 2
x exp{—2 (WT [02 T %—S_l]w—gzwT T >}
@ Posterior (from previous slide):

1
X exp {—2(WTZ_1W - ZWTZ_lu)}
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Bayesian Linear Regression - Finding posterior parameters

@ Equate individual terms on each side.

@ Covariance:

1
w'rlw = w' [2 T +S_1]w
o
1 -1
y — <2 T +S_1
o
@ Mean:
owTs—! 2 g7
1
= —3¥xT
¥ 72
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Bayesian Linear Regression

@ Posterior must be Gaussian
p(w|X,y,0%) = N(p, X)
@ Covariance:
1 —1
Z == <2 T + Sl>
o
@ Mean: 1
_ T
n= ;Z
@ Predictions — same tedious exercise as before:

P( *| > Y *a02):N( 1“302+ :krz *)
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Introducing basis functions

@ Imagine transforming the inputs using a set of D functions

= ¢(x) = (61(x), - ¢n(x)) |

@ The functions ¢1(x) are also known as basis functions

o Define:
$1(1) ... op(x)
o=| : :

¢1(. N) ¢D(. N)
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Introducing basis functions

@ Applying Bayesian Linear Regression on the transformed
features gives

p(W| s ’02) = N(H’v Z)
@ Covariance:

1 -1
> = <2¢T¢ + s—1>
(o}

@ Mean: 1
p==X0"
o

@ Predictions:

P+, v, %0 0%) = N (@ p,0° + $1 Eb,)
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Gaussian Processes

@ Linear models require specifying a set of basis functions
e Polynomials, Trigonometric, ...7?7
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Gaussian Processes

@ Linear models require specifying a set of basis functions
e Polynomials, Trigonometric, ...7?7

@ Can we use Bayesian inference to let data tell this to us?
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Gaussian Processes

@ Linear models require specifying a set of basis functions
e Polynomials, Trigonometric, ...7?7

@ Can we use Bayesian inference to let data tell this to us?

@ Gaussian Processes work implicitly with an infinite set of basis
functions and learn a probabilistic combination of these
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Bayesian Linear Regression as a Kernel Machine

@ We are going to show that predictions can be expressed
exclusively in terms of scalar products as follows

k(x, %) = 1p(x) Tp(x')

@ This allows us to work with either k(-,-) or 2 (-)
e Why is this useful??
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Bayesian Linear Regression as a Kernel Machine

o Working with 1(-) costs O(D?) storage, O(D3) time
e Working with k(-,-) costs O(N?) storage, O(N3) time
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Bayesian Linear Regression as a Kernel Machine

o Working with 1(-) costs O(D?) storage, O(D3) time
e Working with k(-,-) costs O(N?) storage, O(N3) time

@ Pick the one that makes computations faster ... or
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Bayesian Linear Regression as a Kernel Machine

o Working with 1(-) costs O(D?) storage, O(D3) time
e Working with k(-,-) costs O(N?) storage, O(N3) time
@ Pick the one that makes computations faster ... or

e What if we could pick k(-,-) so that %(+) is infinite
dimensional?
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Kernels

@ It is possible to show that for

k(x,x') = exp (—H;,HQ)

there exists a corresponding )(+) that is infinite dimensional!!!

@ There are other kernels satisfying this property
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Kernels

Proof that the Gaussian kernel induces an infinite dimensional v(+)

@ For simplicity consider one dimensional inputs x, y

e Expand the Gaussian kernel k(x,y) as

on (~E57) = (2 ) (2 ) o

@ Focusing on the last term and applying the Taylor expansion of
the exp(+) function

2 3 4
eXP(Xy)=1+(xy)+(X2y!) +(X§!) +(X4y!) T

Maurizio Filippone Gaussian Processes



Kernels

Proof that the Gaussian kernel induces an infinite dimensional v(+)

@ Define the infinite dimensional mapping

o) o (2) (1020 2 LY

@ It is easy to verify that

kxy) = e (B0 ) = w0 Tv00
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Bayesian Linear Regression as a Kernel Machine
Proof

@ To show that Bayesian Linear Regression can be formulated
through scalar products only, we need Woodbury identity:

(A+Ucv)yt=A1_Atyct+vatu)y-tvat

@ Do not memorize this!
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Bayesian Linear Regression as a Kernel Machine
Proof

@ Woodbury identity:
(A+Uucv)t=A1t_Atyct+vatu)ytvatt

@ We can rewrite:
1 -1
T = <2¢T¢ + s—l)
o
-1
— S_SoT (02| n ¢s¢T) ®S

o Weset A=S, U= VT =T, and C = LI
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Bayesian Linear Regression as a Kernel Machine
Proof

@ Mean and variance of the predictions:

P( *’ ' Y *702) :N( *TNJ, o? + ¢IZ¢*)
@ Rewrite the variance:

o> + ¢lT¢. =
-1
o? + ¢ISh. — ¢ISOT (21 0SOT) " 0Sg,

... continued
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Bayesian Linear Regression as a Kernel Machine
Proof

@ Mean and variance of the predictions:
(el Xy, 55, 0%) = NI, 0% + 91 E9,)
@ Rewrite the variance:
-1
o? + ¢ISp. — ¢ISOT (421 0SOT) " @Sp, —

-1

o? 4+ ke — k! (P +K) ks

@ Where the mapping defining the kernel is
P(x) = S'2p(x)
and
Ko = k(%) = () Tp(x)
(k)i = k(s xi) = () Tp(x)
(K)i = k(xixg) = ()T (x)



Bayesian Linear Regression as a Kernel Machine
Proof

@ Mean and variance of the predictions:

,D( *| » Yo *702):N( IM’O‘2+¢IZ¢*)

@ Rewrite the mean:
1
plp = SolEeT
g
1 -1
= o7 (s ~S0T (21 + #S0T) ¢s> o7
g

~1
= LoTseT <I—<a2l+¢S¢T) ¢s¢T>
g

2 2

g (o2

T\ 1 T
i 1) e
o

... continued
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Bayesian Linear Regression as a Kernel Machine
Proof

@ Define H = ¢S¢T

@ The term in the parenthesis

( ¢s¢T)_1 »SHT
1= {1+

o2 o2
becomes
(1= 0+ H)H) =1 (H 24
e Using Woodbury (A, U,V =1land C =H™1)

I—H P+ D) =(0+H)™!
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Bayesian Linear Regression as a Kernel Machine
Proof

@ Substituting into the expression of the predictive mean

1 osoT\ ST
no= So¢[SeT |—(|+ > ) >
g o o

-1
— ¢Ts¢T <| + ¢S¢T>

—1
— $TSeT <a2|+¢s¢T)
= K/ (21+K)
o All definitions as in the case of the variance
P(x) = SY?¢(x)
(ke)i = k(xe,xi) = P (xe) T2p (%))
(K)j = k(i %) = (<) " (x))



Gaussian Processes

Gaussian Processes can be explained in two ways
@ Weight Space View
o Bayesian linear regression with infinite basis functions
@ Function Space View
o Defined as priors over functions
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Gaussian Processes - Priors over Functions

@ Consider an infinite number of Gaussian random variables
@ Think of them as indexed by the real line and as independent

@ Denote them as f(x)
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Kernel

e Consider the Gaussian kernel again
k(x,x') = avexp(=Blx = <|1?)

@ We introduced some parameters for added flexibility
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Gaussian Processes - Priors over Functions

@ Impose covariance using the kernel function
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Gaussian Processes - Priors over Functions

@ Draw the infinite random variables again fixing one of them
(the one at x = 0)

HE
[
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Gaussian Processes - Priors over Functions

@ Draw the infinite random variables again allowing the one at
x = 0 to be random too

ARYZNP = =

Maurizio Filippone Gaussian Processes



Gaussian Processes - Priors over Functions

@ This can be used as a prior over functions!

VN0 S = =
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Gaussian Processes - Priors over Functions

@ Infinite Gaussian random variables with parameterized and
input-dependent covariance

MM M &0
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Gaussian Processes - Priors over Functions

@ The distribution of N random variables f(x1),..., f(xy)
depends exclusively on the corresponding rows and columns of
the infinite by infinite kernel matrix K

Maurizio Filippone Gaussian Processes



Gaussian Processes - Priors over Functions

@ The distribution of N random variables f(x1),..., f(xy)
depends exclusively on the corresponding rows and columns of
the infinite by infinite kernel matrix K
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Gaussian Processes - Priors over Functions

@ The marginal distribution of f = (f(x1),..., 1"’(X/\/))T is

p(f[X) = N(0,K)
@ The conditional distribution of f, given f
p(ﬁk‘ﬂ *3 ) = N(I’T‘J, §2)

with
m= kK If

*

52 = ky — k] K71k,
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Gaussian Processes - Priors over Functions

o Remember that when we modeled labels v in the linear model
we assumed noise with variance o around w'
@ We can do the same in Gaussian processes

N
p(yIf) = [ p(vilf)
i=1
with

plvilfi) = N(vilfi, o%)

o Likelihood and prior are both Gaussian - conjugate!
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Gaussian Processes - Priors over Functions

o Remember that when we modeled labels v in the linear model
we assumed noise with variance o around w'
@ We can do the same in Gaussian processes

N
p(yIf) = T p(vilf)
i=1
with
p(vilfi) = N(vilfi,0%)
o Likelihood and prior are both Gaussian - conjugate!
@ We can integrate out Gaussian process prior on f

p(y]X) = / p(y[F)p(FX)df

@ This gives
p(y[X) = N(0,K + o?1)
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Gaussian Processes - Priors over Functions

@ We can derive the predictive distribution of the function:

p(Fuly, % X) = / p(F[F, % X)p(Fly, X)dfdf, = A'(m, 5?)

with
m=k (K+o2l)"

= ke — k] (K+021) "k,

@ Same expression as in the “Weight-Space View" section
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Gaussian Processes - Priors over Functions

@ We can also make predictions as follows:

p(yaly, xeX) = / Dt )p(EF, %0 X)p(Fly, X)dFdf,
= N(myvsf)

with
my =k (K+021)""

2= 0% + ke — k| (K+021) "k,
@ Same expression as in the “Weight-Space View" section
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Gaussian Processes - Regression example

@ Some data generated as a noisy version of some function

™~

)
AV
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Gaussian Processes - Regression example

@ Draws from the posterior distribution over f, on the real line
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Optimization of Gaussian Process parameters

@ The kernel has parameters that have to be tuned

k(x,x') = aexp(—p|x — x'|?)

... and there is also the noise parameter o2.

o Define 0 = (o, 3,02)

@ How should we tune them?
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Optimization of Gaussian Process parameters

o Define Ky = K + o2l
@ Maximize the logarithm of the likelihood

p(v]%, 0) = N(0,Ky)

that is ) )
~3 log |[Ky| — 3 TK;1 + const.

@ Derivatives can be useful for gradient-based optimization

9 log[p(v|%, 0)]
00,
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Optimization of Gaussian Process parameters

o Log-likelihood
1 1
—5 log |Ky| — 5 TK;1 + const.

@ Derivatives can be useful for gradient-based optimization:

dloglp(y|X,0)] 1 _10Ky 1 110Ky 4
90, =K g ) T K e Ky
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Challenges
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Challenges

@ Non-Gaussian Likelihoods?
@ Scalability?
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Marginal likelihood of GP models - non-Gaussian case

o Marginal likelihood

p(y|X,0) = / p(y[P)p(F|X., 0)df

can only be computed if p(y|f) is Gaussian
e What if p(y|f) is not Gaussian?
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Tackling non-Gaussian case

@ Approximation options:
o Local variational bounds (classification only)
o Gibbs and MacKay, IEEE TNN, 2000
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Tackling non-Gaussian case

@ Approximation options:
o Local variational bounds (classification only)
o Gibbs and MacKay, IEEE TNN, 2000
e Laplace Approximation
e Williams and Barber, IEEE TPAMI, 1998
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Tackling non-Gaussian case

@ Approximation options:
o Local variational bounds (classification only)
o Gibbs and MacKay, IEEE TNN, 2000
e Laplace Approximation
e Williams and Barber, IEEE TPAMI, 1998
o Expectation Propagation
e Minka, PhD thesis, 2001
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Tackling non-Gaussian case

@ Approximation options:

o Local variational bounds (classification only)
o Gibbs and MacKay, IEEE TNN, 2000

e Laplace Approximation
o Williams and Barber, IEEE TPAMI, 1998

o Expectation Propagation
e Minka, PhD thesis, 2001

o Variational Bayes

o Nickisch and Rasmussen, JMLR, 2008
o Opper and Archambeau, Neural Comp, 2009
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Tackling non-Gaussian case

@ Approximation options:
o Local variational bounds (classification only)

o Gibbs and MacKay, IEEE TNN, 2000
Laplace Approximation

o Williams and Barber, IEEE TPAMI, 1998
Expectation Propagation

e Minka, PhD thesis, 2001
Variational Bayes

o Nickisch and Rasmussen, JMLR, 2008
o Opper and Archambeau, Neural Comp, 2009

Markov chain Monte Carlo

@ Murray and Adams, NIPS, 2010
o Filippone and Girolami, IEEE TPAMI, 2014
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Marginal likelihood in GP models - Gaussian case and n >

o Marginal likelihood

p(y|%,0) = / p(y[F)p(F[ %, 0)df

can only be computed if p(y|X,f) is Gaussian

@ ... even then
1 1.4
log[p(v]X,0)] = —5 log |Ky| — 5 Ky vy + const.

where Ky = K (X, 0) is a n x n dense matrix!

o Complexity of exact method is O(n3) time and O(n?) space!
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Tackling Gaussian case and n >

e Low-Rank Approximation options - O(nm?)
e Call P as a low rank approximation to K
@ Woodbury identity exploits low rank structure of P
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Tackling Gaussian case and n >

e Low-Rank Approximation options - O(nm?)
o Subset-of-data 'sparse’ methods

@ Smola and Bartlett, NIPS, 2001
o Seeger and Williams, AISTATS, 2003
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Tackling Gaussian case and n >

e Low-Rank Approximation options - O(nm?)
o Subset-of-data 'sparse’ methods

@ Smola and Bartlett, NIPS, 2001
o Seeger and Williams, AISTATS, 2003

e Pseudo-inputs introduced
@ Snelson and Ghahramani, NIPS, 2005
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Tackling Gaussian case and n >

e Low-Rank Approximation options - O(nm?)
o Subset-of-data 'sparse’ methods

@ Smola and Bartlett, NIPS, 2001
o Seeger and Williams, AISTATS, 2003

e Pseudo-inputs introduced
@ Snelson and Ghahramani, NIPS, 2005
o A unifying view brings several ideas together
@ Quifionero-Candela and Rasmussen, JMLR, 2005
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Tackling Gaussian case and n >

e Low-Rank Approximation options - O(nm?)
o Subset-of-data 'sparse’ methods

@ Smola and Bartlett, NIPS, 2001
o Seeger and Williams, AISTATS, 2003

e Pseudo-inputs introduced
@ Snelson and Ghahramani, NIPS, 2005

o A unifying view brings several ideas together
@ Quifionero-Candela and Rasmussen, JMLR, 2005

e Variational approach for better placement of pseudo points
o Titsias, AISTATS, 2009
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Tackling Gaussian case and n >

e Low-Rank Approximation options - O(nm?)
o Subset-of-data 'sparse’ methods

@ Smola and Bartlett, NIPS, 2001
o Seeger and Williams, AISTATS, 2003

e Pseudo-inputs introduced
@ Snelson and Ghahramani, NIPS, 2005
A unifying view brings several ideas together
@ Quifionero-Candela and Rasmussen, JMLR, 2005
e Variational approach for better placement of pseudo points
o Titsias, AISTATS, 2009
e Random feature expansions

o Rahimi and Recht, NIPS, 2008
o Lazaro-Gredilla et al., JMLR, 2010
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Tackling Gaussian case and n >

@ Approximation options:
e Structured approximations based on Toeplitz/circulant
matrices - O(dn“? ) time
o Wilson and Nickisch, ICML, 2015
o Gilboa et al., [IEEE TPAMI, 2015
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Tackling Gaussian case and n >

@ Approximation options:
e Structured approximations based on Toeplitz/circulant
matrices - O(dn“? ) time
o Wilson and Nickisch, ICML, 2015
o Gilboa et al., [IEEE TPAMI, 2015
e Stochastic-gradient optimization/inference without model
approximations - O(n?) time and O(n) space
o Filippone and Engler, ICML, 2015
o Cutajar, Osborne, Cunnningham, Filippone, ICML, 2016
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Teaser - Stochastic Gradients in GP regression

@ Marginal likelihood

log[p(v] %, 0)] = |og|Ky| fyTKy y + const.

@ Derivatives wrt 6

8|og[p( | 79)] _ 1 <K 18K >+1 lelaKyK 1

00, T2 Yy 00, 00,

Filippone and Engler, ICML, 2015 - Cutajar, Osborne, Cunningham, Filippone, ICML, 2016
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Teaser - Stochastic Gradients in GP regression

@ Stochastic estimate of the trace

oK oK oK
—19Ry ) _ 198y T Tyr-19Ry
Tr (K 90, ) =Tr (Ky 90, E[rr ]> E [r Ky 90, r]

with E[rr] =/
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Teaser - Stochastic Gradients in GP regression

@ Stochastic estimate of the trace

8K
1
(K 96, )

with E[rr] =/

@ Stochastic gradient

oK oKy
198y o T P TK-1
(Ky 90, —2E][rr ]> [ Ky 90, ]

oK
00,

K18Ky() lel yK1

2N

@ Linear systems only!

Filippone and Engler, ICML, 2015 - Cutajar, Osborne, Cunningham, Filippone, ICML, 2016
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Teaser - Preconditioning Kernel Matrices

@ Stochastic Gradient Optimization
Power Plant — ARD kernel EEG - ARD kernel
B [=r=ms =ty
y BN Y
o . .~
o
7 g9 |
2 5
w —
wn
O.7
o
I I I I I I I I I I I I I I
00 05 10 15 20 25 30 35 1.0 15 20 25 30 35
logso(seconds) logso(seconds)
— PCG e CG --- CHOL —=— FITC PITC == VAR

Cutajar, Osborne, Cunningham, Filippone, ICML, 2016
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Challenges

@ Non-Gaussian Likelihoods?
@ Scalability?

Modern GP works tackle both
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Modern Gaussian Processes
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Desirable properties

Mini-batch-based learning - O(1) time for each iteration!
Exploit GPU and distributed computing

Automatic differentiation

Application-specific representations (e.g., convolutional)
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Stochastic Gradient Optimization

Q]
-
<
[oe]
@
o~
T ©
=
o
°- =
g <
EO
o
N
‘ e
<
1
o .
T T T T T ° T T T T T
-4 -2 0 2 4 0 20 40 60 80 100

Iteration

Robbins and Monro, AoMS, 1951
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Modern GPs - Any likelihood and n >

@ Approximation options:
e Scalable Expectation Propagation
o Bui et al., ICML, 2016
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Modern GPs - Any likelihood and n >

@ Approximation options:
e Scalable Expectation Propagation
o Buietal, ICML, 2016
e Inducing points methods

@ Hensman et al., AISTATS, 2013
@ Hensman, Matthews, Ghahramani, Filippone, NIPS, 2015
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Modern GPs - Any likelihood and n >

@ Approximation options:
e Scalable Expectation Propagation
o Buietal, ICML, 2016
e Inducing points methods

@ Hensman et al., AISTATS, 2013
@ Hensman, Matthews, Ghahramani, Filippone, NIPS, 2015

o Random feature expansions

o Gal, Ghahramani, ICML, 2016
e Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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Teaser - Modern GPs - Any likelihood and n >

EEG dataset
(n = 14979, d = 14)

Error rate MNLL
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logio(sec) log1o(sec)
= DGP-RBF DGP-ARC === DGP-EP === DNN === VAR-GP ‘
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Teaser - Modern GPs - Any likelihood and n >

@ Composition of processes - Deep Gaussian Processes

(fog)(x)??

Damianou and Lawrence, AISTATS, 2013 — Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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@ Composition of processes

Damianou and Lawrence, AISTATS, 2013 — Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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Teaser - Modern GPs - Any likelihood and n >

Airline dataset
(n=5M+, d =8)

05 Error rate 06 MNLL .106Neg. Lower Bound
D T T . T 1 T T T T
| ol e &
A Jw &L
-l 045l 1
0.2 . ) i L | | I I I
2 3 4 5 2 3 4 5 2 10 20 30
logyp(sec) logo(sec) Layers
‘— 2 layers —— 10 layers —— 20 layers —— 30 layers -=-- SV-DKL ‘
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Other interesting topics

@ Bayesian Optimization
e Jones et al., JoGO, 1998
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