
Noncoherent Multi-User MIMO Communications
using Covariance CSIT

Christo Thomas Kurisummoottil‡, Wassim Tabikh‡¶, Dirk Slock‡, Yi Yuan-Wu¶
‡EURECOM, Sophia-Antipolis, France, Email: {Christo.Kurisummoottil,tabikh,slock}@eurecom.fr

¶Orange Labs, Issy-les-Moulineaux, France, Email: yi.yuan@orange.com

Abstract—The Multi-User downlink, particularly in a Multi-
Cell Massive MIMO setting, requires enormous amounts of
instantaneous CSIT (Channel State Information at the Trans-
mitter(s)), iCSIT. Here we focus on exploiting channel covariance
CSIT (coCSIT) only. In particular multipath induced structured
low rank covariances are considered that arise in Massive MIMO
and mmWave settings, which we call pathwise CSIT (pwC-
SIT). The resulting non-Kronecker MIMO channel covariance
structures lead to a split between the roles of transmitters and
receivers in MIMO systems. For the beamforming optimization,
we consider a minorization approach applied to the Massive
MIMO limit of the Expected Weighted Sum Rate. Simulations
indicate that the pwCSIT based designs may lead to limited
spectral efficiency loss compared to iCSIT based designs, while
trading fast fading CSIT for slow fading CSIT. We also point
out that the pathwise approach may lead to distributed designs
with only local pwCSIT, and analyze the sum rates for iCSIT
and pwCSIT in the low and high SNR limits.

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/
transmission and Rx may denote receive/receiver/reception.
Interference is the main limiting factor in wireless transmis-
sion. Base stations (BSs) disposing of multiple antennas are
able to serve multiple Mobile Terminals (MTs) simultaneously,
which is called Spatial Division Multiple Access (SDMA) or
Multi-User (MU) MIMO. However, MU systems have precise
requirements for Channel State Information at the Tx (CSIT)
which is more difficult to acquire than CSI at the Rx (CSIR).
Hence we focus here on the more challenging downlink (DL).

The recent development of Massive MIMO (MaMIMO) [1]
opens new possibilities for increased system capacity while at
the same time simplifying system design. We refer to [2] for
a further discussion of the state of the art, in which MIMO
Interference Alignment (IA) requires global MIMO channel
CSIT. Recent works focus on intercell exchange of only scalar
quantities, at fast fading rate, as also on two-stage approaches
in which the intercell interference gets zero-forced (ZF). Also,
massive MIMO in most works refers actually to MU MISO.

Whereas the exploitation of covariance CSIT (coCSIT) may
be beneficial, in a MaMIMO context it may quickly lead to
high computational complexity and estimation accuracy issues.
Computational complexity may be reduced (and the benefit of
coCSIT enhanced) in the case of low rank or related covariance
structure, but the use and tracking of subspaces may still be
cumbersome. In the pathwise approach, these subspaces are
very parsimoniously parameterized. In a FDD setting, these
parameters may even be estimated from the uplink (UL).

As opposed to the instantaneous channel CSIT (iCSIT), the
pathwise CSIT (pwCSIT) is not affected by fast fading.

Massive MIMO makes the pathwise approach viable. In-
deed, with enough antennas, pwCSIT by itself may allow zero
forcing (ZF) [3], which is of interest at high SNR. However,
we are particularly concerned here with maximum Weighted
Sum Rate (WSR) designs accounting for finite SNR. ZF of all
interfering links leads to significant reduction of useful signal
strength. We briefly allude to the general case of Gaussian
partial CSIT (paCSIT), in which the combined availability of
channel estimates (mean CSIT) and coCSIT can be exploited.
Such general paCSIT scenario can e.g. be particularized as
in [4] to the case of perfect iCSIT for intracell channels
and pwCSIT for intercell channels. This leads to 2-stage BF
expressions, similar to hybrid beamforming. The slow stage
handles intercell interference, and is frequency-flat. It can be
exploited also to separate the cells for channel estimation
purposes. In what follows we consider in more detail pwCSIT
for all channels (both intercell and intracell). Also, in this (as
any) case of paCSIT, the WSR criterion needs to be modified.
We shall consider the Expected WSR (EWSR). Furthermore,
we shall take advantage of a Massive MIMO setting to exploit
a simple Massive EWSR limit that results from the law of
large numbers. This MaEWSR limit leads to a loss of all
(narrowband) frequency-selectivity in the channel and also
leaves no utility for space-time coding, though this can be
expected to bring some benefits.

II. STREAMWISE IBC SIGNAL MODEL

We start with a per stream approach (which in the perfect
CSI case would be equivalent to per user). In an IBC formu-
lation, one stream per user can be expected to be the usual
scenario. In the development below, in the case of more than
one stream per user, treat each stream as an individual user.
So, consider again an IBC with C cells with a total of K users.
We shall consider a system-wide numbering of the users. User
k is served by BS bk. The Nk× 1 received signal at user k in
cell bk is

yk=Hk,bk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

Hk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) scalar signal
stream, Hk,bk is the Nk ×Mbk channel from BS bk to user



k. BS bk serves Kbk =
∑
i:bi=bk

1 users. We considering a
noise whitened signal representation so that we get for the
noise vk ∼ CN (0, INk

). The Mbk × 1 spatial Tx filter or
beamformer (BF) is gk. Treating interference as noise, user k
will apply a linear Rx filter fk to maximize the signal power
(diversity) while reducing any residual interference that would
not have been (sufficiently) suppressed by the BS Tx. The Rx
filter output is x̂k = fHk yk.

III. MAX WSR WITH PERFECT CSIT

Consider as a starting point for the optimization the
weighted sum rate (WSR)

WSR = WSR(g) =

K∑
k=1

uk ln
1

ek
(2)

where g represents the collection of BFs gk, the uk are rate
weights, the ek = ek(g) are the Minimum Mean Squared
Errors (MMSEs) for estimating the xk:

1

ek
=1+gHk HH

k,bk
R−1

k
Hk,bkgk=(1−gHk HH

k,bk
R−1
k Hk,bkgk)−1

Rk = Hk,bkQk HH
k,bk

+ Rk , Qi = gig
H
i ,

Rk =
∑
i 6=k

Hk,biQi H
H
k,bi + INk

.

(3)
Rk, Rk are the total and interference plus noise Rx covariance
matrices resp. and ek is the MMSE obtained at the output
x̂k = fHk yk of the optimal (MMSE) linear Rx fk,

fk = R−1
k Hk,bkgk = R−1

k hk,k . (4)

The WSR cost function needs to be augmented with the power
constraints ∑

k:bk=j

tr{Qk} ≤ Pj . (5)

A. From Max WSR to Min WSMSE

For a general Rx filter fk we have the MSE

ek(fk,g) = (1− fHk Hk,bkgk)(1− gHk HH
k,bk

fk)

+
∑
i 6=k fHk Hk,bigig

H
i HH

k,bi
fk + ||fk||2 = 1−fHk Hk,bkgk

−gHk HH
k,bk

fk+
∑
i

fHk Hk,bigig
H
i HH

k,bifk+||fk||2.
(6)

The WSR(g) is a non-convex and complicated function of
g. Inspired by [5], we introduced [6], [7] an augmented cost
function, the Weighted Sum MSE, WSMSE(g, f , w)

=

K∑
k=1

uk(wk ek(fk,g)− lnwk) +

C∑
i=1

λi(
∑
k:bk=i

||gk||2−Pi)

(7)
where λi = Lagrange multipliers. After optimizing over the
aggregate auxiliary Rx filters f and weights w, we get the
WSR back:

min
f ,w

WSMSE(g, f , w) = −WSR(g) +

K∑
k=1

uk (8)

The advantage of the augmented cost function: alternating
optimization leads to solving simple quadratic or convex
functions:

min
wk

WSMSE ⇒ wk = 1/ek

min
fk

WSMSE ⇒ fk=(
∑
i

Hk,bigig
H
i HH

k,bi +INk
)−1Hk,bkgk

min
gk

WSMSE ⇒
gk=(

∑
i uiwiH

H
i,bk

fif
H
i Hi,bk +λbkIM )−1HH

k,bk
fkukwk (9)

UL/DL duality: the optimal Tx filter gk is of the form of a
MMSE linear Rx for the dual UL in which λ plays the role of
Rx noise variance and ukwk plays the role of stream variance.

B. Minorization (DC Programming)

In a classical difference of convex functions (DC program-
ming) approach (also called Successive Convex Approxima-
tion (SCA)) as in [8], the concave signal terms are kept
and the convex interference terms are replaced by the linear
(and hence concave) tangent approximation. This linearization
is in term of the Tx covariance matrix Qk. However, after
substituting Qk = GkG

H
k in terms of BF matrices Gk,

the concave character is less clear. But in any case, this
DC programming/SCA approximation allows to construct a
minorizer cost function, and minorization is a well established
optimization approach [9].

So, consider the dependence of WSR on Qk alone. Then

WSR = uk ln det(R−1

k
Rk) +WSRk ,

WSRk =
∑K
i=1,6=k ui ln det(R−1

i
Ri)

(10)

where ln det(R−1

k
Rk) is concave in Qk and WSRk is convex

in Qk. Since a linear function is simultaneously convex and
concave, consider the first order Taylor series expansion in Qk

around the current1 Q
′

(i.e. all Q
′

i) with e.g. Ri = Ri(Q
′
),

then

WSRk(Qk,Q
′
) ≈WSRk(Q

′

k,Q
′
)− tr{(Qk −Q

′

k)Ak}

Ak =−
∂WSRk(Qk,Q

′
)

∂Qk

∣∣∣∣∣
Q
′
k,Q
′

=

K∑
i 6=k

uiH
H
i,bk

(R−1

i
−R−1

i )Hi,bk

(11)
Note that the linearized (tangent) expression for WSRk
constitutes a lower bound for it. Now, dropping constant
terms, reparameterizing the Qk = GkG

H
k , performing this

linearization for all users, and augmenting the WSR cost
function with the Tx power constraints, we get the Lagrangian

WSR(G,G
′
, λ) =

C∑
j=1

λjPj+

K∑
k=1

uk ln det(1 + GH
k BkGk)−GH

k (Ak + λbkI)Gk

(12)

where
Bk = HH

k,bk
R−1

k
Hk,bk . (13)

1To keep notation light, we shall not denote Ri, Ak as R
′
i, A

′
k etc.



The gradient (w.r.t. Gk) of this concave WSR lower bound is
actually still the same as that of the original WSR criterion!
And it allows an interpretation as a generalized eigenvector
condition

BkGk = (Ak + λbkI)Gk
1

uk
(I + GH

k BkGk) (14)

or hence Gk = Vmax(Bk,Ak + λbkI) are the (normal-
ized) ”max” generalized eigenvectors of the two indicated
matrices, with eigenvalues Σk = Σmax(Bk,Ak + λbkI). Let
Σ

(1)
k = G

H

k BkGk and Σ
(2)
k = G

H

k AkGk. The advantage
of formulation (12) is that it allows straightforward power
adaptation: introducing stream powers in the diagonal matrices
Pk ≥ 0 and substituting Gk = Gk P

1
2

k in (12) yields

WSR(P , λ) =
∑C
j λjPj+

K∑
k=1

[uk ln det(I + PkΣ
(1)
k )− tr{Pk(Σ

(2)
k + λbkI)}]

(15)

optimization of which leads to the following interference
leakage aware water filling (WF) (jointly for the Pk and λc)

Pk =
(
uk(Σ

(2)
k + λbkI)−1 − Σ

−(1)
k

)+

,
∑
k:bk=c

tr{Pk} = Pc

(16)
where the Lagrange multipliers are adjusted to satisfy the
power constraints. This can be done by bisection and gets
executed per BS. Note that some Lagrange multipliers could
be zero. Note also that as with any alternating optimization
procedure, there are many updating schedules possible, with
different impact on convergence speed. The quantities to
be updated are the gk, the Pk and the λc. Note that the
minorization approach, which avoids introducing Rxs, can at
every BF update allow to introduce an arbitrary number of
streams per user by determining multiple dominant generalized
eigenvectors, and then let the WF operation decide how many
streams can actually be sustained.

In contrast, in [8], for given λ, the G get iterated till
convergence and the λ are found by duality (line search):

min
λ≥0

max
G

[

C∑
j

λjPj +
∑
k

{uk ln det(R−1

k
Rk)− λbk tr{Pk}}]

= min
λ≥0

WSR(λ).
(17)

This typically leads to higher computational complexity for a
given convergence precision.

C. Pathwise Wireless MIMO Channel Model

In this section we drop the user index k for simplicity. The
MIMO channel transfer matrix at any particular subcarrier n
of a given OFDM symbol can be written as [10], [11]

H[n] =
∑L
i=1Aie

jψi[n]hr(φi)h
T
t (θi) = Hr Ψ[n] D HH

t ,

Hr = [hr(φ1) hr(φ1) · · ·] ,

Ψ[n] =

e
jψ1[n]

ejψ2[n]

. . .

,D =

A1

A2

. . .

,HH
t =

hTt (θ1)
hTt (θ2)

...


(18)

where there are L (specular) pathwise contributions with
• Ai > 0: path amplitude
• ψi[n]: path phase
• θi: angle of departure (AoD)
• φi: angle of arrival (AoA)
• ht(.)/hr(.): M/N × 1 Tx/Rx antenna array response

with ||ht(.)|| = 1, ||hr(.)|| = N . For wideband scenarios, all
factors may become frequency-dependent. The antenna array
responses are just functions of angles AoD, AoA in the case
of standard antenna arrays with scatterers in the far field. The
fast variation of the phases ψi (due to Doppler) corresponds
to the fast fading. All the other parameters vary on a slower
time scale and correspond to slow fading. In the pathwise CSIT
(pwCSIT) model, we shall assume the ψi to be i.i.d. uniformly
distributed and all slow parameters to be known. Note that
the pathwise channel model, which leads here to a type of
Tx covariance CSIT, does not lead to the usual separable
covariance case, which is discussed e.g. in [2]. In previous
work, we essentially modeled the whole of HrΨ as i.i.d.
random, which leads to a special case of the MIMO channel
with separable correlation structure. Here the knowledge of
Hr is exploited, leading to an appearance of (implicit) Rxs
who contribute to the interference management.

DoD 

DoA complex 
path gains Intracell path 

Intercell path 

Fig. 1. Pathwise Multi-User Multi-Cell scenario.

IV. MIMO INTERFERENCE ALIGNMENT (IA)

ZF (IA) feasibility for both the general reduced rank MIMO
channels case and the pathwise MIMO case has been discussed
in [3], in particular also when only based on Tx side covariance
CSIT. It is shown how the IA responsability gets shared
between Tx and Rx, requiring only local CSI. Also the role of



Rx antennas is highlighted, leading to reduced (Tx covariance)
rank channels.

V. EXPECTED WSR (EWSR)

For the WSR criterion, we have assumed so far that the
channel H is known. The scenario of interest however is
that of partial CSIT. Once the CSIT is imperfect, various
optimization criteria could be considered, such as outage
capacity. Here we shall consider the expected weighted sum
rate EH|HWSR(g,H) =

EWSR(g) = EH|H

∑
k

uk ln(1 + gHk HH
k,bk

R−1

k
Hk,bkgk)

(19)
where we now underlign the dependence of various quantities
on H and H is a channel estimate. The EWSR in (2)
corresponds to perfect CSIR since the optimal Rx filters fk as
a function of the aggregate H have been substituted, namely
WSR(g,H) = maxf

∑
k uk(− ln(ek(fk,g))).

In the MaMIMO limit, we obtain the Massive EWSR limit
in which

EH|H ln det(I + HQHH)→ ln det(I + EH|H{HQHH})
(20)

when M → ∞ for finite N . The gap between both sides
in (20) can be analyzed and is bounded for any MIMO
size by γ (Euler-Mascheroni) in the worst case of only a
single Rayleigh fading entry. The RHS also corresponds to
the Expected Weighted Sum Unbiased MSE (EWSUMSE)
approach introduced in [12], which is a useful formulation by
itself. The RHS also becomes the exact mutual information
if we consider Gaussian channel outputs instead of Gaussian
channel inputs.

For the case of mean (channel estimate) and covari-
ance CSIT being jointly captured by the Gaussian CSIT,
vec(HT ) = h ∼ CN (h, Chh) where h = vec(H

T
), we get

E{HggHHH} = HggHH
H

+ (IN ⊗ gT )Chh(IN ⊗ g∗) .
(21)

This general paCSIT model, even with a pathwise channel
model, could account for unmodeled paths, estimation errors
on the path parameters, etc. Here we shall consider that all
paths are modeled and perfectly known, except for the path
phases.

A. Massive EWSR with pwCSIT

For the special case of pwCSIT (18) considered here, if the
total number of paths (all users) becomes very large, the path
phases average out and by the law of large numbers

EΨ ln det(I + HQHH) ≈ ln det(I + EΨHQHH)
HQHH −→ EΨ HQHH = HrD diag(HH

t QHt)DHH
r
(22)

which is now frequency-independent, and where diag(.) de-
notes the diagonal matrix obtained by taking the diagonal part
of the matrix argument. Hence we get the following MaMIMO

limit matrices

Rk[n]=INk
+

K∑
i=1

Hr,k,biD
2
k,bi diag(HH

t,k,biQiHt,k,bi)H
H
r,k,bi

Rk[n]=INk
+
∑
i 6=k

Hr,k,biD
2
k,bi diag(HH

t,k,biQiHt,k,bi)H
H
r,k,bi

(23)
This leads to e.g. (with Qi = GiG

H
i ) : ∂ ln det(Rk)

∂G∗i
=

Ht,k,bidiag(HH
r,k,bi

R−1
k Hr,k,bi)D

2
k,bi

HH
t,k,bi

Gi and we can
introduce
B̄k = Ht,k,bk diag(HH

r,k,bk
R−1

k
Hr,k,bk)D2

k,bk
HH
t,k,bk

Āk=

K∑
i6=k

uiHt,i,bkdiag(HH
r,i,bk

(R−1

i
−R−1

i )Hr,i,bk)D2
i,bk

HH
t,i,bk

It suffices now to replace the matrices Ak, Bk in the mi-
norization approach by the matrices Āk, B̄k above to get a
maximum EWSR design: G

′

k = Vmax(B̄k, Āk + λbkI).With
Σ

(1)
k = G

′H
k B̄kG

′

k, Σ
(2)
k = G

′H
k ĀkG

′

k, Gk = G
′

k P
1
2

k ,

Pk =
(
uk(Σ

(2)
k + λbkI)−1 − Σ

−(1)
k

)+

,
∑
k:bk=c

tr{Pk} = Pc .

(24)B. Interference management by Tx/Rx

Interference management by Tx:

Rk[n]=INk
+

K∑
i=1

Hr,k,biD
2
k,bidiag(HH

t,k,biGi︸ ︷︷ ︸GH
i Ht,k,bi︸ ︷︷ ︸)HH

r,k,bi

(25)
where the underbraced terms would be zero for i 6= k in case
of a ZF design (high SNR optimal). One can identify implicit
Rxs: from Āk we get

diag(HH
r,i,bk

(R−1

i
−R−1

i )Hr,i,bk)

= diag(HH
r,i,bk

R−1
i Hr,i,bi︸ ︷︷ ︸

Fi

(Di−HH
r,i,bi

R−1
i Hr,i,bi)

−1

HH
r,i,bi

R−1
i Hr,i,bk) = diag(HH

r,i,bk
Fi︸ ︷︷ ︸ D̃i F

H
i Hr,i,bk︸ ︷︷ ︸)

(26)

where the Fi are implicit Rxs and again the underbraced terms
would be zero for i 6= k in case of a ZF design.

C. iCSIT vs pwCSIT WSR at low SNR

We have WSR =
K∑
k=1

uk ln det(I + GH
k HH

k,bk
Fk(FH

k RkFk)−1FH
k Hk,bkGk)

(27)
where Rk = I for low SNR (or high SNR below). At low
SNR, the optimal Tx/Rx are matched filters. We get :
WSR at low SNR for iCSIT

WSR =

K∑
k=1

uk ln det(I + Σ2(Hk,bk)Pk) (28)

and WSR at low SNR for pwCSIT : WSR =

K∑
k=1

uk ln det(I+HH
r,k,bk

Hr,k,bkD
2
k,bk

diag(HH
t,k,bk

QkHt,k,bk))

(29)



D. iCSIT vs pwCSIT WSR at high SNR

With again the WSR in (27),
WSR at high SNR for iCSIT : (27) where the G, F satisfy
FH
k Hk,biGi = 0 , i 6= k which reflects joint Tx/Rx ZF. .

On the other hand, WSR at high SNR for pwCSIT :
Hr,k,bi = [Hr,k,bi,r︸ ︷︷ ︸

by UE

Hr,k,bi,t︸ ︷︷ ︸
by BS

], Ht,k,bi = [Ht,k,bi,r︸ ︷︷ ︸
by UE

Ht,k,bi,t︸ ︷︷ ︸
by BS

]

where the underbraces indicate which nodes handle the inter-
ference of the indicated channel portions, and

Fk = P⊥Hr,k,r
Hr,k,bk (HH

r,k,bk
P⊥Hr,k,r

Hr,k,bk)−
1
2

G
′

k = P⊥Ht,k,t
Ht,k,bk (HH

t,k,bk
P⊥Ht,k,t

Ht,k,bk)−
1
2

WSR =

K∑
k=1

uk ln det(I + Σ(S
1
2

k D2
k,bk

diag{Tk}S
1
2

k )Pk)

Sk = HH
t,k,bk

P⊥Ht,k,t
Ht,k,bk , Tk = HH

r,k,bk
P⊥Hr,k,r

Hr,k,bk .

In the pathwise case, the ZF task of all paths gets split between
Tx and Rx which each ZF paths from either Tx or Rx side.

VI. SIMULATION RESULTS
Simulations are provided for the case of C = 2 cells, 2

users/cell, L = 3 paths in all channels, and varying Tx/Rx
antenna numbers M , N . The expected sum rate is compared
between the cases of perfect instantaneous CSIT (iCSIT) and
(global) pathwise CSIT (pwCSIT). The loss is limited as soon
as pathwise ZF is possible.
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Fig. 2. Expected sum rate comparison for M = 3, N = 3.
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Fig. 3. Expected sum rate comparison for M = 4, N = 4.
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Fig. 4. Expected sum rate comparison for M = 10, N = 4.
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