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ABSTRACT

Over the last decade, higher order (HQO) methods have
been strongly developed in particular to blindly separate
instantaneous mixtures of statistically independent
stationary sources. However, in many situations of
practical interest, the received sources are (quasi)-
cyclostationary (digital radiocommunications) and are not
always statistically independent but may be correlated to
each other, which occurs in particular for HF links or in
mobile radiocommunications contexts where propagation
multipaths are omnipresent. In such situations, the
behaviour of the classical HO blind source separation
methods is not known, which may be a limitation to the
use of these methods in operational contexts. The purpose
of this paper is precisely to fill the gap previously
mentionned by analysing the behaviour, in
radiocommunications contexts, of three classical HO blind
source separation methods when several potentially
correlated paths of each source, assumed (quasij-
cyclostationary, are received by the array.

1. INTRODUCTION

Over the last decade, higher order (HO) methods have
been strongly developed in particular to blindly separate
instantaneous mixtures of statistically independent and
stationary sources [1-5]. In [6-7], the performance of two of
these methods, corresponding to the so-called JADE
method [2] and to the one which optimizes a constrast
function squaring the samples fourth-order autocumulants
[3], have been analysed for arbitrary statistically
independent and stationary sources scenari. In a same way,
the performance of a third method [5], optimizing a
constrast function which is not squaring the samples
fourth-order autocumulants, have been presented recently in
[8} still for statistically independent stationary sources.

However, in many situations of practical interest, the
received sources are (quasi)-cyclostationary (digital
radiocommunications) and are not always statistically
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independent but may be correlated to each other, which
occurs in particular for HF links or in mobile
radiocommunications contexts where propagation
multipaths are omnipresent. In such situations, the
behaviour of the previous HO blind source separation
methods is not known, which may be a limitation to the
use of these methods in operational contexts.

The purpose of this paper is precisely to fill the gap
previously mentionned by analysing the behaviour, in
radiocommunications contexts, of the three HO blind
source separation methods introduced in [2], [3] and [5]
respectively, when several potentially correlated paths of
each source, assumed {(quasi)-cyclostationary, are received
by the array.

2. HYPOTHESIS AND PROBLEM
FORMULATION

Consider an array of N Narrow-Band (NB) sensors and
let us call x(r) the vector of the complex amplitudes of the
signals at the output of these sensors. Each sensor is
assumed to receive a noisy mixture of P statistically
independent NB (quasi)-cyclostationary sources, with their
associated propagation multipaths. Under these
assumptions, the observation vector x(¢) can be written as

follows
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where b(r) is the noise vector, assumed zero-mean,
stationary, spatially white and Gaussian, @y is the carrier
pulsation, M; is the number of paths associated to the
source , m;{#) is the complex envelope of the source f,
Ok, Tik and a;; are the complex attenuation, the delay and
the steering vector of the path k of the source £, m;(s) is
the (M, X 1) vector which components are the complex



signals m(?) 4 i Mt =Tk e 00Tk (1 <k < M), A
is the (¥ X M) matrix of the sources steering veclors a
(1 <k <My, m(n)is the (M x 1) vector obained by
concatenation of the vectors m(f) and A is the (N x M)
matrix of all the vectors a;;, where M is the sum of the
M (1£isP).

In these conditions. the correlation matrix of the
observation vector, R () = Efx{:)x(1) "1, can be written as

Rif) = ARm(DA T + mal 2.2

where T means transposition and conjugation, n2 is the
mean power of the noise per sensor, I is the Identity mairix
and R,,(1} 2 E[m(ry m(t)'] is the correlation matrix of the
vector m(r).

In a same way, the quadricovariance Q,(t) of the
observation vector x{f), which components, defined by
04 j, & (D) 2 Com(xi(e), x(0*, x(n)", x)(), are the
fourth order cumulants of x(1), can be written as

0xD) = (A ®AMIQm(A ®A™Y (2.3)

where (1) is the quadricovariance of the vector m(2), *
means complex conjugation and ® corresponds to the
Kronecker product.

In fact, the expression (2.1) describes N particular
convolutive mixtures of P statistically independent sources
at the output of the sensors. These mixtures could be
processed by every blind separators of convolutive mixtures
developed these last years [9]. However, in practical
situations, for some reasons such as, for example, that of
the numerical complexity, it may be chosen 1o process the
vectorial mixture (2.1) as an instantaneous one, considering
a propagation path as a particular source. This is the
philosophy we adopt in this paper. In these conditions,
although in (quasi)-cyclostationary contexts it may be
advantageous to implement a Poly-Periodic (PP) and
Widely Linear structure of array filtering [10], the problem
of sources separation we address in this paper is to find the
Linear and Time Invariant (TT) (N X M) NB separator W,
oulputing the vecior y(1) = W Tx(t) and giving, to within
a diagonal and a permutation matrix, the best estimate of
the vector m(r). In the following sections, we study the
behaviour of the tree HO blind source separators W
introduced in [2], [3] and [5] respectively, for different
scenari of sources and paths, for several digital modulations
and relative time delays between the paths.

3. HO BLIND SOURCE SEPARATION OF
(QUASI)-CYCLOSTATIONARY SOURCES

3.1 Possible HO blind source separators

In (quasi)-cyclostationary contexts, the matrices (2.2)
and (2.3) become Time-Dependent and more precisely PP.
As a conscquence, the matrices R (r) and Q,(f) have

Fourier serial expansions which show off in particular the
cyclic frequencies of the observations. It may be very
useful 10 exploit the information contained in all the cyclic
frequencies of the observations to improve the performance
of the HO blind source separators, as it has been shown
recently in {11]. However, for particular reasons such as the
numerical complexity, we may prefer to still use, in
(quasi)-cyclostationary contexts, the classical methods of
HO blind source separation introduced in [2], {3] or [5],
which, in this case, exploit only the information contained
in the cyclic frequency zero of Ry(f) apd Qx(2), i.e. in the
temporal mean Ry = <R (> and Qx = <Q;(£)> of Rx(1)
and Q,{1) respectively, which is the choice we adopt in this
paper.

Note that for stationary sources, the temporal mean Ry
and @ of the 2nd and 4th order statistics correspond to the
statistics themselves, which is not the case for (quasi)-
cyclostationary sources. In this latter case, Ry and Oy can
still be written as (2.2) and (2.3) but where Rp(#) and
Q,x(t) are replaced by their temporal mean noted R,y and
Qm tespectively. Thus, the temporal mean operation
obviously preserves the algebraic structure of Ry(t) and
O (1) and also the potential second and fourth order
statistical independence of the paths (R is still diagonal
and the non zero elements of Q,, are still the 4-th order
autocumulants of the paths when the latter are
independent).

3.2 Statistics estimation

It is well known that for zero-mean, stationary and
ergodic sources, the classical estimators of the 2nd and 4th
order cumnulants provide asymptotically unbiaised estimates
of the 2nd and 4th order cumulant of the data, which
variance tends to zero when the number of independent
samples increases. However, in the presence of (quasi)-
cyclostationary and cyclo-ergodic sources, we must wonder
whether these classical estimators still generate
asymptotically unbiaised estimates of the data statistics
temporal mean. The answet to this question has been given
in [12] and is negative in the general case for the 4th order
cumulant. More precisely, noting RS (i, J), cBi, j) and
MY, j, k. 1) the coefficients associated to the cyclic
frcqm:nciesA o, B and 7 in the Fourier sgrial expansion of
Rx(i, (0 = E[X‘(l)xj(f)*]v C(i, )1 = Elxi(x(n)] and
M (i, j, k. (1) 2 Elx0)xj(6) xa()"x1(9)) respectively, it
has been shown in [12] that
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while the classical 4th order cumulant estimator generates
asymplotically an apparent 4th order cumulant given by
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Comparing (3.1) and (3.2), we deduce that for (quasi)-
cyclostationary sources, the classical estimators of the 4th-
order cumulant do not generate, in the general case, the tue
value of the latter, which must be taken into account in the
behaviour analysis of the classical HO blind separators in
(quasi)-cyclostationary contexts and which may even
ptevent (in very particular situations) the separation of
statistically independent non Gaussian sources [13].

3.3 Classical HO blind separators deseription

The indirect HO methods presented in [2], [3] and [5]
aim at blindly identifying the sources sieering vectors
before the effective sources separation, the latter being done
by implementing a spatial filtering operation from the
steering vectors estimates [6]. The blind identification of
the latter reqluires a prewhitening of the data, by the pseudo-
inverse, Ry 2 of a square root of Ry = A Ry AT, which
aims at orthonormalizing (for statistically independent
paths) these steering vectors so as to search for the latter
through a unitary matrix simpler to handte. For each of the
methods presented in [2], [3] and [5], this unitary matrix
must maximize a particular blind criterion which is
theoretically a function of the Q, elements, where Q; is the
temporal mean of the quadricovariance of the whitened data
z() = R;”zx(t). However practically, the blind criterion
optimized by the classical HO blind separators is a function
of the @, elements, where Q,, is the apparent
quadricovariance of the whitened data,

Using (2.1), the vector z(¢) can be written as

P M
=D, O, mnaw+ b)) A m@+b0 (3.3
i=] k=1
where m;(1) is the normalized complex envelope of the
path ik, A ' is the (M x M) matrix of the whitened paths
steering vectors a;f, and b'(r) is the whitened noise vector.
Consequently, the Q. and Q-, matrices can be written as

Oza) = (A '®A ")Qm(ay(A ' ®A ™) (3.4)

where Q' and Q,4 are the true and the apparent temporal
mean of the quadricovariance of m'(t) respectively.

For M stationary and statistically independent total
paths, the HO blind separators introduced in [2]. [3} and [5]
have high performance [6-8], which is directly related to the
fact that the M vectors a[;®a;; are orthonormal
eigenvectors of Q, = Q,, associated to the non zero
eigenvalues. We must then wonder whether this result stitl
holds for (quasi)-cyclostationary and potentially correlated
paths and if not, what is the behaviour of these separators
in such situations, which is the purpose of the following.

4. FOURTH ORDER CORRELATION
PROPERTIES OF DIGITAL MODULATIONS

The analysis of the eigenstructure of (- and Q-5 in the
presence of several potentially correlated (quasi)-
cyclostationary paths requires the analysis of Q) and Oy
in the same context and in particular the analysis of the
4th-order correlation properties of digital modulations. For
this purpose, we consider in this section only onre source
(P = 1) with two paths (M} = 2), we assume that t}§ =0,
Ti2 =T, we note m (s} simply m(s) and we analyse the
evolution of the 16 0,,' and Q0,4 elements as a function of
1. Note that due to the particular symetries of these
matrices, the 16 elements of each matrix can be deduced
from only 5 elements corresponding to the element (1, 1,
1, 1} (temporal mean of the 4th order true or apparent
autocurnulant) and to the 4 elements {1, 1, 1, 2), (1, 1, 2,
2y, (1, 2, 2, D) and (1, 2, 2, 2} (temporal mean of the 4th
order true or apparent crosscumulants).

Recalling that the 2nd order correlation coefficient
between the two considered paths is defined by p2(1) =
<E[m'(t) m'(t — 1)" 1561907, we define, for each of the two
matrices Q' and Qpy'y. four 4th-order correlation
coefficients (associated to the indices ijkl = 1112, 1122,
1221 and 1222) defined by

Pa@lik®) & Om(lifk] / Qma[1111] (4.1

The four coefficients pg[ijk{]{t) and the four others
p4alijkl](7) characterize the true and the apparent 4th-order
corretation of ail the modulations respectively. From these
coefficients, it is also possible Lo define, for each matrix
Opr and Qpy'a, an average 4th order correlation coefficient
which modulus can be defined by the following expression

IPacayav(D! & (1/14)[lpgia{ 1 L12)(0) + Hpagy[1 122)(0)
+ 2Ipaa) (122117 + 4|p4(a)[1222](1:)|] {4.2)

In order to quantify the 4th-order correlation of some
modulations, let us consider the linear modulations,
characterized by a complex envelope m(1) given by

m(n = 2 ay vt =nT)

n
where the complex symbols ap, are i.i.d. random variables,
T is the symbot duration and v(1) is a real-valued pulse
function. Under these assumptions, it is possible 1o show
that :

- Ip2(1)l and the modulus of the four true 4th-order
correfation coefficient only depend on 1 and v(¢) but do not
depend on the symbol statistics.

- the modulus of the four apparent 4th-order correlation
coefficient depend on 1, v(r) and also on the 2th and 4th-
order symbol statistics, which confirms the fact that the
classical 4th-order cumulant estimator changes the 4th-order
correlation of the linear modulations.

4.3)



For example, if we choose the square pulse such that
vin=1if 0 €t < T and v(t) = 0 elsewhere, we find that
pa{1) and the four true 4th-order correlation coefficients
have the same modulus equal to | = {t¥/7. This implicates
that 1p4.av{(T) = 1p2(t) and shows that generally a 2nd order
correlation between paths generates also a 4th order
correlation.

The previous results are illustrated at {igure 1 which
shows the variations of Ip4,av(T) and 1p4a.av(T)l as a
function of |p2(t)l for a BPSK and a QPSK modulation and
for two pulse functions corresponding to the square and the
half-Nyquist function with a roll-off of 0.25.
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5. EIGENSTRUCTURE OF Q, AND Q.4

We analyse, in this section, the eigenstructure of the
matrices Q; and Q-, in the presence of correlated paths of
(quasi)-cyclostationary independent sources.

5.1 Prewhitening of the data

The prewhitening stage of the data by the matrix R;”z
transforms (2.1) into (3.3). 1t is then possible to show that
in the presence of correlated paths, the whitened steering
veclors @, are no longer orthonormalized. More precisely,
it can be shown that :

- aj) is orthogonal to aj; if and only if mji(1) and
m J.jr(r) are not correlated

- aj; is normalized if and only if my(r) is uncorrelated
with zll the mﬂ(r) Gl=ik)

For example, in the case where P =1 and M = 2,
noting p2 the 2nd order correlation coefficient between
mj1(f) and m]2(¢), we find that

(5.1
(5.2)

airlai) = aizfaiz = 1701 ~ipa?)
aitaja= - pa/(l-lpat?)

5.2 Eigenstructure of @,
The statistical independence of the P considered sources
implicates that the Q- matrix, defined by (3.4), can be
Q. =, (A;®A7) Qi (4; @A) &

wrillen as
P

2 Q7 (5.3)
=1

where Ajis the (M X M;) matrix of the sources steering
vectors @ (1 <k £ M;) and Qp; is the temporal mean of
the quadricovariance of the vector m(r) which components
are the mp(f) (1 £ k £ M;). The orthogonality of the
vectors aj and aj; for i # j (section 5.1) implicates that for
1 £ i< P, the eigenvalues and eigenvectors of @ are also
eigenvalues and cigenvectors of Q,. Consequently, the
eigenvalues and eigenvectors of Q; correspond to the
reunion of the eigenvalues and eigenvectors of the matrices
Q. In other words, statistical independent sources
contribute to the eigenstructure of @, without any
interaction between themselves. The rank r of @; is then
equal to the sum of the rank, r;, of the matrices Qy;.

On the other hand, the rank of Q. ri, may vary
between M; (independent paths of the source #) and M‘ (all
the paths of the source i are correlated to each other).
However, it can be shown that for linear modulations, even
when all the Ealhs of the source / are correlated to each
other, r; < M;*. Besides, whatever the kind of modulation,
it can be shown that the eigenvalues of Q,; and thus those
of Q; do not depend on the mixture matrix A.

5.3 Eigenstructure of Q.4

The modification of the 4th-order correlation of the
sources by the classical 4th-order cumulant estimators
implicates that it may exists situations for which the
apparent dth-order cross-cumulant temporal mean of two
statistically independent sources is not zero [13].
Consequently, Q;, may have a structure not similar to that
described by (5.3) and the results of section 5.2 may not be
applied for Q;,. However, in most practical cases the
structure (5.3) still holds exactly or approximately for Qq,
with Qi and @i replaced by Quniq and Qiq, and the
results of section 5.2 can still be applied, despite of the fact
that the apparent 4th-order autocumulants are no longer
equal to the true ones. However note that for linear
modulations, the rank of Q,;4 is often equal to M ,-2 when
all the paths of the source i are correlated to each other.

5.4 Illustrations

The figure 2 illustrates the previous results by showing
the values of the non zero eigenvalues modulus of Q; and
04 in the presence of P = 3 independent sources (QPSK-
Nyquist, QPSK-Square, BPSK-Square) with M} =2, My =
1 and M3 = 1, for several values of T/T, where 7 is the
relative time delay between the two paths of the source 1.
The varations of T does not modify the 2 highest values.
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Fig. 2 - Eigenvalues modulus of Q, and O, for P = 3
with M| =2, M2 =1 and M3 = 1, as a function of /T

6. BLIND IDENTIFICATION AND SOURCE
SEPARATION

In the presence of one source with several correlated
paths, the blind identification of the paths steering vectors
cannot be done exactly since the whitened steering vectors
are not orthogonal to each other (section 5.1). In this case,
the blind estimates of the paths steering vectors are linear
combination of the true ones with coefficients directly
related to the 4th-order correlation between the paths.
Consequently, the separation of correlated paths cannot be
optimal but still occurs up to a relatively high level of
2nd-order correlation, depending on the O, matrix which is
exploited (true or apparent), the modulation and the pulse
function for linear modulations.

In the presence of several independent sources with their
own paths, although it exists situations for which the
separation of the different sources (not paths) fails, even
from the exploitation of the true (J;, in most practical
cases, this separation occurs even from the use of Q4.

oo ae -4 = . ¢ X W W ® W

Fig. 3 - Spatial correlation coefficient as a function of 0

The Figure 3 illustrates the previous results by
showing the spatial correlation coefficient between the 4
blind steering vector estimates and the array manifold of a
ULA of 10 sensors as a function of @ for one QPSK-
Nyquist source (ro 0.25) with two paths which DOA are
—70° and —30° and such that /T = 0.4, a QPSK-Square
{30°) and a BPSK-Square (50°) with one path each. Note
that @, and @,, give, in that case, the same good
estimation of the paths DOA by this DF method called
Blind-Maxcor [14).

8. CONCLUSION

The behaviour of the classical indirect HO biind source
separation methods has been analysed in the presence of
correlated paths of several (quasi)-cyclostationary sources,
through the analyses of the 4th-order correlation of digital
modulation and the eigenstructure of the whitened
quadricovariance. The choice of the 4th-order cumulant

. temporal mean estimator has been shown to be crutial in

some cases. In most practical situations, the classical
methods do not mix paths of independent sources and
separate correlated paths up to a high 2nd order cormrelation.
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