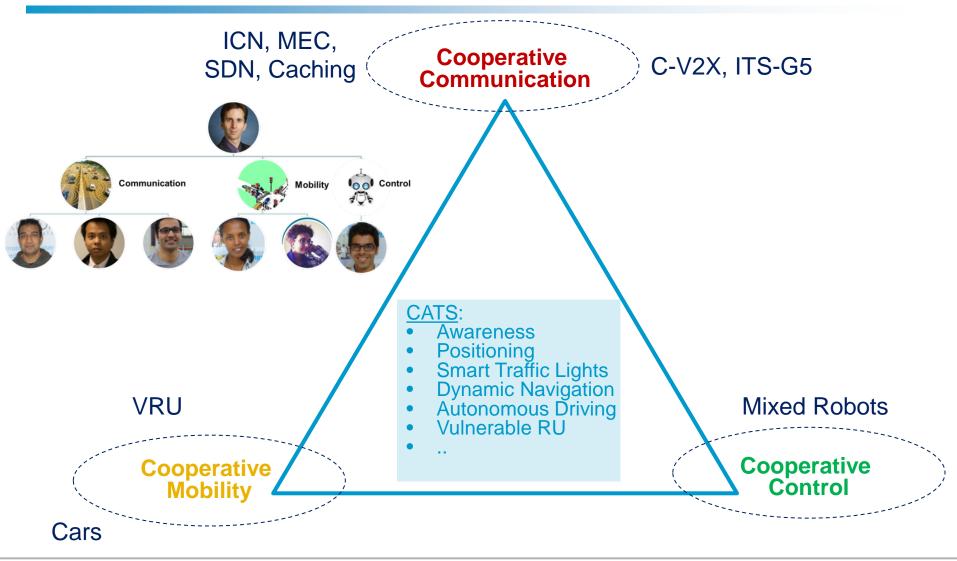


5G Challenges for Connected, Cooperative and Automated Systems

Jérôme Härri

15th Italian Networking Workshop

January 15th 2018



Call for Participation

http://2018.wons-conference.org/

Cooperative Connected Automated Transport Systems (CATS) - Team

Cooperative Connected Automated Transport Systems (CATS)

Vehicular Traffic Modeling (cars, scooters, pedestrians)

- Vehicular Mobility Modeling
 - mixed cars/scooters modeling
- Vehicular Control Modeling
 - mixed autonomous/legacy control modeling

Vehicular Communications (ITS-G5, 5G)

- Dependable Vehicular Communication (ITS-G5, C2X)
 - ITS-G5 1-hop broadcast & congestion control
- High Precision Positioning and Mapping
 - Cooperative positioning (ITS-G5, IR-UWB...)
- > 5G extensions to automotive domain
 - LTE D2D/V2X for safety communication

Vehicular Networking (Edge, SDN & NFV, IoX)

- SDN-based and Information-Centric Networking
- Edge Caching & Computing
- Data-as-a-service architecture for vehicular & crowd sensing

Automated Vehicles

- Platooning & cooperative adaptive cruise control (CACC)
- Cooperative maneuvering and navigation

Vehicular Standardization Bodies

- 3 STF ETSI ITS, C2C CC WG COM co-chair and subWG DCC chair
- OneM2M / W3C WoT standards
- IETF IPWAVE
- > 3GPP

Cooperative vs. Automated vs. Autonomous

Confusing Concepts...

- Autonomous Car a car, which driving dynamics are based on its own sensor and intelligence, without the assistance of any external information
- Automated Car a car, which driving dynamics are based on its own sensors and intelligence, potentially enhanced with external support (data, human)
- Connected Car a car capable of obtaining external information or exchange information with other cars or infrastructure
- Cooperative Car a car, which telematics system collaborate with other systems to reach a common global goal.

What are we 'really' aiming at ?

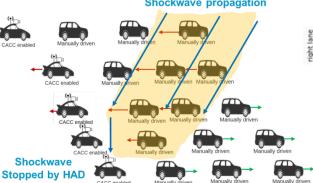
- (maybe) Cooperative Connected Automated Vehicles
 - Vehicles will require external information to self-drive
 - Full autonomous driving is highly unlikely (under global context)

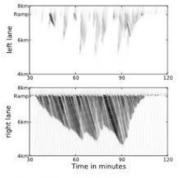
Automated Vehicles

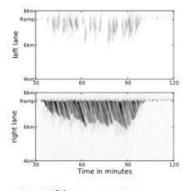
Expected to radically change the automotive Industry

- Autonomous Cars & Platooning expected to appear next decade
- Automated vehicles are yet not limited to cars and trucks

Benefits of Automated Vehicles

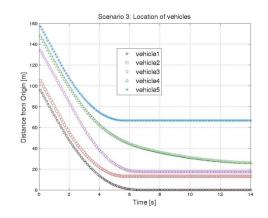

- Estimated 585,000 lives between 2035-2045
- Massive economic opportunity (> 7 trillion \$ Intel)
- 250 million hours of consumers' commuting time per year
- Price of Safety Priceless


Cooperative Connected Automated Vehicles – Benefits and Challenges


Intercept Shockwave

CATS anticipate speed reduction

CATS stops shockwaves already at low penetration
Shockwave propagation

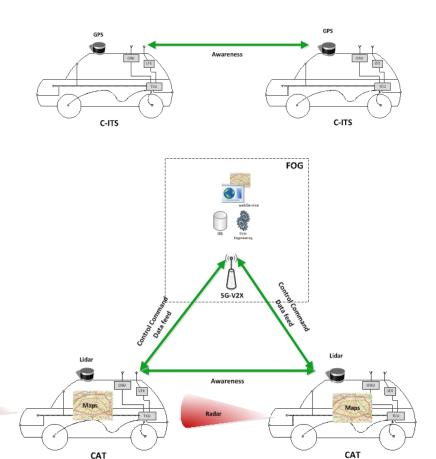

(a) 0% penetration (b) 10% penetration

Source: Markus Forster et al., IEEEInfocom, 2014

Increase Capacity

- CATS require less inter-distance
- CATS may use the inter-distance of other cars
 - at no impact on safety

Percentage penetration of APs	0	20	40	60	80	100
Collisions Avoided	0	1	11	35	57	61


Cooperative Connected Automated Vehicles – Benefits and Challenges

Connected Cars

- Mostly focused on Awareness
- > V2V

Connected 'Automated' Cars

- Require large amount of data exchange
 - Map synchronization
 - Environmental information
 - Control Command
 - **–** ...
- V2V must be cranked up
- V2I becomes critical
 - Robust Core Network Required

Automated Vehicles vs. Remote Control Vehicles

- Joint EURECOM, BUPT, CHINA Mobile Demo
 - > Actually: 4G only ©

V2X Technologies

CURRENT TECHNOLOGIES

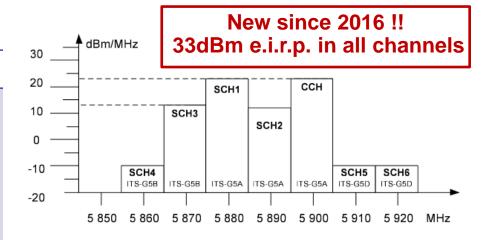
09/03/2018 - - p 9

WiFi-V2X - ITS-G5

Specification completed in 2010 (IEEE 802.11p-2010)

Later integrated in IEEE 802.11-2012

Key characteristics


- > 5.9 GHz frequency domain
- Based on IEEE 802.11a (OFDM PHY)
- 10 MHz channel bandwidth
- Rates: 3, 4.5, 6, 9, 12, 18, 24, 27 Mbps
- Operates without a BSS

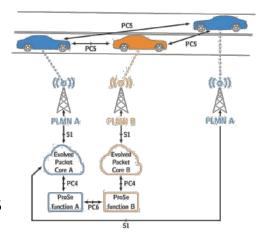
ITS/ATS Frequency Band

Name	Center Frequency	Туре
SCH6	5920	ITS-G5D - Future ITS
SCH5	5910	113-G5D - Future 113
SCH4	5860	ITS-G5B - Non-Safety
SCH3	5870	related
SCH2	5880	
SCH1	5890	ITS-G5A - Safety-Related
CCH	5900	

ITS-G5 Release 2 – Design Directions

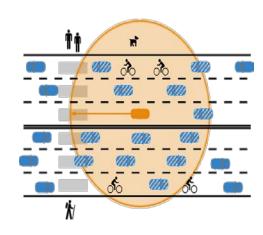
- In November 2016, the CAR 2 CAR initiated a WI on ITS-G5 Rel. 2
 - CAR 2 CAR white paper "Enhanced 11p Investigations and Proposal"
- Design directions:
 - Enhanced channel usage (modulation, congestion control)
 - Enhanced information exchange (Tx what is 'required')
 - Enhanced PHY & MAC
 - Enhanced Capacity
 - mmWAVF bands
- Input currently under discussions at the CAR 2 CAR
 - Objectives:
 - > 5dB gain at 5GHz
 - 10x capacity at 60Hz

Cellular LTE-V2X

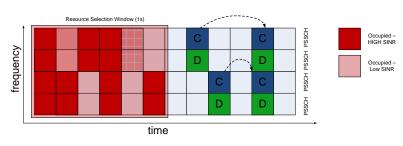

Since 3GPP LTE Rel. 14

- LTE-V2X operation
 - Sub-group of Proximity Service (Prose)
- Provides Dedicated communication services:
 - V2V Vehicle-to-Vehicle
 - V2I Vehicle-to-RSU
 - V2P Vehicle-to-Pedestrian
 - V2N Vehicle-to-Network

- PC5 interface
- V2X/ProSe Function/Applications
- > Two modes of Operations:
 - Managed (Mode 3) eNB allocate resources
 - Ad-Hoc (Mode 4) UEs self-allocate resources
 - GPS-based Synchronization
 - USIM-less operation



Cellular LTE-V2X - Mode 4

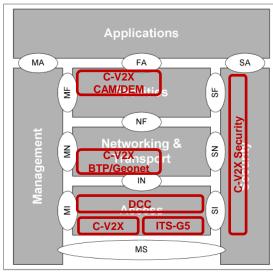

LTE-V2X mode 4 is a full ad-hoc

Selected mode for Safety-related V2X communication

3GPP rel.14 mode 4 proposal:

- Semi-Persistent Scheduling
 - UE reserves RB over consecutive Sub-frames
- ➤ Listen-before-Talk access
 - RSSI-based resource selection

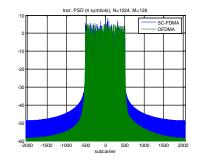
Source: Qualcomm


Cellular LTE-V2X - Standardization Status

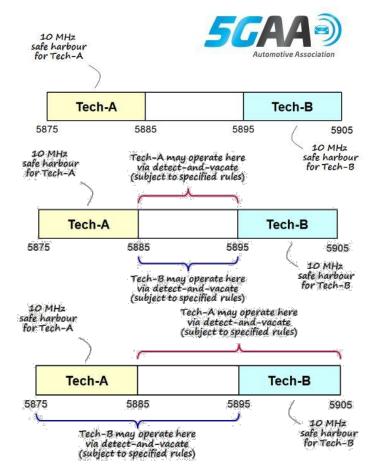
- 3GPP specification freeze in July 2017
- In January 2017, the CAR 2 CAR initiated a WI on LTE-V2X
 - CAR 2 CAR White Paper "Technical Evaluation and Open Issues"

Objectives:

- Introduce new concepts behind LTE-V2X
- Define common scenarios and parameters
- Identify required architecture extension
- Gather open challenges
- In October 2017, Cellular Stakeholders proposed multiple WI to ETSI ITS for LTE-V2X
 - C-V2X is expected to be integrated in ETSI ITS in 2018
 - Access Technology -
 - LTE-V2X mode 3-4 rel.14 on PC5 for V2V
 - LTE-V2X on Uu for V2I/V2N communication


Coexistence ITS-G5 – LTE-V2X

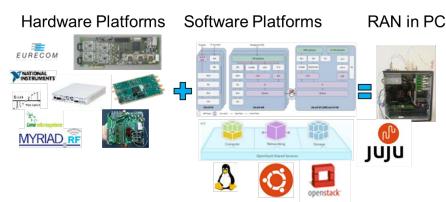
Based on the technology neutrality of the ITS-G5 band


Both ITS-G5 and LTE-V2X can be granted access

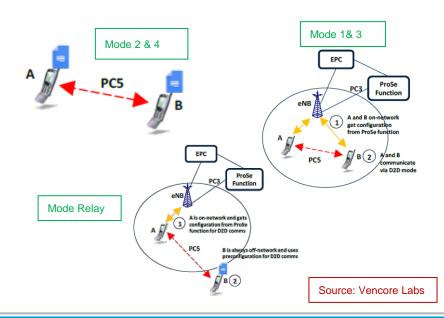
Three phases coexistence:

- Phase 1 LTE-V2X and ITS-G5 on different 10Mhz isolated bands
- Phase 2 LTE-V2X and ITS-G5 may coexist on additional shared band based on 'detect and avoid'
- Phase 3 LTE-V2X and ITS-G5 coexist on the full ITS-G5 band based on the detect and avoid mechanism

source:


Cellular LTE-V2X on OpenAirInterface

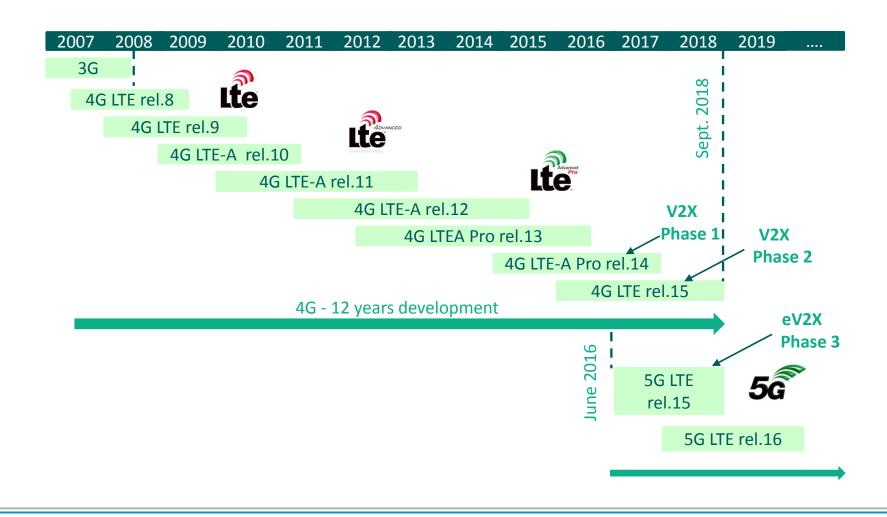
Extension of OAI for Slidelink communication


- LTE Rel.14 compliant
- Supporters:
 - Orange Labs
 - Vencore Labs (US)
- Objective: 1st Open V2X/D2D Platform

Architecture Extension:

- New emulation architecture
 - Toward dense UE networks
- New procedures:
 - New Sidelink PHY
 - MAC/RRC Distributed Scheduling
- Operation Mode:
 - LTE Prose Public Safety
 - Mode 1 & 2
 - LTE Relay mode
 - LTE-V2X
 - Mode 3 & 4
- First prototype to be ready early 2018

http://www.openairinterface.org/



V2X Technologies

MOVING TOWARD 5G

09/03/2018 - - p 17

Cellular V2X – 3GPP Roadmap

LTE-V2X toward Automated Driving

D2D communications

Enhanced safety

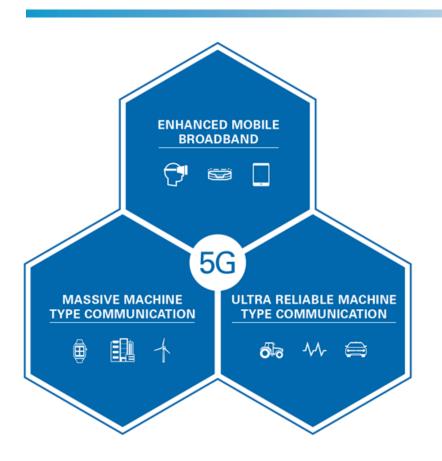
Autonomous driving

C-V2X R14 (Ph. I) C-V2X R15 (Ph. II)

C-V2X R16 5G NR support (Ph. III) (Advanced safety applications)

Established foundation for basic D2D comm.

Enhanced communication's range and reliability for V2X safety


Ultra-reliable, low latency, high throughput communication for autonomous driving

Network independent	No	Yes	Yes
Communications ¹	Broadcast only	Broadcast only	Broadcast + Unicast/Multicast
High speed support	No	Yes	Yes
High density support	No	Yes	Yes
Throughput		High throughput for enhanced safety	Ultra-high throughput
Latency		Low latency for enhanced safety applications	Ultra-low latency
Reliability		Reliability for enhanced safety application	Ultra-high reliability
Positioning	No	Share positioning information	Wideband ranging and positioning

^{1.} PHY/MAC communications; R16 is still under development

Source: Qualcomm

IMT Definition and Requirements for 5G

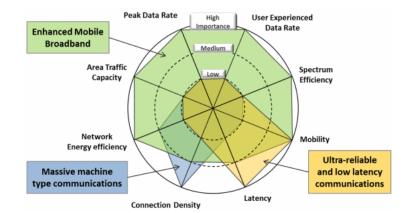
Attribute	IMT-Advanced 4G	IMT-Future 5G
Achievable Rate	1 Gbps	10-50 Gbps
Connection Density		10 ⁶ -10 ⁷ /km ²
Mobility & Coverage	350km/h	500km/h
Energy Efficiency	1x	50x – 100x
Spectral Efficiency	1x	5x-15x
Latency	10ms	1ms Source: ITU

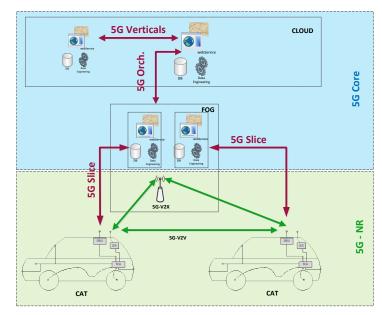
5G Challenges for Cooperative Connected Automated Vehicles

Key 5G Innovations

- URLL Communication
- eMBB Communications

3GPP roadmap mostly on V2I (5G phase 1)

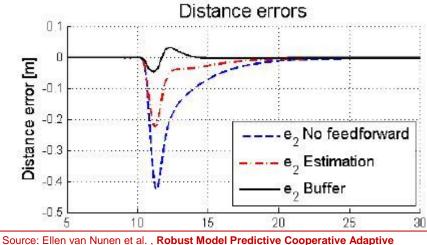

> 5G V2V will not evolve much


Critical role of 5G Core

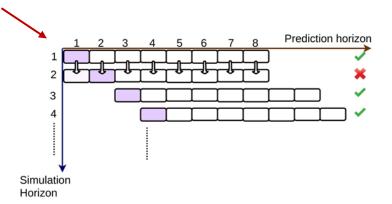
- Mobile Edge Services
- Network Slices
- Cooperative 'Infrastructure'

Key Message:

- 4G was mostly V2V
- 5G will be V2I


5G Challenges – Make Communication or Control more Robust?

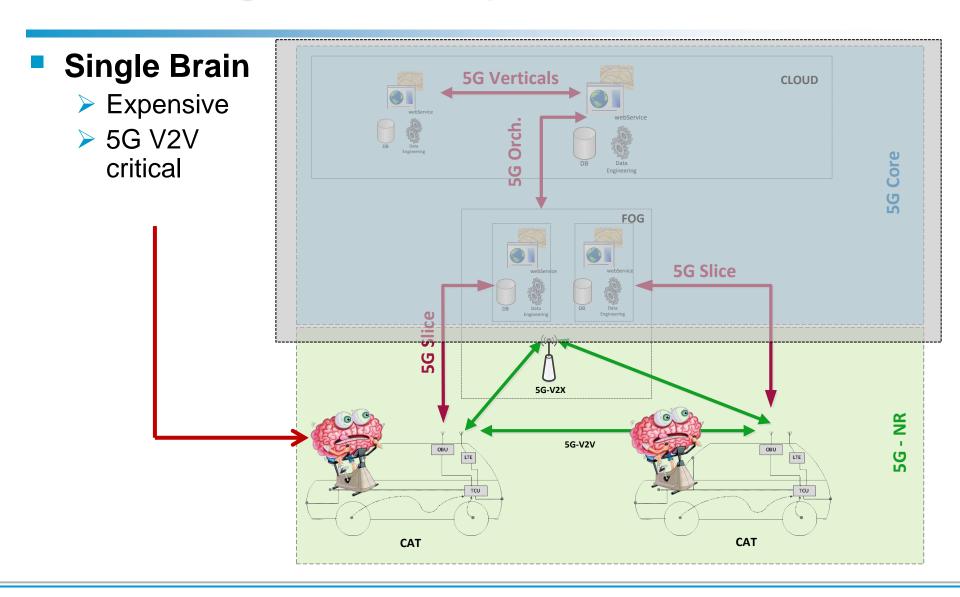
CACC subject to V2X Impairments


- Assumptions: 25Hz CAM / 100Hz controller
- Block loss of CAMs

Impact on CACC

- Any CAM loss leads to dangerous situation...
- But a more robust control strategy allows to mitigate it
- Designing 5G V2X requires to match it with control mechanisms !!

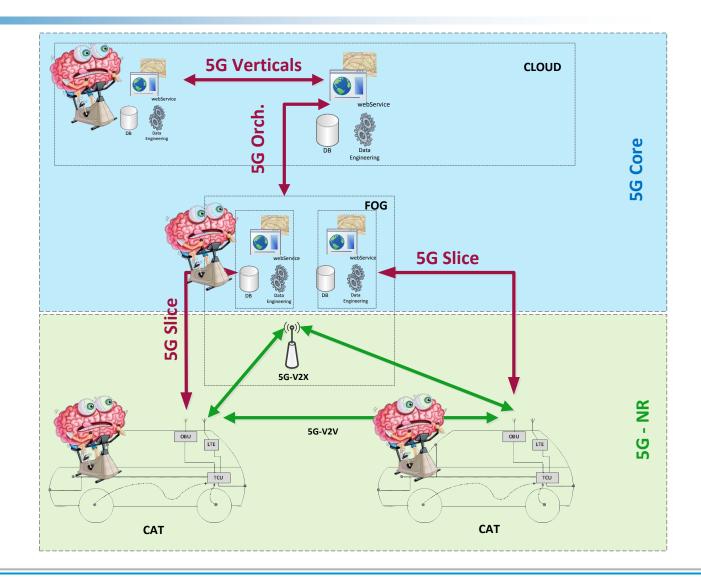
Cruise Control Subject to V2V Impairments, IEEE ITSC 2017



MDV

Centralized server

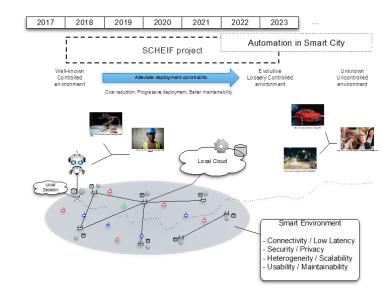
CACC vehicle

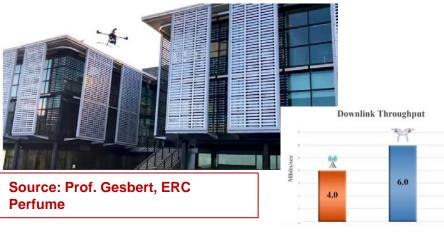

5G Challenge – where to put the 'Brain'?

5G Challenge – where to put the 'Brain'?

Split Brain

- Distributed efforts
- 5G Core critical


Cooperative Connected Automated Transport Systems – not only vehicles...


Bring 5G-V2X to Industry 4.0

- Decentralized Production Control
- Evolving Production Environment
- Plug-and-Produce
- Hybrid-level Cooperation
- Secured and resilient

Drones to enhance 5G-V2X

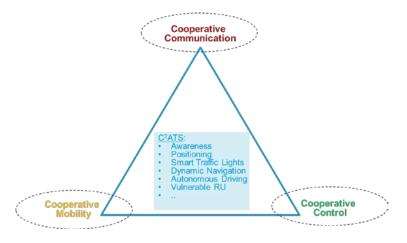
- Drone act as 5G eNBs
 - Find optimal position to maximize capacity/reliability
- Drone follow traffic

Conclusions

5G for Cooperative Connected and Automated Vehicles

- Radically changes how 5G-V2X systems will operate
 - V2I most innovation
 - 5G MEC for near vehicle control
 - 5G Slice for multi-feeds control

Extensions of current Solutions


- ITS-G5 is moving toward a Release 2
- C-V2X will soon be ready as well

Jérôme Härri, haerri@eurecom.fr

Challenge (among others):

- Cooperative Connected Automated Vehicles have specific behaviors on 5G
 - Need to understand it to design 5G

