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Abstract—Massive multiple-input multiple-output (mas-
sive MIMO) and small cell densification are complementary
key 5G enablers. Given a fixed number of the entire base-
station antennas per unit area, this paper fairly compares
(i) to deploy few base stations (BSs) and concentrate many
antennas on each of them, i.e. massive MIMO, and (ii) to
deploy more BSs equipped with few antennas, i.e. small
cell densification. We observe that small cell densification
always outperforms for both signal-to-interference ratio
(SIR) coverage and energy efficiency (EE), when each BS
serves multiple users via L number of sub-bands (multi-
carrier transmission). Moreover, we also observe that larger
L increases SIR coverage while decreasing EE, thus urging
the necessity of optimal 5G network design. These two
observations are based on our novel closed-form SIR
coverage probability derivation using stochastic geometry,
also validated via numerical simulations.

I. INTRODUCTION

Performance improvements such as having wider cov-
erage, higher user data rate, higher energy efficiency and
lower latency are under an intensive investigation for the
design of the fifth generation (5G) and beyond cellular
architectures. These improvements are fundamental to
achieve the dramatic growth of connected devices and
the tremendous amount of data in applications such as
voice, videos, and games [1], as well as applications
in wireless virtual-reality [2]. Novel innovative network
technologies are used to meet the required performances.
First, transmission with massive multiple-input multiple-
output (MIMO) [3] is considered as a candidate tech-
nology for 5G. The key feature of this technology is
the use of a large number of antennas at the base
station compared to the number of users. The more
antennas the base stations are equipped with, the better
the performance is in terms of data rate and energy
consumption [4]. A second promising technology is
small cell networks [5], that consists of a dense number
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of small cell base stations in a given area. Due to the
short distance between the base station (BS) and the
user terminals, small cell networks have a low path
loss thus yielding a low power consumption which can
improve the energy efficiency (EE). For a given total
number of BS antennas, interesting strategies in the
deployment of these two technologies are either i) low
density deployment of base stations with many antennas,
i.e, massive MIMO or ii) a higher density deployment of
BSs equipped with fewer antennas. Understanding which
strategy is preferable is one of the goals of this work.

In fact, many works analyzed the impact of the
massive amount of antennas on the EE. In particular,
the work in [6] solves the EE maximization problem
for a multi-cell multi-user MIMO network and shows
that small cells yield higher EE. In [6], the authors
give insights on how the number of antennas at the
BS must be chosen in order to uniformly cover a given
area and attain maximal EE. Altough many works study
massive MIMO and small-cell densification, very few
have focused on comparing their performance. Our goal
is to analyze which one of the two technologies perform
better in terms of the coverage probability and energy
efficiency.

A comparison has been recently presented in [7]. The
massive MIMO and small-cell systems were compared
in terms of spectral and energy efficiency bounds. The
authors observe via simulations that for the average
spectral efficiency, small-cell densification is favourable
in crowded areas with moderate to high user density
and massive MIMO is preferable in scenarios with low
user density. In contrast to the analysis in [7], we
derive exact expressions of the coverage probability and
EE by assuming other constraints on the model then
we compare between massive MIMO and small cell
networks in terms of these two metrics. One of the
intersting constraint is to assume multi-carrier transmis-
sion in which the total bandwidth is divided into L
≥ 1 sub-bands. Then, instead of studying the downlink
performance when each BS serve a single user at each978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



time/frequency, we consider that each BS is scheduled to
serve simultaneously multiple users on each sub-band.
We also cancel the interference by using zero-forcing
(ZF) processing. In addition, instead of introducing
massive MIMO and small-cell systems separately, we
examine the problem with a single system model by
varying the number of BS antennas under the constraint
of a fixed total number of BS antennas per unit area.
In this work, we derive analytic expressions for the
coverage probability and EE using a stochastic geometry
approach [8]. The key feature of this approach is that the
base station positions are all independent which allows
to use tools from stochastic geometry.

The rest of this paper is organized as follows. Section
II details our system model of downlink transmission
using linear processing ZF under perfect channel state
information (CSI) at each BS. General expressions for
coverage probability and EE are derived in Section III.
In Section IV, numerical results are used to validate
the theoretical analysis and make comparisons between
massive MIMO and small cell densification for both
coverage probability and EE metrics. Finally, the major
conclusions and implications are given in Section V.1

II. NETWORK MODEL

The cellular network consists of BSs indepen-
dently distributed according to a homogeneous Poisson
point process (PPP) Φ of intensity λBS (measured in
BSs/km2), and is depicted in Figure 1. Each base station
is equipped with an array of M antennas. We consider
an independent collection of single antenna mobile users,
located according to another independent stationary PPP
Ψ with intensity λUE. We assume that each user connects
to its closest BS, namely each BS serves the users which
are located within its Voronoi cell [9]. In this section,
assuming perfect CSI at each BS we study the signal
model for downlink system. With this goal in mind, we
first consider a typical user, which is connected to a
tagged BS (BS0). Since user locations are translation-
invariant, we consider that the typical user is always
located at the origin. This typical user’s received signal
y is then given as

y = r−α0 hH0 x0︸ ︷︷ ︸
Desired signal

+
∑

BSi∈Φ\{BS0}

r−αi hHi xi︸ ︷︷ ︸
Interference

+n, (1)

where the stochastic vector hi ∈ CM denotes the
small scale fading between the i-th base station to the
typical user. It follows a complex generalized Gaussian

1The following notation is used in this paper. The expectation
operation with respect to a random variable and the absolute value are
denoted by E{.} and |.|, respectively. We denote by IM the M ×M
identity matrix, and we use CN (0,Σ) to denote a circularly symmetric
complex Gaussian distribution with zero-mean and covariance matrix
Σ. The Gamma function is denoted as Γ(.). The bold lower-case letters
as h represent vectors, whereas the bold upper-case as H are matrices.

distribution denoted as hi v CN (0, IM ). The channel
is considered to be noisy, with the Gaussian noise n of
variance K

P added to the received signal. The variable ri
is the distance from the typical user to its closest base
station BSi and α ≥ 2 is the path-loss exponent. We
denote xi ∈ CM an arbitrary symbol transmitted from
the i-th base station. In addition to the received signal
model in (1), we define the signal-to-interference-plus-
noise ratio (SINR) of the typical user as

SINR =
r−α0 hH0 x0∑

BSi∈Φ\{BS0}
r−αi hHi xi + n

. (2)

We suppose that the BSs must be deployed to match a
given finite user density of λUE UEs/km2, then each
base station serves in average K = λUE

λBS
users. The

total bandwidth W is divided into L ≥ 1 sub-bands.
Therefore, K = K

L ≤M users are simultaneously served
on each sub-band by each base station. We assume that
the total number of antennas λBSM is fixed and should
be deployed in a given area. Based on this assumption,
for simplicity we set λBSM= λUE, then the number of
antennas in each base station is given by M = λUE

λBS

which is always equal or greater than K. We suppose
that P = E[xHi xi] is the average transmit power per base
station which is given as Pmax

λBS
, where Pmax is the max-

imum power used when all antennas are concentrated
on a single base station. In this scenario, to cancel out
the interference while boosting the desired signal power,
each BS applies ZF transmission to simultaneously serve
K single antennas. Let si,k v CN (0, 1) be the message
(the symbol) determined for the user k from the i-th base
station. Then, the i-th BS multiplies the data symbol si,k
destined for the k-th user by wi,k. Therefore, the linear
combination xi of the symbols transmitted by the i-th
base station intended for the K users is

xi =

K∑
k=1

wi,ksi,k, (3)

where wi,k ∈ CM×1 is ZF beamforming vector. Then,
the received SINR at the typical user can now be
expressed as

SINR =
r−α0 |hH0 w0,1|2∑

BSi∈Φ\{BS0}
r−αi

K∑
k=1

|hiwi,k|2 + K
P

=
r−α0 S

Ir + K
P

,

(4)

where Ir =
∑

BSi∈Φ\{BS0}
r−αi gi with gi =

K∑
k=1

|hiwi,k|2

denotes the interference channel power and S =
|hH0 w0,1|2 is the desired channel power. Now, we intro-
duce the metrics we will investigate in the next sections.

Definition 1 (Coverage Probability). The coverage prob-
ability of a typical user is the probability that the SINR
received by the user is larger than a predefined threshold
T such as

Pcov(T ) = P(SINR > T ). (5)
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Figure 1: An illustration of the network model.

Definition 2 (Energy Efficiency). The EE is defined as

EE =
ASE

AEC
=

Area Spectral Efficiency [bit/symbol/km2]

Average Energy Consumption [Joule/symbol/km2]
,

(6)

where the area spectral efficiency (ASE) is expressed as

ASE = λBSKE[R], (7)

in which λBS represents BS density, K is the number
of users that are served by the BSs and E[R] is the
average data rate of users. Moreover, average energy
consumption (AEC) is defined as similar to [10], that is

AEC =

(
P

η
+MPc +K3Ppre + P0

)
, (8)

where η denotes the power amplifier efficiency, Pc is the
circuit power per antenna, which indicates the energy
consumption of the corresponding RF chains. The term
K3Ppre accounts for the energy consumption for pre-
coding which is related to the number of users served
simultaneously by each base station. The term P0 is the
non-transmission power, which accounts for the energy
consumption of baseband processing.

Remark 1. The goal in EE is to maximize the perfor-
mance while minimizing the energy consumption which
are two conflicting operations in 5G.

III. PERFORMANCE ANALYSIS

In this section we give the analytical expression of
the coverage probability on a typical mobile user. After-
wards, we shall give the expression of the EE. We start
by stating the following Lemma that shall be used to
derive our results.

Lemma 1 ([9]). The probability density function (PDF)
of a typical user’s association distance r0 is

fr0(r) =
dFr0(r)

dr
= e−λBSπr

2

2πλBSr. (9)

Proof. Each user is connected to its closest base station,
then all the interfering base stations are farther than
a distance r. Since the Poisson distribution helps in
describing the chances of occurrence of a number of
events in a given space, then the probability that no base

station is closer than a distance r within an area πr2, is
e−λBSπr

2

, expressed as

P(r0 > r) = Fr0(r) = P[No BS within πr2] = e−λBSπr
2

(10)

Therefore, the PDF results from the derivative of the
cumulative distribution function Fr(R).

A. Coverage Probability

Before deriving the expression of the coverage prob-
ability, we first derive the Laplace transform of both
interference and desired signal. The desired channel
power S is distributed as Γ(M − K + 1, 1) [11]. For
the interfering signal, as wi,k is a unit-norm vector and
independent of hi, then |hiwi,k|2 is a squared-norm
complex Gaussian, which is exponential distributed. For
tractability we neglect the correlation between wi,k for
different k, then the channel gain gi is the sum of
K independent exponential distributed random variables
which follows Γ(K, 1).
Lemma 2 (Laplace Transform of Interference). The
Laplace transform of interference LIr (s)=E[e−sIr ] is

LIr (s) = exp

[
−πλBSr

2
0

(
−1 + 2F1

(
K,
−2

α
;
−2

α
+ 1;−sr−α0

))]
,

(11)

where 2F1 is the Gauss-Hypergeometric function.

Proof. See Appendix A.

Lemma 3 (Laplace Transform of the Desired Signal).
The Laplace transform of the desired signal LS(s) =
E[e−sS ] is

LS(s) =

(
1

1 + s

)M−K+1

. (12)

Proof. See Appendix B.

Combining the previous results given in Lemmas 1,
2 and 3 with the proof techniques proposed in [12], an
expression for the coverage probability can be derived
and it is given in the following theorem.



Table I: DEFAULT SIMULATION PARAMETERS.

System Parameter Symbol Value
Power amplifier η 0.318

Circuit power per antenna Pc 14.8 W

Energy consumption for precoding Ppre 1.74 W

Nr. of Sub-bands L 1

Target SINR T 1 dBm

Non-transmission power P0 65.8 W

Maximum average power per BS Pmax 40 dBm

Users density λUE 32 per km2

BS density λBS 4

Path-loss exponent α 4

Theorem 1 (Coverage Probability in Downlink). The
coverage probability at a typical mobile user in the
general cellular network model described above is

Pcov(T ) =

∫
r0>0

∫ ∞
−∞
LIr0 (i2πrα0 Ts) exp

(
− i2πr

α
0 TK

P
s

)
× LS(−i2πs)− 1

i2πs
fr0(r0)dsdr0,

(13)

where fr0(r0) is the PDF of the distance between the
typical user and the tagged base station (BS0), LIr0 (.)
is the Laplace transform of the interference and LS(.)
is the Laplace transform of the desired signal (Lemmas
1, 2 and 3 respectively).

Proof. See Appendix C.

B. Energy Efficiency

To facilitate the analysis of the EE, we consider fixed
modulation and coding schemes for each user by consid-
ering a fixed SINR threshold T as in [13], providing the
average rate E[R] as a function of downlink coverage
probability as

E[R] = log(1 + T )Pcov(T )

= log(1 + T )

∫
r0>0

∫ ∞
−∞
LIr0 (i2πrα0 Ts)×

exp

(
− i2πr

α
0 TK

P
s

)
LS(−i2πs)− 1

i2πs
fr0(r0)dsdr0.

(15)

By plugging the average rate expression into (7), we
obtain the ASE. Then, the expressions of EE can be
readily obtained and its final expression is given in (14)
on the top of this page.

IV. NUMERICAL RESULTS

In this section, we conduct Monte-Carlo simulations to
validate the analytical expressions of coverage probabil-
ity and EE of our multi-user MIMO system. The default
parameter setting is given in Table I and shall be used
unless otherwise stated.

Figure 2a illustrates the coverage probability expres-
sion provided in Theorem 1 as a function of target

SINR for three different path-loss values: α ∈ {3, 4, 5}.
The curves reveal that the coverage probability obtained
by simulation behaves exactly as the analytical results
which confirm the accuracy of our theoretical expres-
sions. Also, increasing α increases the coverage proba-
bility because the interference power decreases faster as
a function of α than the power signal [14].

Figure 2b shows the coverage probability as a function
of BS density. Several important observations can be
made from the results of this figure. First, for any given
L, the coverage probability can be greatly improved
by increasing the BS density, meaning that distributed
network densification is preferable over massive MIMO.
Second, we note that the coverage probability increases
as L increases, thus showing the importance of multi-
carrier transmissions. However, it is shown that for large
L, both massive MIMO and small cells provide the same
coverage which is confirmed according to Figure 2c.
This phenomenon occurs since the number of users K
served by each BS decreases and become very small
compared to the number of its own antennas M .

Figure 2d shows the impact of varying λBS on the EE.
The curves show that for any given L, the EE can also
be improved by increasing the BS density, meaning that
small cells is also preferable over massive MIMO. In
contrast with the coverage probability, we can observe
that in small cells scenario, decreasing the number of
sub-bands L increases the EE but in massive MIMO
scenario, large number of sub-bands provides the highest
EE. Finally, we notice also that both massive MIMO and
small cells provide the same performance gain when L
becomes very large which means that the EE increase
when the number of users served by the base station
approach the number of its base station antennas M . All
these observations show that the coverage and EE are
conflicting such that improvements in one objective lead
to degradation in the other objective for a fixed number
of sub-bands L.

V. CONCLUSIONS

Our proposed model was based on stochastic geom-
etry, where the BS and user locations were distributed
according to PPP. Using tools from stochastic geometry,
we derived the coverage probability and EE expressions
for downlink scenario. The coverage probability expres-
sion was validated via Monte-Carlo simulations. The
comparison showed that for any given sub-band L, small
cell densification is preferable over massive MIMO if
both coverage probability and EE should be increased.
However, increasing L improves the coverage probability
but decreases the EE which shows that the two metrics
are conflicting. An interesting future work is therefore
to introduce a multi-objective optimization framework
and find (possibly) optimal number of sub-bands and
BS density that maximize the coverage probability and
EE jointly for the uplink and downlink scenarios. Future



EE =

λBSK

∫
r0>0

∫ ∞
−∞
LIr0 (i2πrα0 Ts) exp

(
− i2πr

α
0 TK

P
s

)
× LS(−i2πs)− 1

i2πs
fr0(r0)dsdr0 log(1 + T )(

P

η
+MPc +K3Ppre + P0

) (14)
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Figure 2: Evolution of coverage probability with respect to the a) the target SINR. b) the BS density in BS/km2, and c) number of sub-bands
L. The subfigure d) shows the evolution of EE with respect to the BS density in BS/km2.

work will also look at multiple antenna terminals which
is still an open topic.
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APPENDIX A
PROOF OF LEMMA 2

Let f(g) and f(S) denote the PDF of gi =
K∑
k=1

|hiwi,k|2 and S = |hH0 w0,1|2 respectively. The

Laplace transform of the interference is LIr (s) =
E[e−sIr ], where the average is taken over both the spatial
PPP and the interference distribution is expressed as
follows:

LIr (s) = EΦ,{gi}

exp

−s ∑
BSi∈Φ\{BS0}

r−αi gi

 ,
= EΦ,{gi}

 ∏
BSi∈Φ\{BS0}

[
exp(−sgir−αi )

] ,
(a)
= EΦ

 ∏
BSi∈Φ\{BS0}

Egi
[
exp(−sgir−αi )

] ,
(b)
= EΦ

 ∏
BSi∈Φ\{BS0}

1

Γ(K)

∫ ∞
0

e−gi(sr
−α
i +1)gK−1

i dgi

 ,
(d)
= EΦ

 ∏
BSi∈Φ\{BS0}

1

(1 + sr−αi )K

 ,
= exp

(
−2πλBS

∫ ∞
r0

(
1− 1

(1 + sv−α)K

)
vdv

)
(16)

where the step (a) follows from the i.i.d distribution of gi
and further independence from the point process Φ. The
step (b) follows from the PDF of gi v Γ(K, 1) given as

f(g) =
1

Γ(K)
gK−1e−gi . (17)

Moreover, the step (c) follows from the computation of
the integral by the means of integration by parts. The last
step follows from the probability generating functional
of the PPP with intensity λ [9], which states that for
some function f(x) we have

E

 ∏
BSi∈Φ\{BS0}

f(x)

 = exp

(
−λ
∫
R2

(1− f(x)dx)

)
. (18)

The inside integral can be evaluated by using the change
of variables v−α → y and we obtain the result.

APPENDIX B
PROOF OF LEMMA 3

The Laplace transform of the desired signal is
LS(s) = E[e−sS ], where the average is taken over the
desired signal distribution expressed as follows:

LS(s) = ES [e−sS ]

=
1

Γ(M −K + 1)

∫ ∞
0

SM−Ke−S(1+s)dS,

a
=

(
1

1 + s

)M−K+1

,

(19)

where the first step follows from the PDF of the desired
signal

f(S) =
1

Γ(M −K + 1)
SM−Ke−SdS. (20)

The step (a) follows from the computation of the integral
by the means of integration by parts.

APPENDIX C
PROOF OF THEOREM 1

The first part of the proof follows by conditioning on
the nearest BS being at a distance r0 from the typical
user. Then, the probability of coverage is

Pcov(T, λBS, α) =

∫
r0>0

e
−πλBSr

2
0 P(

r−α0 S

Ir + K
P

> T ) 2πλBSr0dr0.

(21)

To evaluate P(
r−α0 S

Ir+K
P

> T ), we use the proof tech-
niques proposed in [14] and [12]. Some assumptions are
required for this computation:
A1) The desired signal S admits a square integrable

density.
A2) Either the interference Ir or the noise admits a

density which is square integrable.
The interference and the noise are independent, then

the second assumption imply that Ir + K
P admits a

PDF fIr+K
P

(y) that is square integrable. Therefore, the
coverage probability is expressed as follows:

P (SINR > T ) = P

(
r−αS

Ir + K
P

> T

)
,

= P
(
Ir +

K

P
< (Trα0 )−1S

)
,

= ES
{
P
(
Ir +

K

P
< (Trα0 )−1S

)}
,

(a)
= ES

{∫ S(Trα0 )−1

0

fIr+K
P

(y)dy

}
,

= ES
{∫ +∞

−∞
fIr+K

P
(y)1[0≤y≤S(Tr−α0 )−1]dy

}
.

(22)
where the step (a) above follows from the definition

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx, (23)

where f is the density function of the variable X . Using
the Plancheral-Parseval theorem [15], we obtain

= ES


∫ +∞

−∞
e
−2πisIr exp

(
−2iπ

K

P
s

)
e2iπys(Tr

α
0 )−1

− e2iπys×0

2iπs
ds

 ,

= ES

{∫ +∞

−∞
LIr (−2iπTr

α
0 s) exp

(
−2iπ

K

P
Tr

α
0 s

)
e2iπys − 1

2iπs
ds

}
.

Using Fubini’s theorem [16], and moving the expectation
inside

=

∫ +∞

−∞
ES

{
LIr (−2iπTr

α
0 s) exp

(
−2iπTr

α
0

K

P
s

)
e2iπys − 1

2iπs

}
ds,

=

∫ +∞

−∞
LIr (−2iπTr

α
0 s) exp

(
−2iπTr

α
0

K

P
s

) LS(e2iπys)− 1

2iπs
ds.

Combining the last expression and (21) gives the result
stated in Theorem 1.


