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ABSTRACT

Acoustic context information may be used by microphone-equipped devices in order to
adapt their behaviour or configuration according to a particular scenario. Recognition of
such scenarios according to the acoustic context is the goal of acoustic scene classification
(ASC). The choice of audio sensors, instead of alternatives (e.g. motion or light sensors), is a
natural one; almost all mobile and smart devices are equipped with at least one microphone.

Almost all previous solutions to ASC rely on feature extraction approaches designed
specifically for speech and music genre recognition and are thus not necessarily optimal
for ASC. Further limitations of existing solutions relate to the requirements for real-time
and low footprint implementations. These requirements must be met in order that ASC
algorithms can be developed for low power, always listening devices.

The work reported in this thesis aims to address these limitations and hence to reduce the
gap between academic and industrial research in terms of methods, protocols and metrics.
Accordingly, this thesis presents the ASC problem from a dual perspective. This includes
contributions in both fundamental research, which report contributions with respect to stan-
dard protocols and methods in addition to applied research, which describes contributions
to the adaptation of current methods to ‘real-world” applications.

The main contributions of the work include: (i) the design of ASC-tailored features which
exploit spectro-temporal patterns from spectrograms using local binary pattern analysis;
(ii) techniques for the automatic extraction of the most discriminative spectro-temporal
patterns through the application of convolutional neural networks; (iii) the collection
of a large database of realistic, low-quality audio recordings to support work in ASC;
(iv) the implementation of an always-listening, low-complexity ASC system, and (v) the
tirst investigation of ASC in an open-set scenario, a new classifier tailored to open-set
classification and new protocols and metrics for the assessment of open-set ASC.

The work presented in this thesis demonstrates that greater synergy between fundamental
and applied research must become the standard pathway to future work with a view to
creating practical, usable ASC techniques.
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RESUME

Les informations de contexte acoustique peuvent étre utilisées par des dispositifs équipés
de microphones afin d’adapter leurs comportements ou leurs configurations en fonction de
la scéne qui se déroule. La reconnaissance des scénarii en fonction du contexte acoustique
est 1’objectif de la classification des scénes acoustiques (ASC). Si il est naturel d’envisager
l"utilisation des capteurs audio pour y parvenir, s’y restreindre se justifie par le fait que
presque tous les appareils mobiles sont équipés d’au moins un microphone; ce qui n’est
pas le cas pour d’autres types de capteurs (par exemple les capteurs de mouvement ou de
lumiere).

La plupart des solutions ASC reposent sur des algorithmes d’extraction de descripteurs
congus spécifiquement pour la reconnaissance de la parole et de la musique, et ne sont donc
pas nécessairement optimales lorsqu’ils sont appliqués au domaine de I’ASC. Par ailleurs,
rares sont les approches qui prennent en considération les exigences d"une implémentation
temps réel conjointement a des contraintes de faible complexité. Or, ces exigences doivent
étre satisfaites pour que les algorithmes ASC développés puissent étre portés sur des
appareils focntionnant sur batterie et toujours a I’écoute.

Le travail présenté dans cette thése vise a combler ces lacunes et donc a réduire 1’écart
entre la recherche académique et industrielle en termes de méthodes, de protocoles et de
mesures. En conséquence, cette thése propose une reformulation du probleme de ’ASC
sous deux aspects. Du point de vue recherche fondamentale, une premiére partie relate des
contributions sur les protocoles et les méthodes standards. Une seconde partie traite de la
recherche appliquée et décrit les contributions a 1’adaptation des méthodes actuelles aux
applications du monde réel.

Les principales contributions de ce travail comprennent: (i) la conception de descripteurs
adaptés a ’ASC et qui exploitent les modéles spectro-temporels. Ces modeles sont calculés
a partir de spectrogrammes sur lesquels une analyse de motifs binaires locaux (LBPs) est
appliquée; (ii) des techniques d’extraction automatique des modeles spectro-temporels
les plus discriminants par l'application de réseaux de neurones convolutionnels; (iii) la
collecte d'une vaste base de données d’enregistrements de scénes sonores du quotidien;
(iv) la mise en oeuvre d'un systeme ASC toujours a 1’écoute, de faible complexité, et (v) la
premiere utilisation d’algorithme pour I’ASC dans un scénario de classification open-set, la
description d"un nouveau classificateur adapté a la classification open-set et de nouveaux
protocoles ainsi que de nouvelles métriques pour 1’évaluation de I’ASC poru les problemes
open-set.

Le travail présenté dans cette these démontre qu'une plus grande synergie entre la
recherche fondamentale et la recherche appliquée doit devenir la voie standard pour les
travaux futurs en vue de créer des solutions en ASC pratiques et utilisables.
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The inferno of the living is not something that will be; if there is one,
it is what is already here, the inferno where we live every day, that we
form by being together. There are two ways to escape suffering it. The

first is easy for many: accept the inferno and become such a part of it

that you can no longer see it. The second is risky and demands constant
vigilance and apprehension: seek and learn to recognize who and what, in
the midst of inferno, are not inferno, then make them endure,

give them space.”

— Italo Calvino, Invisible cities
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INTRODUCTION

Imagine closing your eyes for a moment and listening carefully to the sounds in your
immediate surroundings. You may recognise specific sounds like footsteps, air conditioning,
passing cars or perhaps voices. Even in the absence of visual cues, humans can identify most
of the times events and sounds with acoustic cues. These acoustic cues provide information
about objects which are not within the listener’s field of vision. The research presented in
this thesis focuses on the recognition of a specific acoustic scene by machines.

The choice of acoustic cues to recognise the surrounding environment is driven by the
omnipresence of microphone in smartphones, devices with the sphere of the internet of
things, wearables and hearing aid devices. While some devices are equipped with multiple,
heterogeneous sensors (examples include light sensors, gyroscopes and accelerometers),
acoustic sensors are the most widely used in practise. Furthermore, there is evidence [1] that
context recognition using acoustic cues gives better performance than using accelerometer
measurements alone. In any case, acoustic and other cues are complementary in a fusion
framework.

Acoustic scene classification (ASC) aims to categorise the environment in which a device
is used. The problem of recognising acoustic scenes is particularly pertinent in the case of
mobile devices given their use in multiple situations throughout the course of a typical day.
Here, for instance, the ringer volume of a smart telephone might be adjusted according to
whether the user is on a bus, in an office or at home.

The motivation of this work stems from the continuous demand for advanced functionality
by automatically adapting the device configuration to the situation or context. Moreover,
the industrial nature of this PhD has conditioned tracks and axes of research. With ASC
being a recent area of study, there still exists a gap between academia and industry in
terms of problems, solutions, protocols and metrics; there are clear differences between lab
evaluation and performance in the field. This dichotomy accounts for the structuring of
this thesis in two parts; one linked to fundamental research; the other related to applied
research. The final goal is to design a robust ASC system which analyses and classifies
acoustic scenes in real-time on low-power devices.

This introduction is structured as follows: a definition of ASC is presented in Sec. 1.1,
together with a discussion about the relationship of ASC with other domains in Sec. 1.2;
examples of practical use cases are listed in Sec. 1.3; Sec. 1.4 discusses motivations and goals
of this research; Sec. 1.5 details the research contributions, peer-reviewed publications and a
detailed outline of the thesis.

1.1 ACOUSTIC SCENE CLASSIFICATION

ASC is the task of classifying a global scene according to ambient sounds. A scene refers
to a high-level semantic concept such as car, park or office. ASC is a difficult task for both
humans and machines without any other cues (e. g. visual). The labelling of a scene is not
always clear and is open to interpretation on taxonomy. For example, different people may



describe the same scene with different high-level semantic concepts: from one angle, some
distinctions are impossible to obtain from sounds alone (i. e. some cars sound like buses
when only engine noise is present); from another, quiet and noisy streets may be labelled
under a more general street concept even though they may not share common acoustic
characteristics. One of the first definitions of ASC has its origins in the psycho-acoustical
studies of soundscapes [2]. As for visual landscapes, soundscapes are also composed of ambient
background noises in addition to descriptive foreground sounds. The scene is therefore a
composition of background noise and foreground sounds.

Even though many computational approaches are inspired by perceptual research, there
exists a notable distinction between these studies which aim to understand the human
cognitive process [3] and how a machine perceives and detects sounds. The question "Do
machines hear as we do?" exemplifies the discrepancy between human and machine sound
perception. As an example, differences in perception are introduced immediately through
different microphone characteristics (directivity, sensitivity, etc.). These and other such
differences may lead to a representation far from that of the human auditory system.

1.2 ASC IN THE REALM OF MACHINE LISTENING

Perceptual studies [3, 4, 5] influenced the definition of an acoustic scene, which can benefit
from prior research in other related domains such as speech recognition or music genre
identification. These domains are focused on a specific problem related to audio even though
they share common audio processing and classification techniques. More generally, these
domains are part of a broader area of research, called machine listening, which tries to mimic
the human auditory systems with machines as a whole.

As for the human auditory system, machines replicate a hierarchical process going from
audio samples to a meaningful description: the audio is represented (e.g. spectrogram),
organized (e.g. source separation), detected and classified. A vast majority of current
machine listening domains (e.g. speech recognition, music genre identification, acoustic
scene classification) can be interpreted according to this scheme.

Even so, the relationship between ASC and other machine listening domains appears
somewhat blurred. Inspired by original work [6], current machine listening domains can be
split into simpler tasks, as illustrated in Fig. 1:

¢ detection, the segmentation of useful information within a longer sequence;
e classification, the association of a label with the segmented information;

¢ description, the creation of high-level semantic information from the classification
(e.g. from genre classification to music recommendation systems).

Following this vision, for instance, the speech domain would be split into voice activity
detection (VAD) [7] (detection) followed by automatic speech recognition (ASR) [8] (clas-
sification) and then natural language processing (NLP) [9] (description) to give sense to
the resulting sequence of words. The music domain would be split into music/speech
separation (detection), music information retrieval (MIR) [10, 11] (classification) which may
determine the genre and on top of that music recommendation (description). The ASC task
tits the same formulation: the context is segmented according to some criteria, classified
and then labelled to describe, for instance, a log of the different acoustic scenes encountered
during a day. Audio events [12], are detected and classified before the complex scene is
described as a mixture of overlapping sounds.

Each domain shares the detection-classification-description formulation, together with
methods and solutions to common problems. This helps to exploit knowledge and solution
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Figure 1: Machine listening realm is composed of different research areas varying the abstraction level
of the task (i.e. detect, classify and describe). On y-axis are expressed different level of
task, while on the x-axis the main research area.

from one domain in another by using, for instance, similar features or processing. As an
example, ASC may exploit an audio detector algorithm to better describe a scene with
audio events. At the same time, ASC may provide prior information of the scene, therefore
reducing the number of possible events [12] (e. g. keyboard taping is more probable in an
office rather than in a street).

ASC is a relative new topic in machine listening. The presence of consolidated machine
listening domains (e. g. speech, music) has initially allowed researchers to adapt methods to
ASC. At the same time, the availability of a huge number of different methods has partially
limited a broader discussion on the specifics of the ASC task.

1.3 APPLICATIONS OF ASC

Applications which can directly benefit from ASC encompass existing technologies from
smartphones to hearing aids:

Context-awareness devices include an always-listening capabilities to adapt behaviour to
the surrounding situation [13]. Examples include the adaptation of a ringer volume
according to whether the user is on a bus, in a office or at the cinema [14]. Evidence [15]
shows that the capability to associate a behaviour to a context is particularly convenient
for users. Another example of practical applications is reported in [16], where wearable
devices adjust the rate (or intensity) of notifications depending on the context. The
cost of being distracted by a device may be high: imagine receiving many notifications
in the car while driving, at the restaurant with other people or while crossing the
street. The decision to notify or not and how to notify the user, should be made with
consideration for the current context.

Listening robots use information of "where I am" to switch behaviour. Especially in high
mobility conditions, prior information of where the robot is located helps in defining
the most appropriate actions to be performed [17]. Concrete examples may use ASC
to change robot speed whether it is located indoors or outdoors [18].

Automatic data tagging exploits context similarities for automatically labelling audiovisual
data. There exists a huge amount of multimedia content not segmented, neither
labelled, whose manual tagging would be practically impossible. Combining video,
image and acoustic scene information would allow to tag automatically a huge amount
of material. This material could then be used to re-train ASC with larger datasets [19].



Hearing aids adapt their configuration to the user’s environment, such as a quiet of-
fice, restaurant or music hall. Current hearing aid solutions are tuned according to
general acoustic environments that do not adapt quickly to changes in context [20].
ASC solutions could be used to improve audio quality and to enable context-based
configurations.

In all of the above applications, ASC is essentially a preprocessing step which provides
prior information to other systems. It can inform speech recognition engines on the type
of acoustic noise to improve performance [21]; it can help noise-monitoring [22] or source
separation systems [23]. In addition, different applications may fuse audio cues with other
sensor information such as acceleration, pressure or light [24] to obtain more accurate and
confident predictions of a context.

1.4 MOTIVATIONS AND GOALS

The investigation of ASC is motivated by many factors, linked to the practical scope
of this PhD: ASC research was driven by bridging the gap between fundamental and
applied research. The main goal of this work is to deploy context-awareness systems which
can help users in their daily lives. Considering that context-aware algorithms are to be
implemented for low power devices, computational efficiency and real-time processing
assume a strategical role. Dealing with channel variation or adapting metrics and evaluation
protocols are other examples.

The choice of focusing on application to embedded devices rather than full power or
cloud solutions is strategical in context-awareness: unreliable data connections and power
implications of continually streaming audio to a remote server makes cloud solutions
impractical. Moreover always-listening devices may impact user privacy by sending sensitive,
personal information contained within audio recordings. Cloud solutions require the sharing
of context information such as speech, music and other sound events which can be used to
track individuals and their activities [25]. Under this assumption, ASC approaches that run
locally on the device have clear advantages.

1.5 CONTRIBUTIONS

The structure of the thesis reflects the nature of the contributions regarding both funda-
mental and applied research. The outline is illustrated graphically by a mind-map in Fig. 1.
Fundamental research is the focus of Part 1 (to the left of the Fig. 1) which describes the
contributions between the first public challenge on ASC in 2013 [6] and the second in
2016 [26]. The sequence of the chapters follows temporally these two milestones, relating the
the public DCASE challenges in 2013 and 2016. Applied research is the focus of Part 2 (to
the right of Fig. 1) which deals with practical implications of ASC in real-world scenarios.
Contributions of this part include the adaptation of ASC solutions to work in streaming
fashion with reduced complexity.
The work reported in this thesis resulted in several publications:

* publication 1 (conference paper): "Acoustic context recognition for mobile devices
using a reduced complexity SVM", 2015 IEEE European Signal Processing Conference
(EUSIPCO);

* publication 2 (conference paper): "Acoustic context recognition using local binary
pattern codebooks", 2015 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA);



* publication 3 (workshop paper): "Acoustic scene classification using convolutional
neural networks", 2016 IEEE Detection and Classification of Acoustic Scenes and
Events challenge (DCASE);

¢ publication 4 (conference paper): "The open-set problem in acoustic scene classifica-
tion", 2016 IEEE Workshop on Acoustic Signal Enhancement (IWAENC);

¢ publication 5 (conference paper): "Baby cry sound detection: a comparison of hand
crafted features and deep learning approach", 2017 Springer Engineering Applications
of Neural Networks conference (EANN);

¢ publication 6 (patent): "Acoustic Context Recognition using Local Binary Pattern
Method and Apparatus”, US Patent App. 15/141,942

¢ publication 7 (patent): "Embedded car detector based on acoustic sensor”, EU patent
App. under approval.

Part 1 starts with Chapter 2 which describes the state of the art of ASC in 2013, at
the time of the first public challenge in ASC. Together with a public challenge, a dataset
was also released. Albeit being a huge step towards the standardisation of the ASC task
(data, protocols, evaluation metrics), standard methods were still based on features mainly
designed for speech or music (e. g. mel frequency cepstra coeffient (MFCC)). The winning
system of this challenge, in fact, estimates and models recurrent patterns in MFCCs. This
system and its main limitations are discussed in Chapter 3, where a first baseline is also
presented. Possible ways to evaluate and visualize audio features are presented in chapter 4
which leads to the design of new features. To date, almost all existing approaches to ASC
are based on traditional features designed for other domains. Even so, experiments show
that these features may not be sufficiently discriminative for the ASC task.

Given the focus on ASC-tailored features, the complex acoustic structure of a scene
is found to be represented by local spectro-temporal patterns, extracted directly from
spectrogram (publication 2 and 6). Consequently the idea of extracting spectro-temporal
patterns is then exploited using a particular topology of deep neural networks as reported
in Chapter 6. This contribution (publication 3) has been submitted and publicly evaluated
within the context of the DCASE 2016 evaluation whose main results and trends are
presented in Chapter 7.

The outline of Part 2 is summarized as follows: Chapter 8 describes practical issues of
ASC. The NXP dataset, while proprietary, is considered a contribution in the context of an
industrial PhD. The data contained in this dataset can be used not only for ASC, but also for
other related tasks (event detection, mixing speech with acoustic scene recording to learn
more robust model, etc.). Computational constraints in terms of complexity and memory
are addressed in Chapter 8 with an additional contribution including a reduced complexity
ASC system (publication 1).

One of the biggest limitations of current ASC systems involves its application to closed set
problems. In practice, ASC applications are open set in nature, where the number of classes
during evaluation is unbounded. Contributions include the proposal for a new approach
to the evaluation of ASC solutions with an open-set approach, as reported in Chapter 9.
This contribution (publication 4) presents the ASC problem as an acoustic scene detection
where a small number of known scenes are detected in a larger universe of unknown classes.
Conclusions in the final Chapter 10 collect thoughts and findings from fundamental (Part 1)
and applied (Part 2) research, and describe ideas for future research.
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Part1

FUNDAMENTAL RESEARCH



LITERATURE REVIEW

ASC covers works spanning a period of time from the first work in 1997 to the more recent
in 2014, the start of this thesis. This chapter offers a view of the historical background and
the most influential methods in ASC literature. As for the majority of machine learning
systems, ASC solutions are composed of successive blocks. These blocks treat the audio
input (preprocessing), extract a compact representation from it (feature extraction and
feature post-processing), learn an inference model (classifier) and test performance on
unseen samples (testing). This process is properly defined in Sec. 2.1. A timeline of ASC
works between 1997 to 2013 is illustrated in Sec. 2.2. In Sec. 2.3 a detailed explanation
of detection and classification of acoustic scenes and events (DCASE) 2013 database and
associated challenge are reported. Works submitted to DCASE 2013 challenge are then
grouped according to these blocks: features extraction in Section 2.4; feature post-processing
in Sec. 2.5; classifier and testing in Sec. 2.6 and 2.7. A comparison of the ASC systems
performance is then presented and discussed in Sec. 2.8.

2.1 MAIN BLOCKS OF ASC

The task of recognising and classifying an acoustic environment is generally to assign a
semantic label to a certain portion of an audio signal. The labelling of a generic acoustic
scene is open to interpretation: a taxonomy shared by all researchers in this domain is,
therefore, difficult. Current approaches treat ASC as a supervised classification problem,
where the taxonomy of possible categories is bounded and known in advance depending
on the application (e.g. a hypothetical transport scene classifier may use a subset of
categories such as bus, car, train and plane). Even though the majority of current methods uses
supervised classification, alternative solutions have also been reported in an unsupervised
manner [27, 28, 29], where the scenes are deduced during the processing (i.e. clustering
audio samples). These unsupervised approaches require a huge amount of data to extract
the underlying data structure. Therefore, the lack of a common dataset has initially blocked
investigation in this direction.

In its supervised formulation, ASC does not differ from other standard machine learning
problems [30] which are a concatenation of specific domain knowledge (acoustic properties
of a scene) with statistical inference over the data (model training and testing). Hence ASC
can be split into simpler blocks, such as those illustrated in Fig. 3, whose details are listed
below:

1. preprocessing transforms and prepares the acoustic wave for the further processing
(feature extraction and classification). Each acoustic wave is described as a variation of
sound pressure across time. This sound pressure is measured by a digital microphone
at a certain sampling frequency. The resulting digital signal is discrete in amplitude and
time [31]. Examples of preprocessing operations comprise filtering, segmenting a long
recording in equal-size clips or the averaging a two-channel stereo signal;
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Figure 3: The main blocks composing an ASC solution: first the waveform is processed, then feature
vector is extracted and processed. After that, a model is learned from all the feature vector
samples and then tested on unseen data.
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2. features extraction has the role of describing an audio wave in a more compact way
by reducing the number of dimensions needed to represent it. Standard approaches
consist of splitting an audio input into frame of 20ms over which features are calculated.
Extracting features over these short-term frames ensure that each feature vector
represents a statistically stationary segment of the original audio signal;

3. features post-processing additionally enhances a particular aspects of the original
features. As an example, time derivatives of consecutive frame-based features can be
added as additional information on time evolution of an acoustic scene;

4. model learning recognises patterns in the features space. Let  be a continuous
random variable whose value is the feature vector and with 6. the model of the cth
class. The goal of model learning is to "learn" this relation. As we will see in the next
sections, there exist different methods to estimate this relation: some of them aim to
learn the underlying distribution of the training data; others aim to maximise the
separability between class samples;

5. testing assigns a feature vector z to the most likely class c. We define as posterior
probability Pr(6.|z) the probability of a class model 6. given the feature vector z. All
previous preprocessing (feature extraction and feature post-processing) are applied
to the test sample z. The decision of the most likely class for z corresponds to the
predicted class ¢ which maximises ¢ = argmax. Pr(6.|z), where the model 6. is
obtained from model learning. Consequently, each sample in the test set will be
assigned to one of C classes;

6. performance metric estimates classification accuracy and is defined as the ratio
between the correctly predicted samples and the total predictions for all C classes. The
confusion matrix, instead, displays directly the misclassification between classes. In the
C x C confusion matrix, each element corresponding to the c'" row and ¢*" column
represents the true class ¢ which has been predicted as ¢. From the resulting confusion
matrix, the global accuracy is found by summing the elements on the diagonal divided
by the total number of elements.
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Figure 4: The main contributions in ASC before DCASE 2013.

ASC problems usually involve a huge number of possible scenes (C > 10). Accuracy
is the standard metric because summarises the performance of a multi-class system
with a single value. Nevertheless, it is heavily influenced by the balance between class
samples. This is called "accuracy paradox" [32] and affects unbalanced datasets.

In order to deal with this paradox, the mean average precision (MAP) [33] metric has
been preferred to standard accuracy. This variant of the metric calculates the global
accuracy as a sum of single class precisions:

100 C
MAP (%) = -5 g (1)

where C is the number of classes involved, TP, stands for the number of correctly
predicted samples divided by the total elements N, of the ¢t class. Consider an
example with Class 1 (N = 10, TP, = 0) and Class 2 (N, = 1000, N, = 1000) and

calculate the MAP and accuracy metrics: MAP = (10 + }888) ]]%O = 50%; accuracy =

(%)% = 99%. MAP reports a less biased metric, while the standard accuracy
shows an unrealistic measure of performance (Class 1 has no correct predictions).
MAP will be the reference metric of the system performance in the following of this
thesis, because it will be perfectly comparable with the standard accuracy performance
in the case of balanced datasets while being less biased in presence of unbalanced

datasets.

In conclusion, the vast majority of ASC methods follows the aforementioned structure
differing by the choice of preprocessing, features and classification methods. Even systems
which may appear very different on the surface, still fit this common interpretation.

2.2 HISTORICAL BACKGROUND OF ASC

Contributions from the first work in 1997 until the DCASE challenge in 2013 are depicted
on a timeline in Fig. 4. Several approaches have been proposed in the past to classify sounds
and acoustic scenes, supported by psycho-acoustical studies [5]. One of the most relevant
conclusions of these studies is that our auditory system relies on a sound-memory capable
of associating sounds to a meaningful environment. In light of this, Ellis [34] in '96 proposed
to describe an acoustic scene as a mixture of simpler building elements. In the same year,
Couvreur et al. [34] investigated an automatic recognition of environmental noise sources
(such as car, truck, plane) based on their global acoustic properties. This approach was further
developed by El-Maleh et al. [35] in ‘99 using spectral features and a Gaussian classifier.
The first method specifically addressing the ASC problem relates to a technical report of
Sawhney and Maes in ‘97 [36]. The authors recorded a small dataset composed of people
voices, subway, traffic and other classes. From these recordings they extract features based
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on psycho-acoustical filters, employing a recurrent neural networks classifier. They report a
classification accuracy of 68% over 5 classes.

Few years later in ‘01, Peltonen et al. [37] were showing that humans identify a scene with
typical sound events, such as a click, a door slam or a car engine. Tests performed on 19
individuals showed an overall 70% classification accuracy over 25 classes. The huge variation
of accuracies between classes (it varies from 32% to 100%) depends on acoustic cues present
in the scene: when the sounds in the scene are determinant in distinguishing a class from
another, accuracy was higher. As expected, silent environments without prominent sounds
do not bring sufficient information for the classification. This leads to the conclusion that
an ASC task needs a longer excerpts of information to define its prediction where the
probability of finding prominent sounds increases over time.

Influenced by these cognitive studies, Peltonen et al. [38] in “02 experimented the recog-
nition of 6 meta-classes built over 17 starting ones. Vehicle, for instance, is a meta-class
comprising car, planes, bus. The second contribution correlates the classification accuracy
with the duration of a scene. As expected, a classification integrated on a longer time
contains more prominent information, as previously mentioned in [37]. Therefore, an ideal
length for having stable classification results suggests a 30-40 seconds of signal. In spite
of these observations, the most relevant aspect of Peltonen’s research was to apply for the
tirst time MFCC and Gaussian mixture model (GMM) to the ASC problem, achieving a 68%
accuracy over 17 classes. The adoption of MFCC-GMM provided a baseline system for
future research. Continuing Peltonen experiments, Eronen et al. [39] in '03 exploited the
temporal evolution of the acoustic scene to improve the MFCC-GMM baseline system, by
using a 2-state fully connected hidden Markov model (HMM). This system was compared
to human ability to recognize 18 classes and 6 meta-classes (e. g. outdoor, vehicles, indoor,
etc ...). The recognition accuracy of HMM system is 61% over 18 classes against the 69% of
human listening tests.

Another research axis questioned the scene taxonomy: which are the connections between
everyday personal experience and collective assessment through a high-level linguistic
concept? Dubois et al. [40] in “06 investigated this association between high-level concepts
and acoustic scenes. The research showed that individuals classify acoustic scenes on the
basis of prior experience. To enforce this perspective, a further study was conducted by
Tardieu et al. [41] in 08 about the human organization of acoustic cues in increasing levels
of abstraction. In the context of a rail station acoustic scene, they demonstrated that people
use local acoustic cues (human activity) and global information (reverberation, intensity) to
hierarchically construct an acoustic scene. The same idea has been recently proposed by
Torija [42] in "13. By using 15 acoustic descriptors, an acoustic scene is composed by these
building elements.

The definition of a suitable set of features for ASC became the subject of research for
Chu et al. [43] in "08. In their work, a new way of extracting features, called matching
pursuit (MP), was applied: the audio signal is decomposed by selecting the closest basis
from a dictionary previously created. Then each audio signal is represented as a linear
combination of these dictionary atoms.

According to Rdsdnen et al. [1] in "11, the use of audio classifier combined with acceleration
brought to better context classification performance. Instead of fusing low-level sensory
information (i. e. directly combining features coming from acoustic and acceleration sensors),
only classification predictions are combined. In fact, the final prediction is a weighted-sum
of single predictions coming from audio and acceleration classifiers. A similar intuition has
been adopted for fusing visual and acoustic cues by Lee et al. [44] in "12.

A full hierarchical approach was proposed in Feki at al. [45] in “11. In this top-down
approach, each audio streaming was classified into speech, music or environmental sounds.
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If the audio streaming did not contain either speech or music was further classified according
to the most probable acoustic scene. This approach decomposes a global classification
problem into simpler sub-classification tasks, from high-level concepts until single sound
events.

In term of reproducibility and comparability of results, ASC domain was lacking of a
common dataset. Before 2013, each work mentioned above was using a different dataset
(with a different number of classes and recording conditions). The first dataset on DCASE was
released in 2013, associated to a public evaluation of ASC methods. Sec. 2.3 details protocols
and rules of this challenge. To summarise, problems coming from this section anticipate
those of the following chapters, in particular: i) the bottom-up or top-down strategy to solve
an ASC task, the former initially expressed by Ellis [34] and the latter by Couvreur [22]; ii)
the capacity of human listeners to distinguish different scenes (Peltonen [37], Eronen [39]);
iii) the class taxonomy from Dubois [40]; iv) the temporal recurrence of acoustic scene in
Eronen [46]; v) ASC-tailored features in Chu [43].

2.3 DCASE 2013

Recent trends in the signal processing community have promoted reproducibility as a
fundamental aspect of scientific research. This attitude relates to sharing code, datasets and
tools in order to reproduce exactly experiments described in papers: examples include music
retrieval [47], speech recognition [48], source separation [49], speaker authentication [50]
and anti-spoofing for speaker authentication [51].

Works prior to DCASE 2013 were typically performed with variable data (quality of the
microphone, types and number of classes are some examples). As a result, most works were
assessed using different databases of recordings. DCASE challenge dataset, whose main
objective was to support reproducibility and comparisons with other solutions, addressed
exactly this issue. The DCASE 2013 database contains recordings of the following acoustic
scenes: bus, busy street, office, open-air market, park, quiet street, restaurant, supermarket, tube
(underground train) and tube station. The database is split into two separate datasets of
the same size, one publicly released and a second which is reserved for evaluation. Each
of those datasets contains 100 recordings of 30-second audio files (WAYV, 2-channel stereo,
44.1 kHz, 16-bit) with 10 samples per class. The development dataset was already provided
to participants with ground truth labels identifying each scene. Training, validation and
testing of the system parameters are performed on a split of the development set. The split
is obtained with a 5 fold cross-validation which allows the creation of 5 non-overlapping
portions of 8o recordings for training, and 20 for testing. The cross-validation covers the full
datasets (meaning that each recording will be at least in one of the testing split). The result
of the stratified 5-fold is illustrated in Fig. 5.

Once validated on the development set, the algorithm is submitted to be tested by the
organisers on the withhold evaluation set. The evaluation protocol employs the same cross-
validation used for the development set so that each of the 5 folds contains 8o training files
and 20 testing files. This is done for two main reasons: first, the possibility of selecting a
good subset by chance is reduced; second, the composition of recordings from each acoustic
class is balanced. Before doing any other quantitative analysis of the data, it is necessary
to listen to all of 100 wave files which are part of the DCASE 2013 development set. This
helps to have a general overview of the data and which characteristics of the scene can be
represented by the features. The following provides a qualitative description of each of the
acoustic classes in the DCASE 2013 development dataset.

bus characterised by the engine noise, mainly concentrated below 300Hz. In some recordings,
there are some door beeps (more than 2000Hz) which are repeated during few seconds.
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Iteration 1 Test Train Train Train Train
Iteration 2 Train Test Train Train Train
Iteration 3 Train Train Test Train Train
Iteration 4 Train Train Train Test Train
Iteration 5 Train Train Train Train Test

Figure 5: The 5-fold protocol in DCASE development and evaluation set. The split is always done at
file level in order to obtain two completely disjoint training and testing sets.

Prominent sounds include gear changes or acceleration. There are also voices (from
both passengers and artificial voices announcing the stops). Overall energy level is
concentrated in lower frequencies.

busystreet similar to the bus scene, but energy is distributed more equally across all frequen-
cies. There are also sounds of traffic (passing car, engine, breaks) with relatively less
energy.

office low energy due to a predominance of silence. There are sparse events, such as keyboard
taping, cough, whispers, mouse clicks. The only repetitive sounds in the scene are a
printer or an air conditioning fan.

park Similar to office. This acoustic scene is characterised by quietness and silence interrupted
by wind noise, steps sounds, bells and bird tweets. Sounds of nature are the most
prominent, while other sounds (i. e. traffic) can be heard in the far-field.

quiet street acoustically close to park. The two are difficult to distinguish even for human
listeners. Even so, some sounds are prominent such as walking on asphalt which
produces a specific sound. For some recordings, the presence of traffic closer to the
microphone suggests a street noise rather than park noise.

restaurant characterised by highly energetic impulsive sounds coming from forks, knives,
plates. The background noise comprises a mix of overlapping voices.

supermarket similar to restaurant noise. Prominent sounds include the beginning of a cashier
register and radio music.

tube identified by doors, cyclic sounds of the carriages, doors opening beeps and artificial
or registered voices announcing the stops.

tube station similar to tube. The most deducible difference is a stereo effect of trains passing
from one channel to another.

The DCASE 2013 database was publicly released together with a baseline ASC. This
baseline is based on MFCC feature extraction and GMM classifier.
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Figure 6: The difference between linear (a) and Mel-scale (b) filters-bank. The Mel-scale filters-bank
has more resolution in the low frequencies.

2.4 FEATURES

The general success of machine learning techniques to solve this kind of classification
problems relates to the form of data. Feature extraction transforms raw data in a new
space of representation where underlying structure and patterns are easier to detect. In the
following subsections, DCASE methods sharing similar characteristics have been grouped
under a specific features family. Examples of these families comprise low-level audio features,
cepstral or spatial.

2.4.1  MFCC: a baseline feature extraction

The utilisation of MFCC as audio feature led to advancements in speech and speaker
recognition, music genre classification among others. It has been used also in ASC as a
reference feature extraction method. This section will explain the reasons for its adoption.
Let x[n] be the signal after being framed with a window of N samples and [X[k]| the
absolute value of its fast Fourier transform (FFT). Frequency bins corresponding to a certain
frequency range are mapped into the Mel frequencies bands, which approximate the human
pitch perception. The Mel filters-bank has a higher resolution at low frequencies than at
high frequencies. The difference between a linear and a Mel filters-bank is shown in Fig.t:
frequencies in [0, 5]kHz range are mapped on the first 26 linear-spaced bands (left inset of
Fig.6); in Mel-spaced bands, 26 bands represent a [0, 3]kHz frequency range, resulting in a
higher resolution of low frequencies (right inset of Fig.6). The magnitude coefficients of FFT
are then multiplied with the corresponding Mel-filter weights and the results accumulated.

The m'" filter to be applied to a specific frequency bin k is identified with Hy, [k]. M
stands for the total number of Mel-scale filters and K the total number of frequency bins.
Hence, the log-power at each of the Mel frequencies is calculated according to:

K—1
Sim] =1n (Z IX[k]IZHm[k]> o<sm<M, (2)
k=0

where m typically varies from 20 to 40 depending on different implementations and tasks.
Discrete cosine transform (DCT) is the last step in the MFCCs calculation. It encodes the
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rate of change in different spectrum bands as a sum of cosines at different frequencies and
amplitudes:

M—
Z m] cos( (2m+1)) 0<igD, (3)

where M is number of mel-scale filters, m the current mt" filter, D is the dimensionality
of feature vector = at the it" dimension. Any periodicities or repeated patterns in the
Mel-log spectrum will be represented with the corresponding MFCC coefficients. Thus, one
reason of the success of MFCCs for ASC stems from representing general properties of the
spectrum with a relatively small number of coefficients. There exist eight different ways
to express the DCT, in particular related to the period of the cosine. The DCT of type II
extends a signal sequence to match a symmetric period cosine of 2M. This is demonstrated
to have a higher energy compaction [52]: MFCCs coefficients are concentrated at lower indices
than other DCT transformations. From a machine learning point of view, DCT-II energy
compaction is preferable because it gives a higher fidelity representation of the original
signal with fewer coefficients.

MFCC is an approximation of a homomorphic operation [31], since MFCCs are obtained
through a reverse order of summations and logarithms. It would have been if Eq. 2 had been
written as S[m (Z ) In |X[K] m[k]). The advantage of performing the logarithm of
the output of filtered energies |X[k] [k]|#Hm [k] is indeed to be more robust to noise. On the
opposite, doing the logarithm within the sum would amplify the small variations produced
by noise before the Mel-filtering.

MEFCCs have been proven to be particularly pertinent in the speech domain, because
they well approximate the separation of the glottal excitation (source) from the vocal tract
(filter). This separation is obtained by selecting only the first MFCCs coefficients, because
the logarithm separates the source and the filter with a simple subtraction. This operation is
equivalent to take the first 13 out of M coefficients.

With MFCCs being originally designed for speech, they rise criticisms when applied
to different domains such ASC. The first criticism relates to mel filter-bank resolution
in low frequencies. While being beneficial for some acoustic scenes, a better resolution
in low frequencies may affect other classes. The second criticism concerns the choice of
selecting the first 13 coefficients. In fact, 13 MFCCs encode information about vocal tract
which is essential for speech or speaker recognition. Using the same number of MFCCs
to a non-speech-based task as ASC may not be optimal. The third criticism deals with
robustness of MFCCs in presence of overlapping sounds. DCT represents the rate of change
in different spectrum bands. By changing a value of a specific band, several DCT coefficients
can change.

MEFCCs for bus noise and speech signals are illustrated in Fig. 7. Difference are visible
in the lower coefficients for bus noise, where the noise of the engine creates harmonics
captured by the coefficients 1-2; the speech, on the other side, has a more complex structure
reflected by a larger and higher number of coefficients.

MEFCC has been largely employed in DCASE 2013 challenge [53, 54, 55, 56, 57, 58]. Nev-
ertheless, some specific works extract ceptral coefficients from different time-frequency
representations: in [58], for instance, discrete wavelet transform (DWT) is used as an alterna-
tive to standard FFT spectrograms.
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Figure 77: The Mel-power spectrum and the MFCC for the stationary context of a bus (a) and a speech
(b) excerpts.

2.4.2  Low-level audio features

Many systems [53, 59] exploit low-level temporal, spectral and energy representations
of the audio waveform to describe a scene. Among others, there are: zero-crossing rate
expresses the number of sign changes in the signal; various energy-related descriptors
(global loudness, root mean square power); auto-correlation features. There exist other
low-level features extracted from spectral representation: the spectral centroid representing
the centre of mass of the spectrum; the spectral flatness measuring the noise-likelihood
of a sound; spectral roll-off indicating the frequency below which a certain percentage
of magnitude distribution is concentrated. Low-level features are usually combined with
MEFCCs providing better performance than MFCCs alone.

A very specific feature for ASC integrates the magnitude of the power spectrum combining
several frequency bands. This descriptor is independent from an absolute level of energy,
because each energy sub-band is then divided by the total amount of energy. This feature,
referred to as band energy ratio (BER), has been proposed for ASC by [38] and was used in
various DCASE 2013 systems [53, 54, 59].

A complete list of these low-level audio features is detailed in [60].

2.4.3 Spectro-temporal features

Complex representations of audio signals aim at correlating spectral and temporal informa-
tion in a compact way. These time-frequency features may have different forms. In [61], the
authors mimic the behaviour of the mammalian auditory system. The signal is first filtered
through a bank of 128 logarithmically scaled filters. Then the resulting filtered signal is
integrated over a small window to capture fast variation of the signal over time. Similarly,
the work in [62] computes the Mel-frequency spectrogram while compressing the amplitude
with a log scale. Features in [55] are based on a model of the human cochlea.

2.4.4 Spatial features

Some acoustic scenes can be distinguished only by their two-channel stereo information. As
an example, let us consider tube and tubestation for the DCASE 2013 dataset. The acoustic
characteristics of these two classes are very similar. Nevertheless, the spatial information
contained in the two-channel stereo wave may provide some cues: while for tube scenes the
microphone is placed on the train, the tubestation can be identified by the passing of train
noise from one channel to the other.
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Spatial features employ a model for binaural hearing to estimate the interaural time
difference (i. e. the difference in arrival time of a sound between left and right channels)
and the interaural level difference (i. e. variation in amplitude of the two channels). The
interaural coherence (i. e. a measure of the similarity between the reverberation received by
each of the two channels) is usually added to complement the previous measures. All these
three measures are computed for frames of 2oms and then integrated over the entire audio
recording using statistics (mean, standard deviation) [54].

2.4.5 Recurrent pattern features

Most ASC approaches extract features from frames of 4oms overlapped by 2oms. These
frame-level features are then compacted over longer period of time by using statistics
(mean, standard deviation). According to [56], these statistic operations destroy the tempo-
ral recurrence of frame-level features. Recurrent information captures similarity between
consecutive features (i. e. a stationary noise) or between periodic features (i. e. a repeated or
semi-repeated sound).

The recurrence quantification analysis (RQA) feature extraction is composed of two parts.
First, a 2-D similarity matrix is computed from adjacent MFCCs frames. This similarity is
expressed as cosine distance between MFCCs vectors. The final binary matrix is obtained
by thresholding cosine distances to a certain radius. The radius expresses the maximum
distance between two non-consecutive frames which are still considered part of the recurrent
series. Second, RQA is then used to extract compact metrics from the number, duration, and
strength of elements in the similarity binary matrix. The authors propose then to average
RQA metrics over the entire file duration.

2.4.6 Image processing features

The work in [33] makes use of image processing techniques to encode 2-D information. The
authors propose to apply a histogram of gradients (HOG) approach on a time-frequency
representation. The peculiarity of HOG is to capture the local directions of variation in
a spectro-temporal representation. Let us imagine an engine noise which is accelerating
or decelerating, or a scene composed of sound impulses. All these patterns are visible
in a time-frequency representation with a specific local direction: diagonal in the case
of accelerating/deceleration, vertical in the case of impulsive sounds or horizontal for
stationary noises. The HOG features represent a whole image with the contributions of each
single local direction.

The pipeline of a HOG feature extraction algorithm is summarised herein. First, the
constant-Q transform is applied to an audio signal. In contrast to FFT, where the frequency
and time resolution are fixed, the constant-Q transform has a better spectral resolution at
lower frequencies and has a better temporal resolution at higher frequencies. The resulting
time-frequency image is resized and smoothed to reduce strong variations and to make this
representation as close as possible to a grey-scale image. This operation is called pooling.
Different pooling strategies are proposed in order to reduce the dimensionality of the image
while keeping the main orientations intact. The pooling has the advantages of augmenting
HOG feature robustness to small translations in time or frequency which may affect the
generalization on unseen data. Finally, this ‘image’ is split into non-overlapping cells and
counting the gradient orientations in a given cell.
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2.4.7 Acoustic elements

Some works in ASC literature describe an acoustic scene as a combination of simpler
elements (i.e. audio events). Under this view, each acoustic scene can be represented as
a histogram of detected acoustic events [63]. During the training phase, each context is
modelled with a histogram of annotated audio events. During testing, an unknown event is
first detected, classified and its occurrence added to this histogram. The histogram built
during testing is then compared to that of each context to decide the most likely class.
A similar approach has been proposed by [64] where the so called acoustic unit descriptor
becomes the basic element of a more complex scene.

2.5 FEATURE POST-PROCESSING

After extracting a feature vector from raw data, feature post-processing extracts new
information from an already-computed set of features. Post-processed features can be used
as a replacement or in combination to the original features. In line with other classification
tasks, here also feature post-processing techniques have been applied to ASC. Examples for
DCASE 2013 include:

e principal component analysis (PCA), broadly adopted in many ASC systems [46, 61, 62]
as a method to reduce dimensions while keeping intact the original variance of the
feature space. PCA finds the best orthonormal bases according to different criteria.
First, the variance of values projected onto this new set of bases should be maximal;
second, the reconstruction error of the original and reconstructed space should be
minimal. By optimizing these two criteria at the same time, the system will learn this
set of orthonormal bases (called principal components). Hence, this set of bases are
used to project the original high-dimensional feature space into a lower dimensional
space where variance is maximal;

¢ Fisher score, which estimates the relevance of features by measuring how much
features of a class are far to features of the other classes. A higher score is equivalent
to likely separable features. With ASC being in a exploratory phase, Fisher score is
used as metric to select the most discriminative subset of features [54];

¢ temporal derivatives over local frames, which capture the dynamic evolution of
consecutive features. The most cited example of temporal derivatives are the A and
AA on the MFCCs [53, 54, 57] representing velocity and acceleration of features across
time.

2.6 CLASSIFIER

After feature extraction and post-processing blocks, the original audio data is now rep-
resented in a new, meaningful space. A statistical parametric model learns from training
samples how to classify new samples. Terms as statistical and parametric perfectly define the
characteristics of model learning: statistical because the data available is a representative
subset of the entire population and the model has to be generic enough to classify unseen
data; parametric because the classifier itself is defined with a set of parameters (e.g. the
mean, standard deviation and weigths of a GMM). During training, a parametric function
defining the model is optimized. During testing, a decision function assigns an unknown
sample to the most likely class.
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The ASC literature is characterised by two types of model: generative models which learn
the underlying distribution of the training samples and discriminative models which learn
a decision boundary between classes.

2.6.1  Generative models

From observing scene-specific samples (e. g. car, bus), we can build a model of what a scene
sounds like. During testing, a new sample z is compared to the different models to predict
the most likely one.

It is supposed that a new sample has been generated by an underlying distribution
Pr(z|6). This is a likelihood which measures how likely it is that the model parameters 6.
of class ¢ generated sample z.

likelihood prior

— N

Pr(z0.) Pr(0.)
Pr(z) ’

Pr(6.lz) = (4)

Pr(0.) is referred to as prior probability. It indicates the knowledge about the how likely
it is to encounter the c'™ class. Pr(2) is a term common to all C classes and it corresponds
to Pr(z) = ZS:] Pr(z|6.) Pr(0.). When calculating Pr(6.|z) to predict a new sample, the
denominator can be omitted since

Pr(z|0.) Pr(0.)
Pr(z)

arg max = arngaxPr(ZIGC)P(GC). (5)

While learning a generative model, likelihood probabilities are not known in advance
and they have to be estimated on training data. For some classification problems, prior
probabilities are estimated on the class distribution of the training; for other problems
prior probabilities are given. The GMM classifier is an well known example of a generative
classifier utilised as baseline for DCASE 2013 [6]: the learned model, in this case, indicates
how likely a sample has been generated by a multivariate Gaussian distribution.

As for MFCCs, the choice of this classifier has been adopted as reference classifier for
ASC [38, 39]. Intuitively, the acoustic space of an audio scene can be modelled as a multi-
modal density distribution where each component may represent a spectral related hidden
class (i. e. a bus scene is composed by components such as engine, tires, door opening). In
the case of GMM, distribution of training samples X of class ¢ is modelled as a weighted
combination of Gaussian distributions:

K
Xe ~ [ [wiN(p, 25), 6)
i=1

where K is the number of components, it" expresses the current components, N(pi, X;)
is the Gaussian distribution with mean p; € RP and covariance matrix X; € RP*P (with
D as the dimensions of feature vectors). Thus, each sample in X, is generated by a weighted
mixture of these K Gaussian distributions. The probability to belong to a specific mixture i
depends on the latent variable w;. 6. = {wj, pi, Xi}i—1...k expresses the model parameters
for class c and they are learned during the training phase.

In fact, finding the maximum likelihood of O, is not easy because mainly depends on the
distribution of latent variable w;. These parameters are obtained trough an iterative process
called expectation-maximization (EM) algorithm [65].
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Once models 0. for all classes ¢ = 1--- C have been inferred from the training data, the
same processing and feature extraction are applied to an unlabelled audio sample. This new
sample z is then evaluated using models from all classes C in order to determine the most
likely class ¢

¢ = argmaxPr(z[0.)Pr(6:), c=1,---C. (7)
Cc

In the particular case of acoustic scene classification, GMM baseline classifier has some
peculiar aspects:

¢ the decision of the most probable class ¢ depends on the sum of the log likelihood
score integrated over a longer sequence of features (about 30s);

¢ the ordering of this sequence is not taken into consideration. Any random permutation
of the features relatively to the recording would produce the exact same prediction;

¢ the choice of the number of Gaussian components K is critical. Values of K have to be
big enough to well represent the multi-modal distribution of samples of an acoustic
scene. On the contrary, a number of components too big may overfit the training data
by learning a too precise distribution of training data.

Other classifiers take advantages of GMM modelling by extending temporal evolution.
The temporal evolution of sounds has been pointed as one of key for classifying a scene [27,
39, 59]. For example, the sequence as "unlocking the car - opening of the door-engine
starting" would likely identify entering to a car . Based on sequence of GMM densities,
HMM models the probability that a sound occurs after another. These probability compose
the HMM transition matrix which contains the transition probability between sounds at
different times. If the previous three sounds (unlock, door and engine) occur one after the
other, the HMM will return a higher probability while a different order will generate a
lower probability.

Another method exploiting generative models is the i-vector system, initially adopted in
speaker verification community to separate the speaker characteristics from non-relevant
information (such that channel variations, acoustic environment, etc.). First, all GMM
parameters are concatenated in a high dimensional vector. Then a lower-dimensional vector
(referred to as i-vector) is finally generated from the original high dimensional vector. An
i-vector represents the identity of an acoustic scene [57] without any spurious information
(e. g. channel variation).

2.6.2 Discriminative models

As for generative models, the goal of discriminative models is to assign a sample z to one
of the classes. The main difference is that this probability learns directly the function which
maps from the feature space of z to class c. The simplest example is the logistic regression,
where this mapping function is defined as fg = s(8'z) with s being the sigmoid function,
and 6 the mapping which minimizes the error between real classes and predictions.

Classifiers included in this group are the support vector machine (SVM), which learns how
to separate features of different classes with an hyperplane and the k-nearest neighbours
(KNN) approach, which assigns to the class whose its k nearest neighbours belong to.

Due to its simplicity, kNN has been used in early ASC works [36] because complex aspects
of the data can be learned by local approximation. As drawbacks, kNN heavily depends on
the number of neighbours and the quantity of data available. SVM, instead, projects original
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features into a higher-dimensional space in which scenes may be linearly separable. This is
achieved according to an hyperplane which maximises the margin between classes, thereby
minimising classification error.

In the group of discriminative classifiers, decision trees (DTs) are examples of non-
parametric supervised methods which learn the decision boundary by recursively par-
titioning the space. Since DTs can create over-complex structures and lead to unstable
classifiers (small variation in the data might result in a different structure of the tree and
therefore a bad generalization), this problem is mitigated by using DTs within an ensemble
of decision tree classifiers.

The tree-bagger classifier employed in [58, 66] is a possible variant of ensemble learning,
where the final model is an aggregation of decision trees trained on an independent subset
of the training data. The final prediction consists of averaging the ensemble of all DTs
predictions.

It is worth to underline that in 2013 deep neural network techniques (which were already
showing improvements in speech and image recognition tasks) were rarely mentioned.
Unfortunately, the amount of data in the DCASE 2013 database was not sufficient to apply
deep learning approaches with success.

The SVM is perhaps the most popular classifier among DCASE 2013 systems (6 out of 11).
The reason of this success is linked to the peculiarities of SVM compared to other methods:

¢ the kernel trick allows SVMs to transform the original feature space in a higher
dimensional space where separation is linear (i. e. it introduces non-linearity mapping
in the feature space);

¢ it is defined by a convex optimisation problem for which very efficient methods exist,
speeding up the learning phase;

* it is more efficient than generative models when the quantity of data is limited and
the number of classes is high (which is exactly the case of DCASE challenge).

2.7 TESTING STRATEGIES

After model learning and feature transformation, several strategies exist to decide the class
of an unknown sample. Whereas some of the strategies are highly connected to a specific
type of classifier, others can be applied universally. When the classifier is discriminative
and able to separate only two classes (as SVM), multiple classifiers can be combined to
discriminate between C classes. In the one-versus-all combination, C binary classifiers are
learned and then tested over the remaining C — 1T models selecting the class with the highest
margin. In one-versus-one, instead, # possible paired combinations of binary classifiers
are learned. During testing, the predicted class is the class which has been selected by the
majority of binary classifiers.

When the original audio recording is split into shorter segments, it may be difficult to
provide a single prediction of each recording. Majority vote is a testing strategy which
assigns the most occurring scene as final prediction. An example in [53] assigns as final
prediction the class which has occurred the most across all 4s segments composing a 30s
recording.

2.8 DCASE 2013 RESULTS

This section summarises the results of works presented in previous sections. The comparison
of these systems guided the research in the next chapters and it was used as a common
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Method Features Classifiers Testing strategies
(ID)
Olivetti et Length of the compressed audio file Random forest
al. (OE) [66] based on the
compression
distance
Elizalde et MFCCs + A + AA over a concatenation of left, right, difference and average of GMM-UBM — Maximum likelihood
al. stereo channels i-vector
(ELF) [57]
Krijinders time-frequency chocleagram statistics — SVM One-vs-one
eta.
(KH) [55]
Baseline MFCCs GMM Maximum likelihood
Patil et al. time-frequency multi-resolution analysis — PCA SVM One-vs-one, weighted majority
(PE) [61] vote by the energy present in 1s
window (overlap o0.5s)
Nogueira et MEFCCs, temporal features (modulation rate of MFCCs over 4 bands, event SVM
al. (NR) [54] density estimation), spatial features (time and amplitude differences between
the two channels) — Fisher score for features selection
Nam et al. unsupervised learning using restricted Boltzman machines on Mel-spectrogram SVM One-vs-all
(NHL) [62] — PCA
Chum et al. energy/frequency features over short and long frames (different temporal GMM — HMM Maximum likelihood
(CHR) [59] resolutions)
Geiger et al. spectral, cepstral, energy, voicing-related over 4s of signal SVM Majority vote
(GSR) [53]
Rakotoma- Histogram of gradients on constant Q transforms SVM One-vs-one
monyjy et al.
(RG) [33]
Lietal MECCs on wavelet decomposition Ensemble of binary Majority vote
(LTT) [58] trees
Roma et al. MFCCs — recurrent quantification analysis metrics (RQA) SVM One-vs-one
(RNH) [56]

Table 1: The list of the systems submitted to DCASE 2013 challenge, followed by the type of features,
classifier and testing strategies. The arrow expresses dependencies from feature — feature
processing or classification — meta-classification. A white space indicates that the information
is not provided or specified.

reference. Herein, systems submitted to DCASE 2013 challenge are listed in Tab. 1 according
to the type of features, classifiers, testing strategies as discussed in Sec. 2.4 and 2.6.

Performance evaluation regards the accuracy averaged over a 5-fold cross validation. In
the specific case of DCASE 2013 challenge, each system has been trained with 8 audio files
for 10 classes and tested on the remaining 20. This has been repeated by the number of folds.
Both development and evaluation sets use a 5-fold validation to train and test performance,
optimizing on the small set of available data.

Results for development and evaluation sets are reported in Fig. 8: full blue circles
represent accuracy of the evaluation set averaged over 5-fold; the "x"s in red indicate
the accuracy for the development set; the bars illustrate the confidence intervals of the
mean accuracies in the evaluation set (not all confidence intervals were reported for the
development set). A confidence interval (CI) measures the distance of the mean calculated
on 5-fold (sub-samples of the population) from the mean calculated on an infinite number of
folds (the entire population). The values of CI are found by multiplying the 95% quantile of
a standard normal distribution q%‘ng ) = 1.96 with the standard error: % The upper and
lower bounds of the CI are then added or subtracted from the mean accuracy p £ 1.96%.

CIs express the 95% of probability of having the true expected value of the accuracy
in this range. As a consequence, Cls estimate the range in which the real accuracy lies,
considering the variation of the metric in each fold. Intuitively smaller datasets mean wider
CIs (and higher uncertainty).

2.8.1 Discussion

Fig. 8 shows significant difference between results for the evaluation and development set
performance. Abbreviation of the submitted works are reported in Tab. 1.
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Figure 8: Plot shows the accuracy mean with 95% confidence intervals (CI) over 5-fold cross-
validation for DCASE 2013 dataset. In blue circles the values of evaluation set, whose
baseline is expressed also with a blue line; in red stars the values of the development set
with the baseline expressed in dashed red line. For some systems, the CI are not provided
in the description of the development set and there were not reported.

Some methods were probably overfitted to development data. In general, the best systems
(LTT, RNH) improved performance for the evaluation set. A significant number of systems
perform better than the baseline and even in the case of similar accuracy, ELF or KH systems
should be preferred for a lower CL

Hence, performance and methods are highly correlated. Except for ELF and CHR systems,
all the others employ discriminative classifiers (SVM, Binary tree). On the feature side,
MEFCCs are the most adopted. Among several testing strategies, the majority vote seems
to be the most effective allowing to integrate decisions across time. This suggests that an
acoustic scene is reliably detected at 30s, as found in [38].

Due to its broad adoption by many submitted systems, SVM does not make the difference
in term of final performance. Indeed, by analysing the best three systems, both RG and
RNH systems propose ASC-tailored features: the former by capturing temporal structures
using CQT-based images representation; the latter by quantifying recurrence of consecutive
MEFCCs. The idea of exploiting time-frequency spectrograms is common to other systems
(KH, PE, NHL, LIT) suggesting that temporal information is relevant to the ASC task.

From a global point of view, the fact that only few systems outperform the baseline prove
the difficulty of the task for a modest amount of data. Moreover, it seems that a similar
level of performance obtained in other domains (such as speech recognition or music genre
classification) could be achieved from a deeper investigation on ASC-tailored features.

2.8.2  Conclusions

This chapter described the literature in ASC from the early works in 1997 until latest state-
of-the-art systems in 2013, connecting psychoacoustic studies to computational methods.
There exist some common trends in ASC literature. They are detailed in the following:

¢ ASC is a difficult task for both humans and machines, confirmed by subjective tests
on 19 individuals [37]. When humans try to classify a scene, other cues (e. g. visual)
are fused with audio to complete it with missing information;

¢ temporal integration has been proven effective by both cognitive studies and com-
putational testing strategies. Majority vote is an example of integrating fixed-length
segments over 30-40s of signal. The analysis of the scene through short segments can
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capture prominent sounds (useful to discriminate a scene) and, at the same time, may
remove the less informative clips (e. g. silences);

¢ interpretations of different methods support the intuition that there exist for ASC two
main approaches. A top-down approach starts from general characteristics to gradually
recognising peculiar sounds (e. g. hierarchical classifier starting from indoor/outdoor
or transport/non-transport mode). A bottom-up approach instead builds its classifi-
cation on audio patterns which build the entire scene (e. g. the occurrence of certain
audio events can identify a scene);

¢ the most accurate systems designed specific features tailored to ASC problem. These
systems capture time-frequency evolution or recurrence of features. Another important
aspect to consider is that most systems employ a standard SVM classifier, so the
difference in term of performance is related to the features;

¢ the introduction of a publicly shared dataset has boosted research in this domain,
allowing a fair comparison of different systems. Nevertheless, the small amount of
data and the low variability means that the DCASE 2013 dataset is still too far from
real conditions (i. e. different microphones and channel paths). Furthermore, some
methods (such as deep neural networks, which are known to require a significant
amount of data to be trained) couldn’t be tested.

Finally, ASC is a recent and exciting area of research with many possible directions. One
of them is to investigate features and aspects specific to scene classification. In that sense, the
analysis of ASC features will occupy a large portion of this thesis. The second trend concerns
the application of ASC on real devices and this is partially missing in the current literature.
A real-time and low-complexity ASC system requires different approaches compared to
current methods. Contributions in this area will be treated in the Part 2 of the manuscript.
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A STATE-OF-THE-ART SYSTEM AND LIMITATIONS

This chapter details the state-of-the-art implementation of an ASC system. It is used in
the remainder of this thesis as a reference system. It is based upon the winning system of
DCASE 2013 (referred to as Roma et al. system (RNH) [56]).

Several aspects of the RNH system are presented in this chapter: feature extraction and
post-processing (in Sec. 3.1); some insights about the SVM classifier (in Sec. 3.2); the impact
of parameters on final performances (for both features and classifier in Sec. 3.4); and finally,
a discussion about the main limitations of this system (in Sec. 3.5).

3.1 RNH FEATURE EXTRACTION AND POST-PROCESSING

The RNH system employs a form of feature extraction which captures recurrent frame-level
features over a period of time. Frame-level features are MFCCs, extracted from every frame
with a 50% overlap. The processing time window adopted in RNH is 4ooms (containing
40 MFCCs computed every 25ms overlapped by 15ms). These 40 MFCCs are compared
to each other to obtain a similarity matrix between each pair of 40 MFCCs. In this case,
similarity means the cosine distance computed between MFCCs vectors. The matrix of cosine
distances is then thresholded with a radius r to obtain a binary similarity matrix.

Fig. 9 shows an example of such a binary similarity matrix computed from 40 consecutive
MEFCCs of a bus scene. Ones and zeros indicate similar and non-similar MFCC vectors
respectively. According to this view, a diagonal lines indicate consecutive periodicities of
MEFCCs while vertical lines depict stationarities (similar MFCCs on consecutive frames). The
diagonal lines of the binary similarity matrix correspond of identical MFCC vectors and
thus not informative.

From the analysis of this matrix, several measures are derived to quantify the length
and direction of points of the matrix. These measures are essentially statistics over the
thresholded matrix [67]. Examples include the recurrence (RR), the percentage of ones in the
matrix, the determinism (DET), percentage of points lying in diagonal lines, or the laminarity
(LAM), the percentage of points on vertical lines.

These measures quantify the temporal recurrence of the acoustic scenes. For example,
a bus noise characterised by stationary sounds (e. g. engine noise, tires, etc.) has a higher
percentage of vertical lines; a restaurant identified with a weaker temporal structure has a
lower percentage of ones in the matrix.

The full set of recurrent quantification analysis (RQA) features extracted over 40 consecu-
tive MFCCs refers to a long window of gooms, while MFCCs represent shorter frames. In
the RNH system a combined feature vector of MFCC and RQA is obtained by temporally
averaging RQA measures and computing their mean and standard deviation over time.
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Figure 9: Recurrence plot after thresholding the similarity matrix of 40 consecutive MFCCs. The
cosine similarity provides the values which are then thresholded. The black bins describe
the frames considered similar. Except on the diagonal (where the self-similarity is not
relevant), all lines and diagonals reflect periodicities and stationarities of MFCC frames.
This excerpt belongs to an example of bus from DCASE 2013.

3.2 SUPPORT VECTOR MACHINES

The SVM is the classifier used in the RNH system. The core idea of the SVM is to project data
into a higher dimensional space in which a linear separation is possible. The main reasons
for its popularity in machine learning can be summarised as follows: i) the separation is
formulated as quadratic convex problem whose solution is unique; ii) there exist fast and
efficient methods to solve the quadratic problem,; iii) for small datasets the discriminative
nature of the SVM provides higher performance than generative classifiers (which would
require more data to be trained).

3.2.1  The margin

The goal of the SVM classifier is to find a decision boundary for which the average distance
between the training points and the boundary is maximised. The maximisation is achieved
by first computing the margin m,, between each training sample (zn,yn) and the boundary

Mn :Un(wT$n+b)/ (8)

where Yy, is the class label and w, b are the parameters of the boundary. Intuitively,
w'x, + b has to be positive when y,, = 1 and negative number when y,, = —1. The
confidence in the classification is directly proportional to maximum distance between the
samples « and the boundary (expressed with w, b).

Given a training set of (z,yn ), the smallest margin m among all possible margins gives
a measure of the separability between the two classes:

m= min m
n=12,-N ©)

where m,, is the margin computed from the nth training sample (zn, Yn).
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3.2.2  Optimal margin classifier

A parametric optimization function maximises m with respect to w and b

max m
w,b
st. yn(w'zn+b)>m, n=12---N (10)
llwl| =1

The constraint ||w|| = 1 ensures the scalability invariance of the margin. It is a non-convex
function which makes any optimization routine difficult to apply. Nevertheless, some
operations can transform this problem into a solvable one without changing its nature. First,
the constraint [|w|| = T can be nested directly in the function by dividing m by [Jw||. As a
second step, we can introduce a scaling factor that forces w, b to produce a margin equal to
1. As a result, since the inequality yn (w"zn +b) > m holds for both sides of the margin
(yi £ 1), the margin distance is doubled. This is due to the symmetry on both positive and
negative sides of the margin itself. The optimization problem is now given by

2
max—-

wb |lwll (11)
s.t. yn(wTacn+b) >1, n=1,2,---N.

Note that maximizing 2/||w|| is equivalent to minimizing |lwl|/2. In addition, since the
quadratic form is a strictly decreasing function, minimizing [|wl|/2 will provide the same
minimum of ||w||?/2, with the difference that the latter is differentiable and better suited to
optimization:

1
min -~ [Jwl[?
w,b 2 (12)

s.t. yn('men—i—b) >1, 1,2,--n

Eq. 12 expresses a convex quadratic objective problem with linear constraints and it is
practical for two reasons:

¢ efficient quadratic programming codes are widely available to solve this kind of
problem;

¢ the solution to the optimization function is found through an iterative algorithm [68].

Eq. 12 can be rewritten with a well known optimisation technique (called duality or dual
formulation) and methods such as Lagrangian multipliers are used to solve it. Seeing the
problem in a another perspective (the dual formulation) provides a lower bound to the
solution of the primal problem. In general, the optimal values of the dual problem are not
the same of the primal and their difference is called the duality gap. However, under certain
conditions, we may solve indistinctly the dual problem for the primal. These conditions
are referred to as the Karush-Kuhn-Tucker (KKT) conditions and they determine whether
optimal values of the primal problem are equal to the optimal of the dual problem. Details
of the dual problem formulation are presented in Annex A.1.

3.2.3 Soft-margin and C parameter

There exist real cases (ASC is one good example) where the two classes are not perfectly
separable and boundary is affected significantly by outliers in the training data. At the same
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time, errors (i. e. samples on the wrong side of the boundary) have to be minimized while
keeping the margin as large as possible:

) 1 2
1111)1&% E||w|| +C ; &n

st yn(w'e, +0) = 1-&,, =

& =0

where &; indicates the slack variable, C expresses a trade-off between a smaller ||lw||?
(which corresponds to a large margin) and a small amount of training samples having
&n = 0. In other words, the C parameter is the cost of misclassifying training samples. For
large values of C, the optimization will choose a smaller-margin if that hyperplane does
a better job of getting all the training points classified correctly. Conversely, a very small
value of C will cause the optimizer to look for a larger-margin separating hyperplane, even
if that boundary wrongly classifies more points. The dual problem is found to be similar to
that in Eq. 50, the only exception being the a constraints:

Z 1 Z
n n,m

s.t. Z anyn =0 (14)
n

0<an <C.

KKT conditions determine the training samples which "support" the final classification.
These special samples are called support vectors (SVs). Due to KKT conditions, each training
samples x,, assumes a meaning depending on the value of a: for &, = 0 or &, = C, the
corresponding sample x,, is not a SV; for 0 < an, < C, &, becomes a SV.

3.2.4 The Kernel trick

In the dual formulation (Eq. 50), every inner product ,,z, can be replaced by a kernel
function K(xn, € m ) to have a more powerful representation. The idea is to map the data
into a higher dimensional space where the boundary is optimal in separating two classes.
Instead of calculating the new coordinates in this space for all features, the inner products
between all pairs of data are calculated. One of the most popular choices is the Gaussian
kernel, expressed as:

_||33n _33m||2
202

). (15)

K(@n, xm) = exp(

When two samples are really close (i.e. x; ~ x;) then K — 1. In contrast, when two
samples are far (i.e. x; # x;), then K — 0.

The variance o amplifies the distance between x,, and x,. A graphical illustration of the
influence of o on a toy-example classification problem is depicted in Fig. 10. If the distance
between them is much larger than o, the kernel function tends to be zero. Thus, if o is very
small, it will have a small influence on the distance. In other words, a higher value of o will
have a smoother decision boundary with a risk of underfitting; a lower o will have a finer
boundary with a greater risk of overfitting (the decision function is much more complex).
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Figure 10: The effect of o for the gaussian kernel: on the left side of the figure is represented a
smoother decision boundary produced with o = 5; on the right the sharper decision
boundary produced by o = 0.63.

3.2.5 Normalisation

The feature normalisation ensures that all dimensions in the feature vector have the same
range [69]. First the mean and the standard deviation of each dimension are computed
from the training set. Then, each sample in the training, validation and testing sets is
scaled by subtracting the mean and dividing by the standard deviation. This procedure
is referred to as z-score. With this operation, all the features in the training are scaled to
have zero mean and unit variance and the same normalisation is applied subsequently to
the validation/testing samples. The main reason of normalising is to avoid features with
larger values influencing widely the decision criteria at the expense of features with smaller
values.

3.2.6 Grid-search strategies

Standard SVM classifiers require the combined tuning of two free parameters: the trade-off
between the error/margin C and the width of the Gaussian kernel o. The parameter o, as
mentioned in Sec. 3.2.4, amplifies or smooths the distances within the Gaussian kernel. As a
consequence, at higher values of o correspond simpler boundaries (see Fig. 10).

Grid-search routines allow the testing of several combinations of (C, o) in order to select
the pair whose accuracy is the highest as judged on a training sub-set (referred to as
validation set).

As illustrated in Fig. 11, the grid-search performed on the first fold of the DCASE
2013 development set follows two criteria: on the right of the figure, the pair is selected
accordingly to the highest validation accuracy; on the left of the figure, the ratio between
the number of SVs and the training size is considered instead. Let us call this ratio SV ratio.

SV ratio expresses the generalisation capacity of the SVM classifier: when SV ratio is 1,
SVM uses all training samples as support vectors; when SV ratio goes to 0, few training
samples become effectively support vectors. According to Vapnik studies [70], less complex
models are less likely to overfit. Hence, SV ratio directly relates to the classifier complexity.

In the right inset of Fig. 11, the SV ratio reaches a value of 1 for every pair of (C, 0)
parameters, showing that indeed SVM needs to use almost every single training sample to
create an optimal boundary. The classifier complexity information is not captured by the
accuracy-only criterion (left inset of Fig. 11).

Herein there are some comments about two grid-search criteria (Fig. 11), one based on
the best accuracy on the validation set and the other on the lowest SV ratio:
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Figure 11: Visualization of two different strategies of grid-search: on the left the accuracy for each
pair of C, o is reported; on the right the ratio between the number of SVs and the total
size of the training.

* both grid-search strategies suggest the same pair of C,7y. Interestingly the SV ratio,
while not relying on any validation data, provides a pair of C, 0 which corresponds to
the most accurate on the validation set;

¢ there exist C, 0 whose models produce the same accuracy. For example, pairs as
C =1[64,32,16] and o = [8,16] have a 20% accuracy on the validation. By focusing only
on accuracy, all these pairs are equivalent. The SV ratio, instead, adds the information
of the classifier complexity. Under this vision, the best pair would be (C = 64,0 = 16)
which represents the highest accuracy and the lowest SV ratio;

¢ the lowest SV ratio is around 0.92 meaning that almost all training samples are SVs.
This is probably caused by the limited amount of data available for training. The
problem of the modest amount of data is discussed later in the thesis (sec. 4.3).

Therefore, a better tuning of (C, o) should consider both accuracy and SV ratio as op-
timisation criterion. The best pair becomes the one minimizing the following criterion
A:

accuracy

A =SV ratio+ (1 — 100

), (16)
where the accuracy (expressed as a percentage) takes the same range of SV ratio. The
(C, o) whose model generated the lowest A are finally selected.

The two different strategies are compared in Fig. 12: one based on Eq. 16 (called SVs
& accuracy), the other on the best validation accuracy (best accuracy). In order to fairly
compare the two strategies on a different composition of training and validation sets, a
bootstrapping test has been employed by random sampling the training set and validation
set 20 times. The values of distribution obtained correspond to the final accuracy on DCASE
2013 evaluation set. The distribution of these accuracies is depicted with box-plots in Fig. 12.
Box-plots show the first quartile to the third quartile range (solid box) and the min-max
interval (black line). Median is depicted with a horizontal red line, mean with a red square.

The proposed grid-search strategy report a lower quartile range, while the accuracy-based
has values that spans 74% and 78%. Global accuracy passes from 76% for the accuracy-only
strategy to 77% for the proposed grid-search. The proposed grid-search strategy A produces
a simpler model (with fewer SVs) and is therefore less prone to overfitting. This grid-search
strategy is adopted for all experimental works reported later in this thesis.
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Figure 12: Box-plots representing the accuracy distribution for the two grid-search strategies: the
one on left is the proposed grid-search which takes into account the validation accuracy
and SV ratio; on the right the accuracy-only strategy.

3.3 THE STATE-OF-THE-ART SYSTEM RE-IMPLEMENTATION

Similar to other ASC systems, the RNH system follows a standard approach: audio prepro-
cessing, feature extraction, feature post-processing, classification and testing. As first part
of the experimental work reported in this thesis, the RNH system was re-implemented in
order to establish a baseline algorithm. Specific implementation details are reported in the
following:

1. pre-processing involves all the processing done on the raw-audio waveform. Only the
left channel of the stereo wave form is used for feature extraction;

2. feature extraction is based on MFCCs which are computed with the default settings
of rastamat library [71]. The frequency range is set to [0, 200]Hz. 3000 MFCC feature
vectors calculated from short windows of 25ms with a shift of 1oms;

3. feature post-processing is applied to the MFCC matrix (13 MFCC coefficients x 3000
frames). MFCCs statistics are computed from frame-level MFCCs resulting into a
single 26 dimensional feature vector. The RQA features are computed over batches of
40 adjacent MFCCs (400ms of audio). RQA features are then averaged over time and
added to the MFCC feature vector to form a 37-dimensional feature vector. The same
operation is performed for each file. In contrast to the experiments reported in [56],
the removal of the first MFCC coefficient (CO) did not improve on performance and it
is therefore retained;

4. classification follows a standard SVM-based approach with a Gaussian kernel (radial
basis function (RBF)). It was implemented with the well known libsvm library [72];

5. testing comprises a one-to-one approach, resulting in 45 possible paired class combi-
nations. The class which wins the majority of paired class combination is selected as
the most likely.

As a conclusion of this section, the performance of the RNH system and the implemen-
tation of same system are reported in Tab. 2. MFCC+RQA-900 indicates the re-implemented
system: the term MFCC+RQA refers to the feature extraction type whereas the term 900 to
frequency range from which MFCCs are computed. The two systems have comparable
performances: on DCASE 2013 development set, the difference in term of accuracy is 1%; on
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DCASE 2013 - dev | DCASE 2013 - eval
RNH [56] 71% 76% +7.2
MFCC+RQA-g00 | 70% =+ 10.2 76% £5.7

Table 2: The difference between the results reported in the literature for RNH and the re-
implementation of the same approach done in this work. The results describe the average
accuracy over 5-fold cross validation with their corresponding confidence interval.

DCASE 2013 evaluation set, the two systems achieve an accuracy of 76%. A Wilcoxon signed
rank test [73] confirms that the differences for the DCASE 2013 (dev and eval sets) are not
statistically significant. The provided results are inline to those reported in the literature.
MFCC+RQA-900 will be indicated as the state-of-the-art system for the experimental works
reported later in this thesis.

3.4 LIMITATIONS OF THE CURRENT APPROACH

This section aims at showing how the feature tuning assumes a primary role in ASC. Albeit
reporting the best performance on the DCASE public dataset, MFCC+RQA-900 performance is
stricly related to the DCASE 2013 class composition. Experiments on MFCC+RQA-900 system
confirm that small changes in feature tuning have a significant impact on final performance.
The main limitations of the MFCC+RQA-900 system are summarised as follows:

¢ energy-dependent features (Sec. 3.4.1). A difference in the energy level can change the
feature values and, therefore, the final classification;

¢ 900Hz frequency-range (Sec. 3.4.2). While this range suits the DCASE 2013 class
composition, it may not be optimal for other datasets with a different set of classes;

* 30s segment predictions (Sec. 3.4.3). MFCC+RQA-900 calculates statistics over 30s seg-
ments only, but is not suited to shorter (or longer) segment durations;

¢ weak temporal structure (Sec. 3.4.3). By computing the MFCC and RQA statistics over
the full recording, MFCC+RQA-900 system loses the temporal information of the scene.

3.4.1  The role of CO

The computation of the first MFCC coefficient (C0) is linked to the first component of
the DCT i = 0 for which the cosine function is equal to 1 (see Eq.3). This is equivalent to
summing up all log-energies representing the overall loudness of the signal. This information
improves the recognition performance of the DCASE 2013 database, but may lead to
poor generalisation when a significant difference is encountered on unseen samples. This
difference can happen for two main reasons:

* againis applied to the signal during the testing phase (i. e. some devices may introduce
a gain on specific frequency bands);

¢ the distance of the microphone to the sound source changes the absolute sound level
of the recording;

To simulate these effects, a set of experiments are performed with different amplifier
gains being applied to testing samples of each fold while training samples are left unaltered.
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Figure 13: On the evaluation set of DCASE 2013, examples of feature tuning on 4 systems: (a)
accuracy as a function of different dB gains applied to the testing samples (at 0dB no
gain has been applied); (b) accuracy as a function of different frequency range used by
MFCCs (the minimum frequency is fixed at 0Hz). The accuracies are computed on systems
re-trained at each frequency range.

Amplifier gains g are expressed in dB as [-12,—6,0, 6, 12] where at 0dB no gain is applied.
A gain factor of 107 is applied to signal amplitudes.

Fig. 13 (a) illustrates recognition with and without CO, for MFCC+RQA-900 and MFCC+RQA-960
-w.0.C0 systems respectively. For sake of completeness, results for systems without RQA fea-
tures are also shown and referred to as MFCC-900 and MFCC+RQA-900-w.0.C0. It is stressed
that CO is removed from the average only (it is kept in the standard deviation) result-
ing in 36 (instead of 37) dimensions for MFCC+RQA-900-w.0.C0 and 25 (instead of 26) for
MFCC-900-w.o0.CO.

Except for the case where no gain is applied (at 0dB), the systems including RQA features
are affected by variations in the energy level. This is probably because the similarity matrix
between consecutive MFCC frames (used to extract RQA features) is highly dependent on
CO0. On the contrary, MFCC-900-w.0.C0 system seems to be more robust to energy variation.

Many prior works identify the energy as a discriminant factor to separate and distinguish
different contexts [27, 38, 53, 54, 59]. In fact, all these methods computed features which
represent the amount of energy of several sub-bands with respect to total energy. In this
way the system will depend upon a relative measure of energy, in constrast to an absolute
measure (e.g. CO) which is less robust to changing conditions.

3.4.2 The frequency range

The next set of experiments investigate the frequency range from which MFCC features are
extracted: MFCC+RQA-900 computes MFCCs over a [0, 200]Hz range [56]. This choice may be
optimal for the DCASE 2013 database, but may not generalise well to other datasets. The
hypothesis is that the type and nature of acoustic scenes determines the optimal range of
frequencies.

The first experiment shows on Fig. 13 (b) accuracy as a function of frequency range.
The lower bound is fixed at 0Hz while the upper frequency varies from 9gooHz, to 8oooHz
passing through 2000Hz and 4000Hz. Note that the systems are re-trained for each frequency
range and then tested with the same conditions.

MFCC+RQA and MFCC+RQA-w.0.C0 systems achieve their best accuracy for the o-gooHz
range and their worst at [0, 8000]JHz. The other two systems MFCC+RQA and MFCC+RQA-w.0.CO
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Figure 14: The confusion matrices of (a) configuration MFCC+RQA-900 and (b) MFCC+RQA-8000 on the
right. Each confusion matrix expresses the actual label on the rows and the predictions on
the columns. The value in each block are computed as the number of correctly classified
samples of a class divided by the total number of samples of the same class.

(without the 11 RQA features) reach 70% accuracy in the range [0,2000]Hz. All systems
exhibit their worst performance at 8oooHz.

The second experiment illustrates the effect of frequency ranges for two systems: MFCC+RQA-900
adopts a [0, 900]Hz range; MFCC+RQA-8000 uses a [0, 8000]Hz range. The two confusion ma-
trices are displayed side-by-side in Fig. 14: MFCC+RQA-900 to the left and MFCC+RQA-8000 to
the right.

Interestingly, performance for an acoustic scene subset is affected significantly by the fre-
quency range. In particular, the performance for park, restaurant, supermarket and tubestation
scenes deteriorate as the frequency range increases/decreases. In constrast, performance for
bus scene improves from 70% to 100%.

These results give some insights into how MFCCs encode spectral information depending
on the number of mel filters. A higher resolution in the lower frequencies generally helps
to discriminate between scenes in the DCASE 2013 database. The same reasoning may be
extended to other scenes which contain discriminative information at higher frequencies.

To conclude, MFCCs encode the information of the spectrum with respect to the frequency
range. The same number of mel-filters can be applied to different frequency ranges thereby
producing a higher resolution in different parts of the spectrum. This aspect influences the
classification of certain scenes to the detriment of others.

3.4.3 Integration of segments over time

The MFCC+RQA-900 baseline system averages both frame-level MFCCs and RQA to get a
single feature vector for 3o0s. A different approach is tested in this section: instead of
computing features over 30s segments, shorter segment durations are considered.

In practice, mean and standard deviation of MFCCs and the mean of RQA features are
calculated from different segment lengths. The lengths considered are [2,4, 10, 30] seconds
and the overlap is always 50% of the segment duration. A SVM classifier is then trained
and tested using different segment lengths. In the case of segments shorter than the file
duration (30s for DCASE 2013 recordings), a majority vote scheme is employed to obtain a
single decision.

Recognition accuracy is illustrated in Fig. 15 (a) as a function of the segment lengths. Also
illustrated Fig. 15 (b) is the confusion matrix for the MFCC+RQA-900 system with a segment
length of 4s and 50% overlap. As expected all systems reach their peak at 30s, when MFCCs
and RQA features are computed over 30 seconds of signal. Statistics calculated over smaller
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Figure 15: (a) the accuracy as a function of different segment lengths. The features depicted in the
legend are computed through statistics (mean and standard deviation). For segments
smaller than the audio file duration, a majority vote scheme is employed to obtain a
single decision for each audio file; (b) the confusion matrix of the system MFCC+RQA-900
computed at 4 seconds.

segments which are then integrated over time do not increase accuracy. We also observe
that the MFCC-900 system maintains stable behaviour from 2 to 30 seconds.

In general a poor resolution in the frequency domain has a greater impact on performance
than a poor temporal resolution: the accuracy of MFCC+RQA-8000 system at 30s is 6% less than
the accuracy of the MFCC+RQA-900 system at 4 seconds. At the same time, some classes (e. g.
park, supermarket, tube) require features computed over longer segments. On the contrary,
bus and tube classes seem to be recognised more reliably at 4 seconds.

Similar to frequency range, the duration of the segment used for feature extraction
influences recognition accuracy significantly: acoustic characteristics of a scene can be more
tavourable to one segment length rather than another. If one had, for instance, to separate
only bus or tube classes, it would be preferable to choose the 4 seconds configuration. Hence,
also segment duration can be adapted to the number and type of acoustic scenes.

3.4.4 Impact of temporal derivatives

The problem of representing the temporal evolution of an acoustic scene is still an open issue.
State-of-the-art ASC approaches based on MFCC statistics average temporal information of
frame-level features. Other classifiers (e. g. GMM) model the MFCC distribution without
modelling the temporal evolution. Other techniques which model the temporal structure
(such as HMM) are rarely used for ASC [27, 46]. The only HMM system submitted to
DCASE 2013 used features computed over both short and long frames (25ms and 1.5s) [59].
HMMs assume that each frame-level feature is independent.

Different to speech or music analysis, the temporal evolution of an acoustic scene lacks an
ordered structure: prominent sounds may appear in any order, making it difficult to model
their temporal evolution. On the contrary, dynamic features complement static MFCCs with
a tunable degree of temporal information with no need for explicit modelling.

For all frame-level features (e. g. MFCCs), time derivatives for consecutive frames can be
extracted. These experiments, reported below, show a comparative study of first and second
order temporal derivatives. First and second order derivatives A and AA incorporate the
temporal evolution creating a dynamic feature vector of MFCCs [74] centred in (t) with a
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System static T=2 T=3 T=4 T=7
MFCC-A, AA-900_SVM | 68% (+7%) | 62% (£12%) | 67% (£12%) | 61% (£8%) | 55% (£12%)
MFCC-A, AA-900_GMM 550/0 (:|:40/0) 690/0 (:|:90/0) 690/0 (:|:50/0) 690/0 (:|:90/0) 650/0 (:l:] 0/0)

Table 3: The effect of the window T used to calculate the A and AA features. Each MFCC coefficient

is centred in the middle of the window in order to have the same number of temporal
(t)

coefficients T before and after the coefficient x; * at time t. The table reports results from

DCASE 2013 evaluation set.

temporal coefficient of T which determines how many frames should be considered before
and after (t):

¢ 13 coefficients MFCC th) at time t

e 13 first order derivative coefficients Axgt) = x£t+T) — xgt_T)

* 13 second order derivative coefficients computed from AAxgt) = Axgwﬂ — Axgt_ﬂ

The final feature vector x, is then a combination of static and dynamic features computed
over D dimensions x,, = [xi, Axi, AAxi]i—1...n0. Depending on the type of classifier, further
processing may be required:

¢ for the SVM classifier, the feature vector is obtained by averaging the A and AA over
30 seconds. Averaged temporal derivatives are then added to MFCCs statistics. The
final dimension of x, is then 52. This system is referred to as MFCC-A, AA-900_SVM;

e for the GMM classifier, time derivatives are concatenated to static MFCCs at the
frame-level, thereby being a 39-dimensional feature vector. This system is referred to
as MFCC-A, AA-900_GMM.

The following set of experiments focuses on the window length used in the time derivative.
Results in Tab. 3 present accuracy and confidence intervals (CIs) for different values of .

The best configuration for the MFCC-A, AA-900_SVM system achieves an accuracy of 67%,
with T = 3 MFCCs frames (3 before and 3 after the current (t) MFCC). This perfor-
mance is equivalent to that of static-only system MFCC-900 and 10% worse than that of the
MFCC+RQA-900 system. These experimental results suggest that the extraction of features
from 30 seconds segments destroys useful information that is therefore captured in time
derivatives. In addition, the amount of data needed to support a higher dimensional feature
space often grows exponentially with dimensionality. In this case, passing from 26 to 52 fea-
ture dimensions would require more data to reliably model those features. This phenomenon
is referred to in the machine learning literature as the curse- of-dimensionality [75].

The second system MFCC-A, AA-900_GMM shows the benefit of temporal derivatives. Per-
formance is set for a temporal coefficient T of 3. This configuration achieves an accuracy
of 69% with a lower CI interval. GMMs model the temporal derivatives better than SVMs
improving upon the performance of the baseline system by 14%.

Experiments suggest the importance of temporal information for recognising an acoustic
scene. On the one side, RQA features represent this information with a compact representa-
tion of the similarity between 40 consecutive MFCCs; on the other side, time derivatives
A, AA combined with static MFCCs increase the accuracy of the GMM baseline system.
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3.5 CONCLUSIONS

This chapter analysed in detail the winning system of the DCASE 2013 ASC evaluation,
starting with the re-implementation and assessment of the same system reported in the
literature. The SVM classifier was presented in Sec. 3.2 with a particular focus on generalisa-
tion through a grid-search strategy. All modifications made to feature extraction block (see
Fig. 3) have shown a significant impact on performance, showing how feature design can
influence classification of acoustic scenes. The main limitations of this baseline system are
therefore related to the type of features, composed of MFCCs and RQA features.

As an example, MFCCs have been designed for speech recognition, but do not optimally
describe the complexity of an acoustic scene (i. e. overlapping sounds or additive noise
could change part of the spectrum and, since MFCCs encode the spectrum as a whole,
the resulting features will be affected by such changes). In addition, RQA features do not
seem to be robust to energy, frequency-range or segment-length variations. Beside these
considerations, temporal information is not realiably and usefully captured due to the
sparse temporal structure of acoustic scenes.

The effectiveness of the current system is stricly related to the set of scenes in the DCASE
2013 database. The experimental works presented in this chapter suggest that the same
system may poorly generalise on other datasets, characterised by a different composition of
classes, recording conditions and file duration. Thus, the feature adaptability to different
databases will be used as a guideline in further ASC evaluation.

To conclude, features have a significant influence on ASC performance and their impact
seems to be linked to the composition of the scenes to be recognised. The analysis of the
feature-scene relation and the evaluation over different databases will be the content of the
next chapter.
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VISUALISING AND ANALYSING FEATURES

Experiments presented in Chapter 3 demonstrate that modifications in feature extraction
and post-processing have a significant impact on performance. This finding can be extended
to a more generic hypothesis: there exists no unique feature set capable of discriminating
all possible scenes. In fact, features should be optimized according to the set of scenes one
seeks to classify.

Works in this chapter relate to the visualisation and the analysis of features with respect
to the scenes they represent. The visualisation of high-dimensional features with a low-
dimensional representation may help to discover hidden relationships between classes or
between samples of the same class. Just looking at the final classifier performance does
not provide enough insights about the feature distribution and its relationship to the
acoustic scenes. In addition, each visualised sample directly relates to a single audio sample.
Visualising the sample distribution and listening to corresponding audio excerpt gives a
deeper interpretation of high-dimensional features.

Visualisation and listening not only help to better understand the data, but also helps to
improve the feature design. Visualisation provides qualitative analysis as a generic indication
of separability. Nevertheless, more reliable metrics should complement the information
provided by the visualiser. These metrics quantify the feature discrimination power. Both
qualitative and quantitative evaluations were used in the thesis works as an exploratory tool
to validate the feature representation of the acoustic scenes. The features proposed in this
chapter take advantage of the findings coming from the visualisation and feature analysis.

The remainder of the chapter is organised as follows: detailed explanations about the
visualisation technique is provided in Sec. 4.1; feature metrics are described in Sec. 4.2; the
collection of a larger dataset is in Sec. 4.3; the application of feature analysis to feature
design is reported in Sec. 4.4; conclusions in Sec. 4.5 discuss the need for visualisation and
feature metrics for a deeper understanding of the ASC problem.

4.1 VISUALISING HIGH-DIMENSIONAL FEATURES

The problem of visualising high-dimensional features has gained importance in data mining
community [76]. According to the main definition, data mining extracts meaningful infor-
mation from data by using several techniques such as machine learning, statistical analysis,
database indexing and data processing. Data visualisation is part of data mining realm
while providing complementary information to standard machine learning techniques.

Visualisation allows to discover connections and similarities between classes, giving an
interpretation to multi-dimensional features. The hypothesis of the work reported here is
that a single set of features is not optimal for the classification of all possible classes. Hence,
a good visualisation can help in understanding the intrinsic structure of the data and in
designing discriminant features.

There exist several visualisation techniques which embed high-dimensional spaces into a 2
or 3-dimensional space while maintaining the arrangement or structure of the original data.
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The common idea behind many of these techniques is to find a mapping function where
the distance in lower-dimension space reflects similarities in the original high-dimensional
space. This is, for example, the case of PCA which finds a linear projection of the original
data in such a way that the variance of the projected data is maximised [62]. Nevertheless
PCA is sub-optimal for modelling data which are non-linearly distributed. Real, complex
data (such as acoustic scenes) may contain local and global structures which cannot both be
captured by standard dimensionality reduction techniques.

To solve this problem, a technique called t-distributed stochastic neighbor embed-
ding (t-SNE) [77] has been adopted as an ASC feature visualiser. The goal is to find a
non-linear transformation such that a set of samples in high-dimensional space will be
represented meaningfully in a lower-dimensional space, typically a 2-D plane. t-SNE is
non-linear because it applies local transformations to different regions of the feature space.
Mathematical details of this visualisation method are reported in Annex A.2.

Even though t-SNE provides good visualisation insights, interpretation of results is subject
to debate [78]. First, the perplexity may affect the quality of the mapping between high-low
dimension transformation. A second aspect relates more to a generic interpretation: cluster
sizes should not be evaluated by their variance because t-SNE adapts to different densities.
The interpretation concerns more the similarities or local relationships between samples of
different classes. Herein are listed the main criticisms:

¢ the perplexity (i. e. the estimation of the number of neighbours close to each point) is a
global parameter and it affects the final embeddings. When the perplexity is too low
with respect to the number of samples per class, only the local characteristics will be
retained. On the contrary, when the perplexity is too close to the number of samples
per class, the algorithm will have unpredictable results. Empirically, the perplexity
value should be smaller than the number of samples per class, but big enough to
capture the global structure of the data;

* successive runs don’t produce that same results due to the non-convex cost function
optimised by gradient descent;

¢ t-SNE can be accelerated using a tree-based algorithm called Barnes-Hut, making
possible the application of t-SNE to millions of samples [79]. The trade-off parameter,
0, between estimation error and fast approximation has to be selected before running
the algorithm. A value of 0 close to 1 reduces computational complexity at the expense
of greater errors; a value close to 0 is more computably demanding, but results can be
more meaningful.

4.1.1  t-SNE for ASC

Presented here is the application of t-SNE to the ASC problem, using the DCASE 2013 eval-
uation dataset. The goal is the analysis of three systems using both t-SNE and classification
confusion matrices. These systems are listed below:

1. MFCC+RQA-900(RNH) represents the state-of-the-art system as reported in Chapter 3.
This systems is characterised by MFCCs and recurrence quantification analysis (RQA)
features computed in the range [0, 200]Hz. Average and standard deviation are ex-
tracted over interval of 30s. The number of samples for each class is 10;

2. MFCC-2000-4s is the second best system in term of performance among the systems
tested in Chapter 3. This system represents a first attempt to solve limitations such as
energy, segment length and frequency range. The choice of these parameters comes
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directly from results in Figs. 13 (a), 13 (b) and 15. MFCCs with the first coefficient
C0 and a range of [0, 2]kHz are computed with a frame size of 32ms overlapped by
16ms. Statistics in the form of average and standard deviation are then extracted over
segment of 4s overlapped by 2s. The number of segments for each 30s of audio signal
is 14, resulting in 140 samples for each acoustic scene.

3. MFCC-2000-4s-.w.0.C0 refers to the aforementioned system without CO.

In all experiments, the first step is to find the principal component coefficients which
retains 98% of the variation present in the original data. This removes redundant dimensions
and improves the computational efficiency of t-SNE, which is then applied to the PCA
projected space. t-SNE returns a 2D map which is then shown as a scatter-plot. In that sense,
t-SNE is completely unsupervised and reflects similarities between samples with no class
information. Class labels are not used to determine spatial coordinates. Colours/markers
are added subsequently. Due to the modest size of the DCASE 2013 dataset, the trade-off 6
between speed and estimation error is empirically set to 0.7.

Interestingly, t-SNE maps in Fig. 16 exhibits a degree of correlation with the corresponding
confusion matrix obtained after SVM classification. t-SNE uses features computed at the
segment-level (e. g. 4s overlapped by 2s). To compare visualizations at segment-level to the
class misclassification, corresponding confusion matrices are computed from segment-level
predictions. The group of overlapping samples in the lower right corner of Fig. 16 (a)
represents acoustic scenes which are acoustically similar such as office, quietstreet and park.
Misclassification of three ‘similar” scenes is observed in the corresponding confusion matrix
of Fig. 17 (a).

The openairmarket class is overlapped with restaurant and supermarket. The same behaviour
is observed between supermarket and quietstreet/tubestation. Also in this case, the same
errors can be found in the confusion matrix (Fig. 16 (a)). The last observation concerns
the tubestation scene which is literally spread across the entire feature space. In general,
distances in t-SNE embeddings reflect intuitive acoustic similarities: bus, busystreet and tube
form a transport mode cluster; restaurant, openairmarket and supermarket form another group;
finally office, quietstreet and park form a third group of acoustically-related scenes. Note that,
in this first experiment, MFCC features include CO which expresses the energy level of a
scene. CO may be an important factor in grouping these classes together.

The same systems are reported here without CO (Figs. 16 (b) and 17 (b)). In this experiment,
the general distribution of the classes is less clustered with more overlapping between
samples of different classes. MFCC+RQA-900 system extracts a single feature vector from the
entire 30s audio signal. Since there are fewer samples per class, perplexity has to be adjusted
to the number of samples per class. The most compact representation is empirically chosen
with perplexity equal to 5. In the t-SNE visualisation of MFCC+RQA-900 system (Fig. 18)
samples of the same class seem clustered while being well separated from samples of other
classes. The corresponding confusion matrix is reported in Fig. 14 (a).

4.1.2  Insights of visualisation

Identification of patterns in feature space is essential for better understanding of the ASC
problem. Visualisation allows researchers to easily identify these patterns and to inspect
each sample. Albeit being an unsupervised method, t-SNE provides a representation which
complement that of the classification.

Observations derived from t-SNE application to the DCASE 2013 dataset are reported
in the following. A first observation concerns the level of spread of some class samples in
experiments with 4s segments. Acoustic scenes represented with t-SNE show a multi-modal
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Figure 16: t-SNE visualisation with perplexity equal to 50 for (a) MFCC-2000-4s and (b)
MFCC-2000-4s-.w.0.CO.
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Figure 18: t-SNE embeddings on 2D plane for MFCC+RQA-900Hz. Perplexity is set to 5.

distribution: samples from the same class lie in distinct clusters. Upon inspection of samples
in each cluster, it is observed that each cluster represents samples from the same recording.
As an example, let us consider the busystreet samples identified by red circles (Fig. 16 (a)).
Samples closely located in the t-SNE visualisation represent segments coming from the
same recording. Almost all scenes exhibit this multi-modal behaviour.

A second observation regards the impact of CO on the t-SNE visualisation. It is visible
from the embeddings of Fig. 16 how CO leads to a better separability. In Fig. 16 (b), samples
of different classes are overlapped and lose the structure seen in MFCC-2000-4s system. On
one side, the importance of energy is one more time highlighted; on the other, it can be
derived that the modest size of the DCASE 2013 database makes energy determinant for
the classes discrimination.

Eventually, depending on the type of classes, some features may give better separation
than others. t-SNE visualisation provides some insights into relationships between samples
and classes. As an example, park, office and quietstreet classes are grouped together and may
be difficult to distinguish. Bus, busystreet, tube and tubestation share acoustic properties and
form a distinct group. Similar behaviour is seen for restaurant, park and openairmarket.

t-SNE mappings complement classifier accuracies and confirm misclassifications observed
in the confusion matrix. t-SNE was thus adopted as a data exploration tool for ASC.

4.2 FEATURE METRICS

Results show consistent relationships between t-SNE mappings and confusion matrices.
Although being a powerful tool for data exploration, t-SNE cannot provide reliable and
quantitative metrics. This is due to the gradient descent used during optimisation and to
the global parameters (e. g. perplexity) which alter reproducibility of results.

In order to understand more about a high-dimensional feature space, quantitative metrics
are required to reflect the separability of a set (or a subset) of feature. Feature metrics have
gained importance in many research fields [80]. There are several benefits to feature analysis:
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reducing training storage and computation, improving data understanding and augmenting
classifier performance. In ASC, feature metrics provide a complementary information to
that coming from t-SNE.

According to [81], techniques for measuring feature separability can be subdivided in
three main groups: wrappers methods use classifier scores to rank the features; embedded
methods implement the feature selection method in the classifier optimization function;
filter methods analyse intrinsic properties of the data independently of the classifier.

In order to be completely independent from the classifier, filter methods are preferred
herein. Filter methods rank features according to some metrics which represent the dis-
criminative power of each feature taken alone. Although being computationally efficient,
these methods do not capture inter-correlation between features. Thus, it may happen that
a feature with lower rank would be combined usefully with another. Since the focus of
this chapter is more on data understanding, the problem of feature combination has not
been taken into consideration. Hence, the well known Fisher score [82] has been adopted to
select features and to evaluate a global separability metric. More details will be provided in
Sec. 4.2.1.

To highlight the dependency between features and acoustic scenes, a metric based on
Bhattacharyya distance is also discussed in Sec. 4.2.2. This metric measures the amount of
overlap between a pair of two class distributions and is therefore capable of ranking pairs
of acoustic scenes by their discriminating capacity [83].

4.2.1  Fisher score

The key idea of the Fisher score is to measure the ratio between samples of different classes
and samples in the same class [84] Ideally, samples of one class close should be located
together in feature space and, at the same time, they should be well separated from samples
of other classes. These two measures are identified respectively by the inter-class Sy, and
intra-class S, variance matrices:
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where for C classes, p represents the mean of all samples, . is the mean of the samples
of the ¢ class, X represents the set of training samples =, belonging to the c'" class and
N is the cardinality.
Ideally, Sy, is higher whereas S, is low, thereby maximising the Fisher criterion F

_ tr(Sp)
F= T(Sy) (18)

The objective of function F is to group all samples of each class close to their mean
and to ensure that class clusters are well separated. Together with the criterion F which
expresses the separability of all features as a whole, a dimension-dependent Fisher score
Fi can be computed for each dimension of features in X. Heuristically, each dimension is
evaluated independently instead of computing all possible combinations [8o0]. With this
method, features that may have a higher score if combined together are not considered.

Let us define p.; and o ; as the the mean and standard deviation of the it" feature
dimension of the c'"* class. With p; and o; we indicate the mean and standard deviation
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System J Accuracy
MFCC+RQA-900 2.73 | 77%
MFCC-2000-4s 1.84 | 71%
MFCC+RQA-900-w.0.CO0 | 0.95 | 70%
MFCC-2000-4s-w.0.CO0 | 0.46 | 61%

Table 4: Fisher score F for different ASC systems. Aside are reported accuracies from SVM classifier.

of the it™ feature over the whole dataset. The Fisher score for the it" feature dimension is
then given by:

C 2
—1Melbei — 1)
Fl: Zc 1 Co—zCl 1 (19)
i
where 02 = Y& | n. O%,i‘ Results for global Fisher score F are reported in Tab. 4 for

systems presented in this chapter, with the addition of the state-of-the-art system without
the CO (MFCC+RQA-900-w.0.CO0). The systems are : MFCC+RQA-900, MFCC+RQA-900-w.0.CO,
MFCC-2000-4s and MFCC-2000-4s-w.o0.CO0. The Fisher score is computed over all samples of
the DCASE 2013 evaluation set, in order to be comparable with t-SNE plots and confusion
matrices presented earlier.

In addition to the global Fisher score F, a ranking of each dimension is also detailed
in Fig. 19. Results illustrated in Tab. 4 show that the DCASE 2013 state-of-art system
MFCC+RQA-900 has the higher separability with a Fisher score of 2.73. Interestingly, a drop in
the Fisher scores corresponds to a drop of accuracy.

Without the first MFCC coefficient C0, all systems provide lower scores with respect to
their CO versions. As an example, the impact of removing CO is evident for MFCC-2000-4s
and MFCC-2000-4s-w.0.CO whose Fisher score passes from 1.84 to 0.46. This difference
corresponds to a drop in accuracy of 10%. As previously mentioned, the impact of removing
CO (the only feature depending on the energy level in the signal) is high, suggesting that
the scenes in DCASE 2013 may be distinguished just by their energy level.

A similar conclusion comes from results for each feature, in Fig. 19. Reported here
the Fisher score as function of each dimension F; for two systems MFCC-2000-4s and
MFCC+RQA-900. In the top figure, the Fisher score for CO is three times greater than the
remaining feature scores. In the bottom figure, RQA features (in red bars) contain the
highest Fisher score, even though the inclusion of CO reports one of the highest Fisher
scores.

4.2.2  Bhattacharyya distance

That some acoustic scenes are easier to separate than others has been shown already through
t-SNE visualisations. Even though t-SNE visualisations provide a qualitative evaluation,
a quantitative distance is required to measure the separability between pairs of classes.
This distance will produces a ranking of class pairs, from the easiest to the most difficult
to distinguish. The distance-based ranking: i) quantifies the separability between acoustic
scenes; ii) shows which class pairs are the most difficult to distinguish.

Among other techniques [85], the Bhattacharyya distance provides this separability mea-
sure [86]. The main idea is to extract a distance from parametric distributions. Supposing that
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Figure 19: Fisher score (F;) as a function of different feature dimensions composing the feature
vector. In (a) the system MFCC-2000-4s is presented in the bar plot. Average and standard
deviation are computed every 4s overlapped by 2, resulting in a 26 dimensional feature
vector. This split between average and standard deviation is highlighted with the light
blue for the former and dark blue for the latter. In (b) the system MFCC+RQA-900 presents
the same procedure for the average and standard deviation to which RQA features are
appended. Fisher scores of these features are respectively in light blu, dark blu and red.
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two acoustic scenes respect normal distributions, the Bhattacharyya distance Dg between
classes c1 and c; is given by:

det (%)

]
21 /
2% /det( %, ) det( )

1
Dg(ct,c2) = g(p1 —p2)’ <M> (1 —p2) +

8 2 (z0)

where pu and X denote the mean and covariance matrix of the two classes. The Bhat-
tacharyya distance in Eq. 20 includes two terms which both reflect the separability measure:
the first term expresses this separation through the difference between the class means;
the second term relates to class covariances. Note that, when the two means are equal, Bp
depends only on the covariance term; when the two covariances are equal, Bp depends on
the means alone.

Another aspect concerns the determinants of the covariance matrices: when the feature
dimensionality D is greater than the number of samples per class n., the rank(X.) < D and
therefore det(X.) = 0. The consequence of this is that systems for which n. < D cannot be
analysed with the Bhattacharyya distance. Thus, systems for which Bhattacharyya distance
is applicable are MFCC-2000-4s and MFCC-2000-4s-w.0.C0. These systems extract features
over shorter segments thereby producing a number of samples per class which is greater
than the feature dimensionality D.

The objective of the following experiments is to measure the separability between pairs of
acoustic scenes with the Bhattacharyya distance. This should reflect the t-SNE visualisations
while providing a quantitative measures. The Bhattacharyya distance as a function of all
possible class pairs is depicted in Fig. 20: distance for the MFCC-2000-4s system are displayed
by a solid black line while those for the MFCC-2000-4s-w.0.C0 system are shown by a black
dashed line. Class pairs are displayed on the x axis, ordered according to the ranking
distances obtained for the MFCC-2000-4s system. For the sake of clarity, distances Bp for
the MFCC-2000-4s-w.0.CO system are displayed in the same plot but respecting the class
ranking of the first system. In this way, differences in term of Bp between the two systems
are clearly visible.

Upon first sight, the system with CO has a greater separability power. More specifically,
the class pairs corresponding to the highest values are bus-office, busystreet-office, busystreet-
restaurant. The second system follows a similar trend with some differences: bus-office,
busystreet-office and office-tube face a significant drop in terms of Bhattacharyya distance.
Classes with the lowest Bp values are respectively openairmarket-restaurant, park-quietstreet
and tubestation-tube. Interestingly, these findings confirm a lower separation in t-SNE vi-
sualisation (Fig. 16 (a)). The same classes report a higher rate of misclassification in the
confusion matrix (Fig. 17 (a)).

4.2.3 Insights of feature metrics

Findings coming from feature analysis complement and confirm those of t-SNE visualisation.
Both Fisher scores and Bhattacharyya distances validate the influence of the first MFCC
coefficient CO on the results. As demonstrated by Fisher scores (Tab. 4) and by Bhattacharyya
distances (Fig. 20), the performance of all systems is affected by the exclusion of CO0. For the
DCASE 2013 database, most of the separability power relates to the energy level (represented
by CO0) rather than the other features.

Results coming from Bhattacharyya ranking confirm the initial hypothesis of the scene-
dependent features. In fact, if the dataset was composed of the most separable classes
(according to results in Fig. 20, bus, office, busystreet, restaurant), the current MFCC-based
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Figure 20: Bhattacharyya distance Bp for each pair of acoustic scenes of DCASE 2013 evaluation
set. In solid black line the MFCC-2000-4s results are presented; in dashed black line the
MFCC-2000-4s-w.0.CO0. The ranking of paired classes on the x-axis is ordered according
to the MFCC-2000-4s distances. The arrows indicate the classes which have the highest
difference in term of Bp between the two systems.
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Context Total time meta-tag options

Bus oh8m Position, road-type, occupancy, windows
Car 3hgom Type, position, road, occupancy, windows
Office 3h26m Occupancy

Subway  10h30m Occupancy

Street 2hg2m Location

Table 5: Duration of recordings for each context in the NXP database beside of associated meta-tag
options.

features would be sufficient to separate them. These learnings justify the works of the
following sections and later in the thesis:

¢ the DCASE 2013 dataset is not suited for exhaustive evaluations. Due to its modest
size, the exclusion/inclusion of a single feature (C0) is significant enough to change the
classes distribution and to impact the performance by 10%. Hence, a dataset containing
about 30 hours of recordings was collected. This dataset is referred to as NXP dataset
and is described in sec. 4.3. It is also argued that cross-dataset evaluation provides
more information about the capacity of a method to adapt to different conditions (e. g.
number and type of classes, recording conditions, recording lengths) thereby having a
more realistic view on the ASC problem;

¢ all systems accuracies are impacted by removing CO from the feature vector. At the
same time, systems which extract CO are shown to be less robust to energy scene
variations (Chapter 3). This proves that an indication of energy level between acoustic
scenes augments the separability power and should be taken into consideration when
designing ASC features. The proposed features, which replace CO with a relative
measure of energy, are discussed in sec. 4.4.

4.3 NXP DATASET

The variety, quality and consistency of audio recordings are key factors in designing realistic
ASC systems. The NXP dataset was recorded by volunteers using different vendors mobile
devices where a recording application was installed. The application handles both data
collection and labelling. The sampling frequency is set to 16kHz (in contrast to the 44100Hz
of the DCASE 2013 database). The original recordings with the corresponding labels are
then uploaded to a centralized server. Labels and associated meta-tags (e. g. description of
the scene) are selected among a close list of possible names. The main families of meta-tags
are listed in Tab. 5 and defined as: position (front, middle, back), occupancy (crowded,
normal, empty), windows (open, close), type (petrol, electric, sport), road (highway, city,
country road) and location (quiet, busy). A close selection reduces the confusion that may
occur when the labelling is completely uncontrolled [23]. NXP recordings cover five of the
most common, everyday acoustic contexts: bus, car, office, subway and street.

In addition to audio recordings, the application captures data from all the other phone
sensors including pressure, temperature and motion. These information are stored with
the aim of combining audio cues with other sensor information. A scheme of NXP dataset
recording and deployment procedure is reported here. First, the sound of specific acoustic
scene is recorded through an mobile application and sent to a centralized server, together
with meta-tags and other sensors information; second, all recordings are listened, analysed
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and pruned; third, a model is generated from this data using state-of-the-art techniques and
compared with performance on other datasets (e. g. the DCASE 2013 database). To ensure
global data collection quality, volunteers have followed precise guidelines:

¢ space —e.g. office recordings are collected in different offices under different conditions
(quiet, voices, printer noise, etc.), and in different locations around the world;

¢ time - recordings registered on the same location at different time of the day;

¢ system — using different phones makes the solution robust against channel diversity
and microphone quality;

¢ user — recordings from multiple users, because one person recording habits (time,
location, etc.) can limit diversity;

¢ semantics — people may interpret differently a context and for this reason a close list of
terms (acoustic scene label, meta-tags) are provided within the recording application.

4.3.1  Feature visualizer for NXP database

As already done for the DCASE 2013 datasets, visualization techniques are applied to the
NXP database in order to represent the underlying data structure. t-SNE visualization
combined with Bhattacharyya distance provide an overview of the relationship between
scenes and samples. These methods are herein tested on NXP dataset. Features displayed
with t-SNE are standard MFCCs, computed according to MFCC-2000-4s-w.0.C0 system
configurations. t-SNE displays data distribution with a perplexity of 50 and a trade-off
0 = 0.9. Due to the huge amount of samples, a 0 parameter close to 1 prefers a faster
estimation to minimal error. Fig. 21 depicts a t-SNE visualisation followed by Bhattacharyya
distance-based ranking.

Data visualization shows that some classes are more clustered than others, in particular
office and car. Moreover, the inter-class relationships are highlighted by both t-SNE and
Bhattacharyya distance. The office environment is the easiest to distinguish whereas bus-car
or bus-subway are the more difficult. The relationship is confirmed from high t-SNE scene
overlap and low Bhattacharyya distance: the transport-like scenes (e. g. car, bus, subway) are
the most inclined to be confused. In contrast to DCASE 2013 results, the t-SNE produces a

visualisation which seems more compact and with less overlap even without the coefficient
Co.

4.4 APPLYING FEATURE ANALYSIS TO FEATURE DESIGN

Visualisation and feature analysis suggests that current performance are linked to the current
class composition of the DCASE 2013 dataset. The same system, trained and evaluated on a
different dataset (e. g. NXP dataset), may produce results which are different from the ones
already known. The main conclusion of sec. 4.2 is that representing energy is beneficial, but
may lead to poor generalisation if condition changes. As an example, different distances
between the microphone and the sound source can drastically change energy levels. For
this reason, a "global" energy indicator as CO0 is here replaced by two "relative” measures:
one based on the root mean square (RMS) (RMS-based) and the other on the band energy
ratio (BER) .
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Figure 21: (a) t-SNE visualization of NXP dataset at perplexity = 50 and 0 = 0.9. The system is
MFCC-2000-4s-w.0.C0. (b) Class pairs ordered by their Bhattacharyya distance. A higher
value corresponds to a better class separability.
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Figure 22: RMS values for 4s segments of 3 scenes from DCASE 2013 evaluation set. Bus is depicted
in solid line blue; office in dotted red line; restaurant in dashed yellow line.

4.4.1  RMS-based features

The global energy of a signal x[n] can be computed taking the root average of the square of
the amplitude, also called the RMS:

(21)

where 1 is the number of audio samples in the segment. The entire signal will be
represented by successive x,ms segments.Fig. 22 presents examples of x,m for a 4s segment
for bus, office and restaurant scenes. In this experiment, n is set to number of audio samples
contained in 16ms of signal.

For highly stationary contexts (e. g. office), the number of times that the RMS value exceeds
the average RMS value tends to be small; the presence of impulsive sounds (e. g. loud voices
in a restaurant) creates distinguishable peaks in the RMS distribution; very noisy contexts
(e.g. engine noise of a bus) vary even more and their RMS distribution is characterized by a
high rate of significant energy peaks.

Influenced by these observations, RMS-based features can be extracted from the RMS
distribution. The first dimension of RMS-based feature measures the spread of standard
deviation relative to the mean; the second dimension reflects a dynamic range between the
highest and lowest RMS peaks. The two feature dimensions x; and x, are computed as
follows:

x] = Orms
v/ Hrms (22)
MaXrms — MiMyms

X2 =

MAXrms

where 0rms and pyms are the RMS standard deviation and mean relatively to the segment
where frame-level RMS are extracted; max,ms and min,m, indicate the highest and lowest
RMS values respectively.

The combination of these two metrics on the DCASE 2013 evaluation set is presented in
Fig. 23. Looking more specifically to these features, we notice that office, park and quietstreet
have a low variation coefficient (x1). At the same time, the dynamic range (x,) of these

52



1 T T T T T T T
-
2 . 2 v ' v ' Y IV v
AiAo' v ';_’. PR o M v
Xk 4 ‘&-0&',,‘ P ,¢+0:’00 “ . v A v
0.9+ e S R R i + - v v v B
A AT s + .
z ety *“X‘%"‘:"v ¢ A M yv 7 M
RS AT Y o +
pPRRREE A e
08 ¢ A%&é"#mé}vﬁ AR M - § + bus
% o +
Y iZﬁZ £, *; el T S * busystreet
< 5% )
XAAAg%\gA‘:-* LA " ) office ‘
0.7 md wd, 3w, o7 % N a - openairmarket
N 3‘;}"'. BT park
P %A Aw ?’:'* e v .
Y. R quietstreet
0.6 2 Dev®e o\, , 5 ¢ restaurant
*utor
L4 R A supermarket
2 I.‘ v
usts v tube
Q" ,." + .
05 uf v 5 tubestation
¥ e ::
.0'-:0
.
04r - b
03 | | | | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
X
1

Figure 23: Scatter plot of the RMS-based features. Each point corresponds to a 4s segment of DCASE
2013 evaluation set, represented by x7 and x,.

classes varies along the entire [0, 1] range. This is probably due to the presence of speech
or impulsive sounds which increase the difference of the max and the min RMS. Other
classes such as bus, tube and tubestation are characterized by a high dynamic range and
a high variation coefficient. On the contrary, restaurant, supermarket and openairmarket are
characterised by their high dynamic range and a low variation coefficient. The use of
RMS-based feature expresses the variations of RMS (variance and highest-lowest peaks) as
a percentage relatively to the segment where the features are extracted.

4.4.2 Band energy ratio

The energy information of a scene can also be expressed as a ratio of the energy present
in sub-bands to the total energy. This set of features is referred to as BER. BER features
have been adopted in many ASC systems, as described in the literature review of Sec. 2.4.
BER features quantify which bands contain the larger portion of energy with respect to the
whole spectrum. Features based on BER can be combined with standard MFCCs. The choice
of MFCC frequency range is usually critic and BER features are complementary to MFCC
features in providing sub-band energy information.

To illustrate the relationship between BER features and acoustic scenes, BER features were
computed for the DCASE 2013 evaluation set. The mean BER of each class is depicted in
Fig. 24 as a function of 6 sub-bands. At a first sight, sub-bands over 2kHz seem to have
marginal discriminatory power. Almost 50% of bus energy lies in the [0, 200]Hz range; park,
office and quietstreet have the flattest BER shape, meaning that spectral energy is distributed
over the entire spectrum. Restaurant and openairmarket show greater BER in the [500, 1]kHz
band due to high speech components. Similarly, tubestation, tube and supermarket exhibit
significant BER between 200 — 1kHz due to the presence of low-frequency, stationary noise
(e. g. locomotives) mixed with voices. Busystreet, meanwhile, is mainly concentrated between
(1,2]kHz. In fact, busystreet samples are a mixture of car engine noise, voices and wind
noise.
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Figure 24: Mean of BER for each class as function of different sub-band ranges. Results refer to
DCASE 2013 evaluation set.

4.4.3 Results & statistical tests

In line with prior ASC work [6], a Wilcoxon signed rank test has been adopted to determine
the validity of the hypothesis that the performance of two distinct classifiers is the same [73].
This test has the advantage of not relying on a particular data distribution assumption. In
some cases, the hypothesis of equal performance is valid: one explanation may be that the
proposed features do not add significant difference in terms of performance; an alternative
explanation may be caused by a modest amount of data where only macro differences are
observable. In order to better discuss these differences, results are reported for the DCASE
2013 database (development and evaluation sets) and for the larger, non-standard NXP
dataset using a 5-fold partitioning into independent training and testing sets. The collection
of the internal NXP dataset is a contribution of this thesis and is described in sec. 4.3.

All systems are reported in Tab. 6: RMS-based refers to RMS-based features; the BER
reflects the ratio of 6 sub-band energy to the total energy of a signal; MFCC-noC® denotes
MEFCCs computed on a larger range [0, 8]kHz, without CO. The reasoning behind changing
the frequency range from [0,2]kHz to [0, 8]kHz stems from the fact that BER features
indicates which sub-band contains the most significant contribution so that MFCCs can be
extracted over a bigger range of frequencies. The winning system of DCASE 2013 challenge
is also reported as MFCC+RQA-900 system. In contrast to other systems, the latter is applied to
longer segment of 30s. All the other systems integrate features over a 4s segment overlapped
by 2s. In order to be fully compatible with results in the literature, a majority vote is set up
to provide a single prediction for each audio file. A SVM classifier in the form presented
in 3.2 is learned in the same way in order to compare all systems.

Results in Tab. 6 show that RMS-based features are complementary to MFCCs, passing
from 58% to 65% and from 57% to 62%. The RMS-based system alone provides a relatively
high accuracy for a 2-dimensional feature. Systems including RMS and BER features achieve
good performance on the DCASE 2013 datasets, even though they not reach that of the
MFCC+RQA-900 system. Interestingly, the proposed MFCC-noC0+RMS-based+BER achieves the
best performance for the NXP dataset, while the winning DCASE 2013 method achieves
an accuracy of 79%. This shows that the proposed RMS and BER features are robust across
different datasets, while MFCC+RQA-900 system behaves well only for the DCASE 2013 dataset,
but with poor generalization. A Wilcoxon test with a p-value of 5% shows that the best
system for each dataset is statistically different from the others.
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Datasets

Features dim | DCASE 2013 dev | DCASE 2013 eval | NXP

RMS-based 2 37% (£ 7) 42% (£ 13) 28% (+ 1)
MFCC-noCO 25 58% (£ 5) 57% (£ 13) 84% (£ 2)
MFCC-noCO+RMS-based 27 65% (+ 6)* 62% (+ 10)* 86% (+ 2)
MFCC-noCO+RMS-based+BER | 33 66% (£ 10)* 65% (£ 8)* 89% (£ 1)
MFCC+RQA-900Hz (RNH) 37 70% (+ 10) 76% (+ 5) 79% (£ 2)

Table 6: Accuracies computed for different features and different datasets are herein presented. Terms
with a * represent results which are not statistically significant according to a Wilcoxon
signed rank test with a p-value of 5%. The statistical test regards results from the same
dataset. RMS expresses the amplitude and temporal variance, expressed with a 2-dimensional
feature vector; MFCC-noC@® denotes the MFCCs computed over [0, 8]kHz range, without CO;
BER is the band energy ratios. Composed systems are indicated with the 4+ while with
MFCC+RQA-900Hz(RNH) is indicated the winning system of DCASE 2013. Best methods of
each dataset are indicated in bold.

4.5 FINAL THOUGHTS

This chapter presents the use of a non-linear visualisation technique to map high-dimensional
data into a 2 or 3 dimensional space. At the same time, t-SNE can be very helpful in represent-
ing the progressive transformations of the input data through deep neural network (DNN)
layers; to this end, Chapter 6 shows will see how t-SNE visualises the intermediate data
transformations of a neural network. In addition, feature metrics can complement t-SNE
visualisations: the Fisher score produces a measure of general separability; the Bhattacharyya
distance quantifies the level of overlap between class distributions, ranking them from the
most easy to the most difficult to separate.
Thanks to this analysis, two main contributions are presented:

e the NXP dataset, a 30h non-standard dataset which serves to cross-validate the
performance of the DCASE 2013 database;

* RMS-based features, which capture the variation in RMS values over the segment, and
the BER features, which represent the energy in a sub-band as a ratio to the global
energy. Results show consistent trends over the public DCASE 2013 datasets and the
non-standard but larger NXP dataset.

Data visualisation and feature analysis can identify hidden underlying structure of
data. This can help in designing and choosing a set of new features without the need for
classification experiments and independently from a specific classifier. To conclude, optimal
features are scene-dependent, meaning that depending on the type and nature of acoustic
scenes, a set of features may be more or less discriminative.
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TIME-FREQUENCY PATTERN ANALYSIS

Almost all approaches to ASC utilise traditional features designed predominantly for speech
processing applications such as speech or speaker recognition. Even so, experiments in
previous chapters showed that these features may not be sufficiently discriminative for the
ASC task. Herein are listed the main drawbacks of current ASC systems:

1. they do not capture both global and local information. Features determine whether
a system represents a generic scene information (such as global energy, spectral
envelope, etc.) or whether describes a local-relative variations (as BER, RMS-based
features). The use of both global and local information has proven to be effective for
ASC literature [34, 45], even though there does not exist a comprehensive approach;

2. they are based on features not suited to ASC. For example, MFCCs remain the
standard choice in many ASC systems. MFCCs capture only short term variations with
minimum dynamic information, whereas correlation in temporal domain may help
to discriminate between different scenes. As an example, a promising approach([33]
represents complex acoustic structure with features across both time and frequency
space. Intuitively, spectro-temporal features should be considered as an alternative to
standard MFCC-based approaches;

3. they imply a temporal structure even in presence of a sparse and unordered sequence
of sounds. In contrast to speech signals, where a strong temporal structure is deter-
mined by the phone sequence, ASC is characterized by a comparatively weak temporal
structure. Events composing a scene may occur at any time and in any order and
duration. As argued in [37], human listeners classify a scene by the presence of a
particular sound. This suggests that focusing on the presence of certain sounds may
improve performance, as reported in [12].

Hence, new features are needed in order to capture complex acoustic structure. This
chapter reports work to characterize the distribution of acoustic structure through textural
features. The proposed approach is based upon an image processing technique known
as local binary patterns (LBP) analysis, which is applied to audio spectrograms in order
to capture “acoustic patterns’. Those capture spectro-temporal structure at sub-band level.
To capture specific patterns in each scene, the new features are optionally used to learn
a low-footprint codebook of the most frequent patterns. The codebook provides a sparse
representation of the acoustic structure. The research hypotheses are that: (i) frequent
acoustic patterns can be captured using LBP analysis [87] applied to audio spectrograms;
(ii) the new LBP-based features provide complementary information to traditional MFCC
features, and that (iii) LBP analysis can be applied as a ‘bag-of-features” approach by
creating a codebook of the most prominent features and by representing each sample as
combinations of these features. Experimental results of LBP-based systems are demonstrated
be competitive with the current state of the art. The structure of this chapter is organized as
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follows. Sec. 5.1 describes prior works which share with LBP analysis the idea of spectro-
temporal patterns. Sec. 5.2 presents LBP analysis and the application to the ASC problem.
Sec. 5.3 includes implementation details, experimental results and conclusions.

5.1 PRIOR WORK ON TIME-FREQUENCY PATTERNS

Previous approaches to ASC have focused on selecting and combining standard acoustic
features. The literature, e.g. [53, 57, 58, 61], shows that MFCCs are usually the baseline
with which other features are combined.

In fact, a study of the human auditory system reported in [37], demonstrated that humans
recognise acoustic scenes by mixing audio events with background noise. The correct
recognition rate for 19 subjects was found to be in the order of 70% for 25 different scenes.
Some events are more probable in some environments and this information enables a scene
to be recognised more reliably. Drawn upon these findings, research in [12] concentrates
on context-dependent sound events, where histograms of event-occurrences are used to
identify the scene (i. e. engine noise occurs more frequently in a car or a bus rather than in a
office).

Other approaches based on the modelling of acoustic patterns have also shown their
validity. One example is audio motif discovery [88], which uses bio-informatic techniques to
find recurrent patterns. Sounds are transformed into a sequence of discrete states, each of
them representing a specific audio pattern. A related approach to music genre classification
using textural features is reported in [89]. All these methods are characterised by a bottom-
up approach, which represents globally an acoustic scene with the occurrence of local
acoustic patterns. Temporal recurrence, motif discovery, sound event detection share the
notion of acoustic patterns and lend support to the benefit of capturing time-frequency
information in a compact way.

5.2 LOCAL BINARY PATTERNS

LBP analysis is a well known approach to feature extraction for automatic face recogni-
tion [9o]. LBP is an efficient texture operator which labels the pixels of an image (here
an audio spectrogram) by comparing their value to those of neighbouring pixels and by
representing the result as a binary number. The analysis of acoustic signals using LBP
analysis has been reported previously [91, 92] and is applied by treating the spectrogram as
a visual representation of the acoustic signal.

The use of LBP for acoustic analysis and feature extraction is motivated by its suitability
to texture and structure representation. LBPs are usually used to create histograms which
capture the presence of specific patterns. For ASC they provide more discriminative features
which reflect the acoustic texture of a scene. The following describes the extraction of raw
LBP features, henceforth referred to as LBP, and an extension to a bag-of-features approach
referred to as LBP-Codebook.

5.2.1 System overview

The new approaches are composed of four stages, as illustrated in Fig. 25:

1. LBP analysis is applied to the spectrogram representation of the full acoustic signal
by comparing the magnitude of each time-frequency "bin" to that of its immediate
neighbours. The set of raw LBPs are used to generate an LBP histogram which reflects
the occurrence of each LBP across the full signal;
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Figure 25: An illustration of the entire system, as explained in Section 5.2.1: (1.) LBP histogram
generation for each sub-band; (2.) Codebook creation, through clustering; (3.) Histograms
in (1.) are mapped to the codebook. This is repeated for each histogram extracted from
each block; (4.) SVM training and testing by using the histogram of acoustic patterns.

2. histograms are generated for each signal in a large dataset and then clustered to group
together the most similar histograms. Resulting cluster centroids are then used to
form a codebook;

3. the codebook can be used to map a histogram onto the single, nearest word as deter-
mined according to a cosine similarity metric. This process results in LBP-Codeword
features of reduced dimensions which are less redundant and more sparse;

4. ASC is performed using a SVM classifier, applied either to LBP ((1.) of Fig. 25) or
LBP-Codebook ((3.) of Fig. 25) features.

5.2.2 LBP histogram

The original idea of LBP is reported in [93]: the operator represents complex textural
images in a simple and convenient way through the binary thresholding of the surrounding
neighbours of each pixel. Each block around a pixel provides a binary number which
expresses the relationships of the surrounding pixels P with respect to the central pixel x:
if the difference of the neighbours and the central pixel is negative, the result is 0 otherwise
it is 1. A histogram h represents the frequency of the binary numbers in each block. The
histogram itself expresses the image (or part of it) as the occurrences of binary patterns
found in the image.

LBP features have become popular in the image processing community for their invariance
to gray-scale changes and their computational simplicity. LBP analysis thus appeals to ASC:
the same analysis technique is robust to the presence of spectral-variations; LBPs express
global information through the analysis of local blocks; LBPs capture time-frequency
information in single feature vectors (i. e. histograms), which better suits a SVM classifier.
Standard LBP analysis used in image classification has a block size of 3 x 3 built around a
central pixel x. with P = 8 surrounding pixels. The histogram of 28 = 256 possible patterns
is then used as a feature vector to characterise the image. According to the works in [87], by

58



block from spectrogram circular LBP

@
[}
£ ° o
Q0
a Radius = 2
@ ¢eE——o ®
g— centre
g
* ° °
)
time 8 interpolation points
Uniform patterns histogram binarization LBP

020

“binary pattern: 11110001

count
binarizing pixel values

uniform bins

Figure 26: From spectrogram block to LBP histogram: starting from the upper left of the image, the
spectrogram block is analysed using LPBg > with 8 neighbours and radius equal to 2; the
local binary code is then generated using Eq. 23; finally the binary code is updated in the
corresponding bin of the histogram.

using a circular block with a bilinear interpolation over integer pixel values, it is possible to
employ LBP at any radius R with a number of neighbours P:

1,x>0
I—BPPR—E flgi—xc)25, flx)=¢ 77 (23)
) 0,x <0

where g; is the pixel value of the ith neighbour obtained with a bilinear interpolation,
Xc is the centre of the block, P is the number of neighbours and R is the radius of the
neighbourhood. The coordinates of g; are identified by the pair (Rcos(27ti/P), Rsin(2mi/P)).
LBP represent a specific pattern in a compact code. This LBP code is computed by multiplying
the result of function f (1 or 0) with the power of 2! and then summing all the values. Thus
LBPp r codes can assume value between 0 and 27 — 1. The entire process from a spectrogram
block to the histogram is depicted in Fig. 26.

Inspired by the findings in [94], the histogram of patterns is normalized using the L;-

Hellinger normalization as =’ = , / TaT;- Lhe resulting normalised feature vector has unit

norm ||z’||; = 1. It has been shown that this normalization, when applied to histograms,
amplifies the discriminative power of LBP features.
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Figure 27: The effect of bilinear interpolation, performed on a bus spectrogram in the range [0, 8]kHz
before the LBP pattern extraction. This interpolation acts as a smoothing operation, which
better defines patterns in the spectrogram (e. g. differences in red rectangular areas).

5.2.3 Application of LBP analysis to spectrograms

The application of LBP to spectrograms requires some adaptation. Each bin in the spec-
trogram reflects the amount of energy present in proximity to specific time and frequency
bins. Spectrograms, by construction, are characterised by local bin fluctuations (namely bins
which can vary significantly in a local area), which may degrade LBP feature representation.
LBP is highly affected by fluctuations of bins in the neighbourhood which indeed may
change drastically the LBP binary code. In LBP analysis, these fluctuations are rapid transi-
tions in a LBP code from 1 to o and vice-versa. Hence, the interpolation of bin values help to
attenuate the effect of these fluctuations by globally smoothing the blocks (Fig. 27). Another
strategy to add robustness to LBP is to consider only LBP codes for which the number of
transitions between o and 1 is less than or equal to 2. This subset of LBPs represents the
so-called uniform patterns. The remaining non-uniform patterns are often grouped together
and considered as a single, distinct non-uniform pattern.

Various modifications to the spectrogram are generally necessary prior to LBP extraction.
Experimental works show that analysis of the log-power spectrogram gives better results
than the linear-power spectrogram. In addition, bin values are scaled to the range [0, 255] by
normalising each single spectrogram:

¢ [ is the power spectrogram of the real part after the application of FFT;

¢ each bin of the spectrogram I at time-frequency coordinates (m, n) is considered as a
pixel;

¢ each pixel I(m, n) is scaled according to

/ _ log(I(m,n))

[ (mn)= max(log (1)) x 255 (24)

so that all pixel values will be within the 0 — 255 range.

The extraction of LBP patterns from I provides a single histogram. However, identical
patterns may occur in different zones of the spectrogram. The location of such acoustic
patterns, in ASC, produces a meaningful information. Consider two scenes which are
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Figure 28: LBP histograms extracted from a white noise (on the right top), a tone at T000Hz (right
middle) and a series of clicks (on the right bottom).

characterised by the presence of tones at different frequencies. If the algorithm does not
take into account where LBP patterns come from, the two scenes will be considered similar.
In order to model this information, the final LBP features are extracted from spectrograms
at sub-band level and then concatenated into a single vector.

5.2.4 A toy problem

This section describes the process of feature extraction with a toy problem to illustrate how
LBPs can be used to differentiate between acoustic scenes. The toy problem is composed of
signals of different nature: the first is white noise; the second is a sinusoidal tone at 1000Hz;
the third is a succession of 8 equidistant clicks which vertically span the spectrogram. The
frequency resolution stems from the application of a FFT with 2048 points. The spectro-
temporal resolution of the power spectrogram results in a image of 1025 x 249 dimension,
with a sampling frequency of 44100Hz and a time frame of 32ms overlapped by 16ms over
4s segment. The objective of this toy problem is to illustrate the capture of the most frequent
LBPs with respect to the type of acoustic texture they represent. For instance, in the case
of impulsive sounds, we expect that the LBPs reflect vertical edges; on the contrary, the
constant tone will be captured by horizontal edges.

Fig. 28 depicts the three spectrogram images (left) alongside corresponding LBPg
histograms (right). Only uniform patterns with two or fewer transitions between 1s and 0s
are captured here. The histogram bin count has been normalized according to a L,-Hellinger
normalization. In correspondence of spectro-temporal patterns captured from white noise,
the histogram is specially flat, without any evident peaks in the histogram. In contrast, the
other two signals exhibit attributes on amount of specific spectro-temporal structure.

The 10 most frequent LBPs are illustrated in Fig. 29 in same order (white noise, tone and
clicks) from top to bottom. These patterns represent the spectro-temporal structure captured
directly. While patterns of white noise are almost homogeneous (except for maximum one
bin), the stationary tone is captured through horizontal edges (visible in patterns 5,6, 9, 10).
As expected, the impulsive clicks are characterised by edges. These patterns are captured
with LBPs 6,8, 9. In general, homogeneous patterns (i. e. all 1s or 0s) are the most frequent
in the three examples.
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Figure 29: Starting from the left, each column represents the most occurring LBP patterns for (a)
white noise, (b) sinusoidal tone and (c) clicks signals. The circular LBP has 8 equidistant
points, with a radius of 2. The red dot indicates the centre of each pattern whereas the
empty/full blue dot corresponds to 0/1 in the binary pattern.

5.2.5 Codebook creation

In order to make the representation more compact, a bag of features (BoF) approach is
applied to LBP features. The principal idea is to extract automatically, via unsupervised
k-means clustering, a codebook of the most representative histograms. Each acoustic scene is
then represented as a distribution of the words gathered in the codebook. This method is based
on the well-known BoF technique, popular in image retrieval tasks [95]. The spectrogram
of each test sample is represented in terms of the distribution of codebook words whose
distance to the closest word is determined according to a cosine similarity metric. The
cosine distance is well suited as a metric for histogram features [96]. The BoF method
optimizes the aspects of LBP and codebook creation which are pertinent to ASC problem:
the local descriptors represent spectrogram clips as a stack of local properties computed
over smaller blocks; the codebook is a way of representing the entire spectrogram as a set of
local descriptors. In fact, LBPs capture local time-frequency properties of a scene and the
codebook represents each recording as a combination of codebook words. As illustrated in
Fig. 30, these words play the role of sounds events and each scene can be represented as a
collection of these sound words.
The main steps of codebook creation are as follows:

1. LBP histograms are extracted from short time-frequency representations, split into
sub-bands. This helps to identify patterns not only from their shape but also for their
frequency;

2. a codebook of k-words is extracted using k-means clusters for LBPs from each class;

3. LBPs histograms are then mapped to the closest word in the codebook using the cosine
distance. A higher-level histogram represents the full recording as a combination of
codebook words;
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Figure 30: The corresponding log-power spectrogram excerpts of 1s selected with respect to the
closest LBPs cluster centroids. The sampling frequency of the selected signal is 44100 and
the dataset is the DCASE 2013 evaluation set.
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Figure 31: The codebook histograms for a bus scene (a) and a restaurant scene (b) for the DCASE
2013 evaluation set. The codebook words are depicted in Fig. 30

4. the LBP-codebook features are used alone or in combination with standard features
(e.g. MFCCs) before classification.

An example codebook of 10 words is displayed in Fig. 30. These spectrogram clips
correspond to the audio spectrogram closest to the cluster centroids. Words 1, 5 and 7
comprise mainly voices (indistinct chatting, single male voice and child voice); a beep
sound is captured in word 2; white noise-like clips are represented by words 4 and 10;
finally words 3, 8 and 9 correspond to engine (acceleration or stationary) noise. Examples of
codebook composition in real acoustic scenes are depicted in Fig. 31, where the codebook
words reflects those of Fig. 30. Interestingly the bus sample, to the left inset of Fig. 31, is
identified mainly by word 8 (engine noise); restaurant sample is represented by the presence
of words 1, 5 and 7 (speech/voices clips).

The size of codebook depends on the parameter k, which expresses the number of
clusters better representing the dataset: when k is too small, the codebook is not sufficiently
discriminative to distinguish between different scenes; when k is too large, the resulting
histogram is less sparse and therefore less generic. The optimal k for the DCASE 2013
development dataset was found to be 50, as reported in Tab. 7. The same k is supposed to
also represent the evaluation set.
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Table 7: The accuracy and confidence intervals (£ CI) for DCASE 2013 development dataset as a
function of codebook sizes obtained with a k-means clustering. In bold the best results.

Codebook size k | 10 30 50 70 100
DCASE 2013 dev | 47% (£ 6) | 52% (£ 6) | 55% (£ 5) | 50%(%£ 5) | 54% (£ 7)

5.3 EXPERIMENTAL RESULTS OF LBP SYSTEMS

This section describes datasets, protocols, implementation details and metrics. In the last
part, results are provided followed by a discussion of the advantages and limitations of LBP
approach.

5.3.1 Datasets & protocols

The LBP algorithm is evaluated using 4 databases with a diverse composition of scenes
and recording conditions. This evaluation is therefore more focused on cross-database
performance. A fair evaluation involves several databases to test the capacity of a method
to generalise to new conditions: a relative performance metric across different datasets will
assume more significance than an absolute level of performance on a single dataset. The four
databases used for experiments reported in this chapter are: the DCASE 2013 development
set, the DCASE 2013 evaluation set, the NXP dataset (see Sec. 4.3) and the Rouen dataset.
The Rouen dataset is a recently released public dataset [33]. It comprises about 25 hours of
recordings of 19 scenes, registered with smartphones to reflect a potential ASC scenario.
This dataset has a sampling rate of 22050Hz with 30s recordings similar to the DCASE
2013 database. For the first three datasets, a 5-fold partition was used to separate training
and testing data. The Rouen dataset, instead, has a different standard protocol based on a
20-fold partition [33].

5.3.2 Implementation details

Baseline features are the same as described in Sec. 4.4. These are used with the MFCC+RQA-900
system analysed in Chapter 3. LBP features are extracted from 4s audio segment of acoustic
signals, using 8 neighbours with a radius equal to 2. LBPs are extracted from log-power
spectrogram segments which is first split into 3 sub-bands (9gooHz, 2kHz, 8kHz), with the
aim of distinguishing between similar patterns coming from different spectral sub-bands.
The spectrogram has a time resolution of 32ms overlapped by 16ms. Histograms of 59 bins
(58 uniform patterns plus 1 bin grouping all the non-uniform ones) are extracted separately
for each sub-band and concatenated to form a single feature vector. The resulting histogram
is normalised with the L, Hellinger normalization.

LBP-Codebook features stem from LBP analysis applied to smaller 1s segments with an
overlap of 0.5s. Clustering is applied to obtain 50 clusters for the DCASE 2013 evaluation
dataset and 100 for the larger NXP and Rouen datasets. Experiments for finding the best
k cluster value are performed on the development set of DCASE 2013 and on training set
of NXP and Rouen databases. These values were found to be optimal given the different
dataset sizes. LBP-Codebook features extracted from each sub-clip are aggregated over the
tile duration to obtain a single BoF histogram per recording. LBP-codebook+MFCC-900Hz
refers to the combination of the proposed system with standard MFCCs.
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Figure 32: Plot shows the accuracy mean with 95% confidence intervals (CI) over 5-fold cross-
validation for DCASE 2013 dataset. In blue circles the values of evaluation set, whose
baseline is expressed also with a blue line; in red stars the values of the development set
with the baseline expressed in dashed red line. Except for the baseline and the RNH, the
other systems have been proposed in this work.

5.3.3 Results

The proposed LBP-based systems are compared with state-of-the-art systems in Fig. 32.
LBPs achieves an accuracy of 73%, performing 18% better than the MFCC baseline. In
addition, replacing RQA in the RNH system gives an accuracy of 79%. LBP combined with
energy-based features (BER and RMS-based) achieves an accuracy of 72%.

The multi-dataset evaluation is reported in Tab. 8. The statistical significance is assessed
through a Wilcoxon signed rank test. At first sight, LBP-based features outperform MFCC-noCO
features for all datasets. Adding RMS-based and BER features to LBP further increases
performance, reaching the best accuracy for the DCASE 2013 dev, NXP and Rouen datasets.
For the larger datasets such as NXP and Rouen, the configuration LBP+RMS-BASED+BER
achieves 93% and 88% respectively.

In particular, for the Rouen dataset, results are comparable to the 87% accuracy reported
in [33], which employs an image processing techniques applied to a time-frequency repre-
sentation. The MFCC-RQA-900 system remains the second best system for the DCASE 2013
dataset (eval) but it generalises poorly to other datasets. Surprisingly, for NXP and Rouen
datasets, the addition of RQA to MFCC features has no impact. The LBP-codebook system
achieves an accuracy of 9o% for the NXP dataset whereas when combined with MFCC
improves still further performance, reaching the highest accuracy achieved for the DCASE
2013 evaluation set. Finally, the LBP+RMS-based+BER system seems to be the most consistent
across the four datasets.

LBP analysis extracts patterns from the comparison of central pixel with its neighbours.
This property suggests that the proposed LBP system should be less affected by energy
variations. In that sense, several volume gains are applied on the testing recordings to prove
the energy-invariance property of the proposed systems. Gains in the range [—12,—6,0, 6, 12]
dB are applied to the signal amplitude. Curves plotting accuracy as a function of the gain
are depicted in Fig. 33. As expected, LBP and LBP+RMS-based+BER systems seem the less
impacted by energy changes, showing the best trade-off between accuracy and robustness.
The figure also shows that the replacing of RQA features with LBP-based codebook features
is beneficial not only in terms of absolute accuracy, but also in robustness to different energy.
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Datasets

Features dim DCASE 2013 dev | DCASE 2013 eval | NXP Rouen
MFCC-noCo 25 58% (£ 5) 57% (£ 13) 84% (£ 2) | 79% (£ 1)
MFCC-noCo+RMS-based+BER | 33 66% (4 10) 65% (£ 8) 89% (£ 1) | 85% (£ 1)
MFCC+RQA-900Hz (RNH) 37 70% (£ 10)* 76% (£ 5)* 79% (£ 2) | 79% (£ 1)
LBP-codebook 50-100 | 55% (£ 5) 65% (£ 5) 90% (£3) | 70% (£ 1)
LBP 177 69% (+6)* 73% (£5) 86% (+ 1) | 84% (£ 0.5)
LBP-codebook+MFCC-gooHz | 76 71% (£ 7)* 79% (£ 3)* 92% (£2) | 85% (£1)
LBP+RMS-based+BER 185 71% (£ 7)* 72% (£ 5) 93% (£ 2) | 88% (£ 1)

Table 8: Accuracies computed for different features and different datasets are herein presented.
Terms with a * represent the best results which are not statistically significant according to
a Wilcoxon signed rank test with a p-value of 5%. The statistical test regards results from
the same dataset. RMS expresses the amplitude and dynamic variance, expressed with a
2-dimensional feature vector; MFCC-noCO denotes the MFCC computed over [0, 8]kHz range,
without CO; BER is the band energy ratios. LBP indicates the textural features over three sub-
bands spectrogram. Composed system are indicated with the + while with MFCC+RQA-900Hz
is indicated the current state-of-the-art. We indicate the best method of each dataset in bold.
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Figure 33: Accuracy as a function of gains (dB) applied to the testing samples (at 0dB no gain has
been applied). The reference dataset is the evaluation set of DCASE 2013.
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5.3.4 Main limitations of LBP approach

This chapter proposes a promising, new approach to feature extraction for ASC. LBP
features capture the audio structure and are complementary to conventional MFCCs. Their
combination competes with the performance of recurrent quantification analysis (RQA),
adding further weight to the benefit of capturing textural features of complex acoustic
structure. In addition, a bag-of-features approach is shown to reduce feature dimensionality
while still improving on baseline performance. With reduced computational complexity, the
codebook approach is perhaps better suited to scenarios with a limited set of resources.

The recent availability of larger datasets (NXP, Rouen) enables new approaches to be
evaluated on a broader set of scenes, conditions and type of classes. The capacity of a system
to perform well on heterogeneous conditions assumes a key role determining the most
reliable technology. This chapter shows that the combination of LBP with RMS-based and
BER features provides the most consistent results across different datasets. Moreover, the
proposed system is more robust to energy variations while maintaining a constant level of
performance.

The codebook could also be trained using a larger pool of readily available data in order
to recognize distinct acoustic events rather than abstract time-frequency patterns. This
approach may facilitate the learning of codebooks for the same distinct events, e.g. car
horns, or engine noise) which may be beneficial, especially if these events are learned in a
discriminative framework tailored to the scene classification task.

Albeit providing the best performance reported here for this thesis, LBP-based features
have two main limitations:

¢ the localization of the LBP patterns is partially lost when the histograms is built.
Different to images, patterns extracted on the upper part of the spectrogram have
a different spectral meaning than the same patterns in the lower part. This has been
partially solved by splitting the spectrogram into 3 sub-bands and then extracting 3
separate histograms. Nevertheless, localisation of LBP patterns in the spectrogram is
specific to audio analysis and should be better represented;

¢ features are still hand-crafted, necessitating significant effort to choose the best con-
figuration. Among them, the shape of the LBP, the type of uniformity patterns, the
operations performed on the spectrogram, the number of sub-bands, the size of the
codebook, etc. All these parameters have to be manually optimised.

With the variability in acoustic scenes being so high, the design and tuning of LBP features
is still a long and complex process which is exacerbated by the number and type of classes.
Every time a new class is introduced, features will likely require re-optimisation. Even so,
the LBP approach is a step beyond the use of traditional features for ASC and also a new
direction towards the capture of spectro-temporal structure in acoustic scenes.
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A DEEP LEARNING APPROACH

Acoustic scenes usually exhibit a high degree of variability, both inter-class and intra-class.
Because of this variability, ASC is a particularly challenging statistical pattern recognition
task. Almost all current approaches rely on hand-crafted features chosen specifically to
facilitate discrimination between an often small set of known acoustic classes. The previous
contribution in this domain, which investigated the use of local binary pattern (LBP) features,
is no exception.

With the variability in acoustic scenes being so high, the premise of the research presented
in this chapter is that hand-crafted features are a bottleneck to ASC performance and that
automatically derived features have greater potential.

Deep learning techniques have brought tremendous advances in a huge range of different
statistical pattern recognition applications [97] and is now the state-of-the-art in many, if
not the majority. These techniques and tools offer one alternative to hand-crafted features
and a suite of different approaches to automatic feature learning from complex input data
(e.g. images and audio).

This chapter reports a first attempt to harness the power of automatic feature learning
for ASC using deep learning architectures known as convolutional neural networks (CNNs).
Given the promising results obtained with image processing techniques applied to spectro-
temporal inputs (e. g. LBP in Chapter 5 or histogram of gradients (HOG) [33]), CNNs seem
to be a natural candidate to avoid reliance on hand-crafted features. Experiments with deep
learning architectures were made possible by the release of larger databases, namely the
DCASE 2016 database. Together with the data, a public evaluation was also announced.
Hence, the system proposed in this chapter is compared with other systems. As for the
previous edition in 2013, the DCASE 2016 public evaluation significantly advanced the ASC
domain.

Experimental results reported in this chapter confirm that the level of performance betters
that obtained with hand-crafted features. This can be achieved with deep learning methods
and automatically derived features. Furthermore, the property of automatic feature learning
is particularly desirable in a task as ASC where the acoustic variability is a predominant
factor. The remainder of this chapter is organized as follows: Sec. 6.1 summarizes the
prior application of deep learning architectures to the ASC problem; Sec. 6.2 presents how
CNN was adapted to the ASC task; Sec. 6.3 describes specific implementation details and
experimental results; Sec. 6.5 provides a qualitative evaluation of the features learned by
the network; conclusions and discussions are presented in Sec. 6.6.

6.1 PRIOR WORKS ON DEEP LEARNING APPROACHES

The ASC literature shows that the majority of ASC approaches utilise features developed for
other related tasks such as speech or music genre recognition (literature review in Chapter 2).
Recent works explored the use of features which capture time-frequency correlation. Some
of these works draw upon methods popular in other 2-dimensional domains such as image
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processing. LBD, for instance, represents an audio spectrograms with a histogram of the most
occurring patterns [98]. Similarly, HOG encodes the direction of variations in CQT-based
spectrograms [33].

Having been applied so successfully to other related problems, deep learning tech-
niques [6] are now emerging [99]. Deep neural networks (DNNSs) are able to identify and
extract optimized, discriminant features from training data and thus offer one alternative
to hand-crafted features. Many different architectures and data input representations have
been investigated for a host of different applications such as image and speech recogni-
tion [100, 101].

While the first investigation of DNN approaches to ASC [99] showed promising results,
the work was based upon MFCC features. Thus, the potential benefit of deep learning was
thus still curbed by the initial use of MFCCs.

This chapter reports the experimental works with a particular approach to deep learning
involving convolutional neural networks (CNNs). The main reasons for this choice are (i)
the possibility to replace hand-crafted features with features learned automatically and (ii)
the possibility to use time-frequency representations as inputs to the network, in line with
previous research on spectro-temporal LBP patterns.

6.2 THE PROPOSED CNN ARCHITECTURE

The motivation behind the application of CNNs to spectro-temporal inputs are biologically
inspired. As studies on animal auditory cortices confirm [102], temporal and spectral
properties of sound contribute to an unified, correlated descriptor. In other words, features
which encode time and frequency together better suit to the biological representation of
a sound. Therefore an useful aspect of automatic learning is its applicability not only to a
frame-wise spectral content, but also to the concatenation of consecutive frame-wise spectral
contents. Standard CNN architectures require significant adaptation to capture the ASC
peculiarities. A deep architecture is a stack of connected layers, each of them performing a
specific operation (e. g. input layer, convolutional layer, etc.). Each layer has a specific role in
relation to the ASC task and is described in further details in the following.

6.2.1  Global structure

CNNs have a multi-layered, deep network architecture. Differently from MFCCs which
decorrelate the data with the DCT, CNN takes as input the log mel-filtered spectrogram
mimicking an image processing behaviour. In the convolutional layer, each hidden unit
is not connected to all the inputs from previous layer, but only to an area of the original
input space, called receptive field. These small parts of the whole input space are connected
to the hidden units through the weights w and bias b. This operation is equivalent to
a convolutional filter processing. The architecture proposed in this work is illustrated in
Fig. 34. It is composed of an input layer, a stack of convolutional and pooling layers, a fully
connected hidden layer and a final output layer.

CNNs rely on convolution and pooling operations: the convolutional layer convolves a set
of filters over portion of the input whose filters are shared among the entire input space;
the pooling can be seen as a down-sampling operation which focuses more on the pattern
itself rather than the exact location in the input. This adds robustness to small modifications
and translations in the input space. A deep architecture replicates these operations in a
stack. In this way, the filters at each layer capture patterns at higher level of abstraction,
because they work on lower resolution inputs coming from the pooling layer. Eventually,
the fully connected layer connects units coming from all local positions to perform a global
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Figure 34: An example of CNN architecture investigated in this work: the input is a 2-channel static
and dynamic spectrograms. These are followed by two, stacked convolutional and pooling
layers. Fully connected and output layers produce the probabilities of the input data
belonging to each acoustic class.

classification of the input. As for LBP histogram in 5.2, the initial spectrogram inputs are
represented by the combination of their local components.

6.2.2 Input layer

In the proposed CNN architecture, the spectro-temporal inputs are obtained through spec-
trogram operations. These inputs are image-like spectrograms, with the rows representing
the frequency bins and columns the temporal frames. Frequency bin are reduced in di-
mensions by using a logarithmic mel-scale filters bank. Due to this operation, the level of
spectral resolution is mainly preserved whereas the frequency dimension is reduced.

In the application of CNNs to computer vision tasks, input images are typically repre-
sented with colour channels (e.g. red, green and blue) [103]. In the proposed CNN, this
same idea is adopted in the application of CNNs to ASC. As illustrated in Fig. 35, inputs
take the form of (i) a static, log-Mel spectrogram and (ii) a separate, dynamic spectrogram
representation composed of its first derivative parameters (A). These two representations
form a two-channel input (D = 2) to the network so that hidden units can combine static
and dynamic information. The input of the CNN have three dimensions: the width (L), the
height (A) and the depth (D), the latter being equal to number of channels [100].

In addition, as illustrated in Fig. 35, spectrograms are segmented into shorter segments
which are treated as independent inputs. For inputs with D > 1, the segmentation is applied
in the same way.

6.2.3 Convolutional layer

Complex acoustic scenes contain discriminative spectro-temporal structure, e.g. engine
noise or telephone ring-tones. These characteristics are referred to as local patterns, namely
a correlated concentration of energies over both frequency and time. Engine noise, for
example, is characterized by a predominant local pattern spanning the time dimension
whereas ring-tones may exhibit a highly harmonic pattern spanning the frequency dimension.
Experimental results with LBP patterns reported in Chapter 5 confirm that the capture of
local patterns is beneficial to ASC task: a scene is therefore represented by the presence of
local spectro-temporal patterns rather than by the global characteristics.
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time frames

Figure 35: CNN input data is a pair of static (log-Mel) and dynamic (first derivatives, A) spectrograms.
Both static and dynamic spectrograms are segmented into shorter segments, treated as
independent inputs. Each input is characterised by its width, height and depth.
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spectrogram segment feature maps

Figure 36: The input (h(°~1))) of the convolutional layer is convoluted with the first kernel W1(<0) =1

resulting in the hidden unit of the first feature map h‘(:’:)1 .

This locality concept is replicated also in the convolutional layer. In the proposed CNN
architecture, each neuron in the convolutional layer is connected to a local region (including
its depth). This local region is referred to as receptive field making the locality concept
determinant in the construction of the convolutional layer.

Each receptive field of the previous layer is connected to the activation output of the
current layer through weights w. All convolutional neurons which share the same w and
biases b (referred to as filters) are grouped together under the name of a feature map: each
feature map is the output of a set of shared weights applied to the previous layer.

As an example, the initial convolutional layer which has a raw spectrogram segment as
its input is depicted in Fig. 36. This figure illustrates the receptive field h{°~1), the first filter
and the corresponding first feature map. The depth of the input spectrogram is equal to 1
(D =1) and the total number of feature maps is 4. In the next convolutional layer, D will
assume the number of the previous layer feature maps.

Weights and biases are shared among the entire feature map in order to reduce the
total number of trainable parameters. A given filter is applied to all receptive fields of the
previous layer with a specific shift from one position to another. Each position results in an
activation of the neuron and the output is collected in the corresponding feature map.

Receptive fields, filters and feature maps characterise the activation function of the (o)™
convolutional layer with respect to the (o — 1)t previous layer as follows:

D A
—1
b ( TS S Wl e +b$:”) , 25
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Figure 37: The pooling is applied to 2 x 2 blocks of the feature maps, with a stride (or shift) of 2 bins.
In this example, for each of the 2 x 2 blocks represented in the convolutional layer, the
maximum value is taken and represented in the pooling layer.

where h]io) indicates the hidden neuron of the k'™ feature map of the o'" layer. The
activation function is f. The resulting hidden neuron is connected to the receptive field
h(o=1) of area L x A through the corresponding convolutional filter w. L, A and D are
namely the width, height and depth of the filter.

Hidden unit outputs h]io) form new layers of spatially connected neurons which are
referred to as feature maps. Different feature maps can be formed from combinations of locally
connected hidden units, each sharing the same weights applied to different positions of the
input space.

6.2.4 Pooling layer

Pooling layers are applied to the outputs of the convolutional layer in order to reduce
their resolution. Different strategies can be applied. Among the simplest is a max-pooling
operation whereby a block of values in the pooling layer input are replaced with their single,
maximum value. What is effectively an operation of downsampling is shown to not only
reduce dimensionality, but also to provide invariance to translation in the input [104]. An
example of max-pooling operation is displayed in Fig. 37.

For the ASC task, max-pooling produces invariance to small changes in spectro-temporal
structure. For example, the same local pattern (e.g. engine noise) centred on a specific
frequency may vary only marginally from one recording to another. The pooling operation
reduces the dependency over frequency or time resolution, giving more importance to
pattern structure rather than spectro-temporal locations.

6.2.5 Fully connected layer

Convolutional and pooling layers are replicated in sequence, by using the output of the
pooling layer as the input of the convolutional layer. As the architecture becomes at deeper
level, the receptive fields will represent bigger areas of the input. This produces higher-level
representations of the input data at every layer.

Final outputs are obtained with a fully connected softmax layer which produces a score
for each class. Inputs to the fully connected layer are outputs emerging from the last
convolutional or pooling layer. By definition, fully connected layers do not operate at a local
level and instead represent the entire input as combinations of local patterns.
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6.2.6 Learning the network parameters

The loss function 1 used for CNN training (i. e. for the optimization of model parameters
0 = {w, b}) measures the error between a target y,, and predictions {:

Wyn, On) =ynlogGn + (1 —yn)log(1 —Gn). (26)

In fact, the predicted output {, is obtained by successive operations involving all pa-
rameters 0 = {w, b}. These parameters are not optimised based on the n'" sample. A cost
function J(0 = {w, b}) refers, instead, to the average loss over N training samples:

1 N
J0) = 55 > Uyn,Gn): @7)
n=1

The optimal set of parameters 6 = w, b are those that minimises the cost function J. This
can be also seen as adjusting the convolutional filters depending on the predictions {,, over
the training set. In other words, CNNs create convolutional filters which minimise the cost
function. The standard algorithm used to solve the minimisation problem arg ming J(6)
is the Gradient descent (GD), which finds the local minimum of a function by iterative
optimization steps. At each iteration of the GD algorithm, the optimal directions is obtained
by the negative of the gradient of J(6).

When the number of training sample is large, the cost J(0) may be very expensive to
compute in terms of computation and memory. For this reason, the direction of the gradient
is computed on a mini-batch, a smaller set of the training samples. It is demonstrated in
the literature [105] that a gradient descent based on mini-batches is faster and provide a
reliable estimation of the cost function computed over the entire training set. Every time
the parameters are updated after the computation of the cost function over a mini-batch,
it is referred to as iteration. The term epoch indicates that the entire training set has been
processed with smaller mini-batches. Presenting a realistic class distribution in each mini-
batch is highly beneficial for the stability of the network [106]. For ASC, the samples in
the mini-batch correspond to spectrogram segments with their derivatives. These shorter
segments are then randomly shuffled before starting the learning process so that highly
correlated segments (i. e. consecutive segments picked from the same recording) are unlikely
part of the same mini-batch. Thus, the parameters update is computed from samples which
are highly uncorrelated and coming from different classes. This improves the representative
power within the mini-batch thereby producing more reliable network parameters.

6.3 OPTIMISING THE CNN

The training of neural networks involves a careful choice of hyperparameters (e. g. type of
inputs, number of channels, activation functions, number of layers, etc.).

6.3.1 Standard practise

Instead of evaluating all possible combinations of these hyperparameters, standard practice
involves finding the best hyperparameters through heuristics. During the selection of the
optimal CNN configuration, only a limited set of hyperparameters were fully tested on the
DCASE 2016 development set (number of layers, type and number of channels, segment
length) whereas other choices were decided a-priori based on standard practise. These
choices and their reasoning are described as follows:
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¢ the learning rate n refers to the rate of direction of the gradient Vg with respect to the
cost function J(0)

ot =9 —nveJ(e™), (28)

where t is the iteration index among T iterations. The selection of the learning rate is a
delicate operation since it may influence convergence towards a stable solution. A too
small learning rate will slow down convergence whereas a too big value would cause
the GD algorithm to iterate arrival in a saddle point. In that sense, an adaptive learning
rate is artificially created in a range Mstart,Nstop) With a step equal to W
Thus, the learning rate decays linearly with the number of epochs. In the experimental
works later in this chapter, the range is set to Mstart = 0.02,Mstop = 0.0002] with

T =50;

¢ varying the learning over time is not effective when the error surface has gradients
in different directions. This produces a phenomenon which makes gradient descent
oscillate between the gradients without reaching a local optimum [107]. Momentum is
a method which helps to avoid such oscillations and to adjust the gradient toward
the most significant direction. It achieves this by adding a fraction y of the update
vector coming from the previous iterations to the current updates [108]. Like an
acceleration term, the momentum increases if the past updates have the same direction
of the current gradient while it is reduced if the direction changes. However, this
method tends to be sub-optimal because the momentum is blindly following the slope.
Nesterov accelerated gradient (NAG) partially solves this problem by computing the
gradient not only from the current parameters 6(*), but on the approximate future
position of the parameters given by the current parameters 0!*) and the previous
update vector v(t—1)

v = T L nget(et) —ypy(t))

glt+1) —  g(t) _ (1), (29)

ASC experiments were performed using a value of v set initially to 0.9 but increased
to 0.99 as the number of epochs increase. In this way, the approximate future direction
will depend more on the previous updates vector than on the current parameters;

¢ a rectifier liner unit (ReLU) is adopted as an activation function f(x) = max(0, wz +
b). The main advantage of ReLU is to smooth the effect of the vanishing gradient
problem [109], which happens when the gradient of the network’s output with respect
to 0 diminishes exponentially with the layers of the network. Some activation functions
(e. g. sigmoid) compress huge parts of the input space into a small range. This problem
can be addressed by employing ReLU activation function which, instead, has a range
[0, 00];

¢ weight initialization determines the starting point of the GD algorithm and highly
impacts the training capacity of the network. If initial weights are too high or too low,
the setting of the learning rate will be more sensitive. Recent studies by Glorot [110]
have proven to be effective by initializing weights from a distribution to zero mean
and variance = m, where ni,, and ngy¢ are the number of neurons in the first
and last layers of the network respectively. In the experimental works presented in
this chapter, this weights initialisation procedure is preferred.
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6.3.2 Regularisation techniques

The way we present the data to the CNN determines its learning capacity. Normalising
input data to zero mean and unit standard deviation is a common pre-processing step
applied at the initial stage of the network. Instead of computing the normalisation to the
input data, it is applied to each mini-batch data after layer transformation. In this way, the
outputs of each layer are normalised avoiding the so called internal covariate shift effect [111]:
when they pass through a deep architecture, data progressively loose their normalization
resulting in too big or too small values. This has an impact on the deeper layers, which
have to adjust to this change thereby slowing down learning. Batch normalization has the
advantage of reducing the learning time while improving classification accuracy.

Parallel to batch normalisation, regularization techniques avoid overfitting when using
relatively small datasets. One of the most popular technique is so called dropout, which
consists in the dropping out of hidden units according to a certain probability. At each
training iteration, a random subset of hidden units is temporary disabled by multiplying
the input to these units by 0. This forces the network to find robust features that do not
depend on the presence of particular neurons [112]. Dropout forces each neuron to create
the best representation of the data at the individual level.

6.3.3 Hyperparameter selection

This section describes the selection process of some of the network hyperparameters. These
hyperparameters were selected based on the performance obtained on the DCASE 2016
development set. The entire process is reported in Tab. 9.

The selection follows the same order of Tab. g so that the selection of a specific hyper-
parameter (e.g. the number of layers) depends on the previous hyperparameter choice
(e.g. the type of regularisation method). Starting from the sub-table (a), the first choice
concerns the type of the regularisation method. Results from single channel log-mel spectro-
grams as input shows that the combination of dropout and batch normalisation increases
performance. Sub-table (b) confirms that 2 convolutional layers are better than 3 layers.

As shown in sub-table (c), the number and type of channels influences the entire network
performance. An accuracy of 78.5% is achieved with a 2-channels configuration, where
the first channel is the log-mel spectrogram and the second is the time derivative (A). The
addition of second order derivatives (AA) as third channel does not improve further the
performance. Interestingly, the use of stereo information is better than using a single channel
(from 76.5 to 77.5) but is worse than that achieved with the log-mel + A configuration.

A A window shift (1) of 4 (so that the length of the window is 9, + 4 the considered
frame) gives even better performance (sub-table (d)). Finally, the segment length from which
the log-mel and derivatives are computed is tested. The optimal length for the 2-channel
input is 1.2 seconds (sub-table (e)).

64 EXPERIMENTAL RESULTS

Described here are specific details of the proposed CNN implementation and ASC results
for the DCASE 2016 database [26].

6.4.1 Database & protocols

The dataset used for evaluating the proposed CNN is the DCASE 2016 database which con-
sists of 15 acoustic scenes. All the different contexts were recorded by a binaural microphone
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Method dropout batch  normalisa- | dropout + batch
tion normalisation
1 channel (log-mel) | 73.9% 75.6% 76.5%
(a)
Method 2 conv layers 3 conv layers
batch  normalisation + | 76.5% 75.6%
dropout + 1 channel
(b)
Method log-mel + A left mic + rigth | mic average + | log-mel + A +
mic difference AA
batch nor- | 78.5% 77.2% 77.5% 68.5%
malisation ~ +
dropout + 2
layers
(@)
Method T=2 T=4 =28
batch normalisation | 72.7% 78.5% 64.7%
+ dropout + 2 layers
+ 2 channels
(d)
Method 0.6s 1.28 2.58
batch normalisation | 67.8% 78.5% 75.2%
+ dropout + 2 layers
+ 2 channels
(e)

Table 9: The hyperparameters selection, based on performance of DCASE 2016 development set.
Several hyperparameters are tested and selected according to the highest accuracy. The
selection follows this order: (a) the regularisation methods; (b) the number of convolutional
layers; (c) the number and types of channels; (d) the window shift T of the first derivatives
A; (e) the segment duration.
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Figure 38: The DCASE 2016 challenge protocol. The database partitioning into development and
evaluation set.

using 44.1 kHz sampling rate and 24 bit resolution. Each recording consists of 30s of audio
signal. The stereo sounds are very similar to the ones reaching a human hearing system.
Here are the scene labels present in the DCASE 21016 database: bus, cafe/restaurant, car, city
centre, forest path, grocery store, home, lakeside beach, library, metro-station, office, residential area,
train, tram, urban park.

The challenge is composed by two subsets: development and evaluation. Fig. 38 depicts
the complete protocol. For each acoustic scene, 78 segments (39 minutes of audio) are part
of the development set, while 26 segments (13 minutes) are kept for the evaluation. The
total amount for the development set is gh 45min and for the evaluation set is 3h 15 minutes.
A 4-fold cross-validation setup is provided for the development set in order to make results
reported with this dataset uniform. The cross validation is done at recording level, not frame
level. In the experimental results reported in this chapter, the DCASE 2016 development set
results refer to the results on the test set (see Fig. 38).

In addition to the standard training-test split, a portion of the original training set is used
to iteratively control the generalisation capability during the learning phase of the CNN.
This has the advantage to derive the optimal parameters after few epochs. This process has
two phases:

1. in the first phase, the original full-training set is split into two separate sets. The
training set is used to learn the network parameters while the validation set serves as
a controller of the learning capacity;

2. in the second phase, once the learning capacity has been validated, the CNN employs
the full-training data (80% of the development set).

Concerning the baseline detailed in [26], the parameters for MFCC-GMM baseline system
are listed as follows:

¢ MFCCs frame-size: goms (50% hop size);
e number of Gaussians for each class model: 16 components;

¢ feature vector: 20 MFCC coefficients (including CO) + 20 A + 20 AA.
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Figure 39: The global architecture of the proposed CNN with the implementation details of each
layer.

6.4.2 Implementation details

This hyperparameter selection determines the candidate system which is then evaluated
on the DCASE 2016 evaluation set. This system is referred to as Battaglino_2 in order to
distinguish it from the first CNN version Battaglino_1 whose details and implementation
can be found in [113]. The preference for the Battaglino_2 rather than Battaglino_1 system
was dictated by a higher accuracy on the training and test set thereby suggesting a greater
generalisation capability.

The following implementation details refers to the Battaglino_2 system which reached a
higher accuracy on the test sets. Audio signals are first treated in the usual way involving the
application of the discrete Fourier transform to 40ms frames with an overlap of 20ms. Static
spectrograms are formed from magnitude spectra which are passed through a bank of 60
log and Mel-scaled filters with a maximum frequency of 22050 Hz. Dynamic A spectrograms
are calculated in the standard way with a time-window of 9 frames. Each 30s clip of the
DCASE database is thus split into 25 segments of 1.2 seconds duration. Each segment is
furthermore represented with both static and dynamic spectrogram segments, as illustrated
in Fig. 35, resulting in input data of 60 bands x 60 frames.

The Battaglino_2 system with its details is displayed in Fig. 39. The CNN has 2 stacked
pairs of convolution and pooling layers. The first convolutional layer contains 32 filters each
of which spans 5 frequency bands and 5 frames. On account of the relative dimensions
of spectrograms and filters and the overlap inherent to the convolution, the frequency
and time resolutions of the filters respect the shape of the input segment. Both pooling
layers perform max-pooling over 2 adjacent units in both frequency and time, reducing
by one half the dimension of the previous convolutional layer, with a stride equal to 2. A
second convolutional layer creates 64 feature maps using filters each spanning 5 bands and
5 frames.

A smaller number of filters in the first layer captures low-level pattern structures. In
ASC, these patterns correspond to horizontal /vertical edges, chirps and simple structured
patterns. These are then combined to form more complex and high-level features which
describe an acoustic scenes. Under this assumption, the number of filters is doubled in the
second convolutional layer.

The fully connected layer has 512 neurons and is followed by a softmax function which
returns output probabilities for all of the 15 DCASE 2016 classes. Regularization is performed
using a growing dropout probability, and referred before convolutional and fully connected
layers. To preserve the creation of the features in the initial layers, the dropout is set to 0.2
and then gradually increased to 0.3 and 0.5. Data is treated in batches of 100 input samples
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Method DCASE 2016 dev set | DCASE 2016 eval set
GMM (baseline system) | 72.6% 77.2%
Battaglino_2 78.5% 84.4™%

Table 10: ASC performance for the DCASE 2016 development (dev) and evaluation (eval) sets. The *
indicates that CNN results are significantly different from those of GMM at 95% confidence
interval according to a Wilcoxon signed rank.

and the network is trained for 50 epochs. The learning rate is linearly chosen in the range
[0.02,0.0002] with an initial momentum of 0.9, which is increased linearly to 0.99 for the
final epoch.

6.4.3 DCASE 2016 results

Classification results are illustrated in Tab. 10 for both the Gaussian mixture model baseline
system [26] and the CNN approach (Battaglino_2). Results show average classification
accuracy over 15 classes for both development and evaluation sets: for the DCASE 2016
development set, the average accuracy is seen to improve from 72.6% for the baseline system
to 78.5%; for the DCASE 2016 evaluation set, the accuracy passes from 77.2% to 84.4%.

Results clearly show the benefit of using a CNN architecture for solving an ASC problem.
The baseline GMM system is outperformed on development and evaluation set. The first
submitted system Battaglino_1 achieved an accuracy of 80% using a 2 convolutional layered
CNN architecture without batch normalisation. The second system Battaglino_2 adopts
the batch normalisation and a squared 5 x 5 filter shape. The proposed deep architecture is
still able to outperform a standard MFCC-GMM system through the automatic learning of
meaningful features.

65 QUALITATIVE EVALUATION OF THE CNN ARCHITECTURE

While competing with most standard systems, CNNs can be used as a black box without any
insights into what it is happening inside the network. In particular, experimental works in
Chapter 5 about LBPs gave importance to time-frequency patterns which represents a global
scene with its composing local features. CNN architecture seems to share with LBP the
same concept of locality even if is represented with a concatenation of convolutional layers.
What type of automatic features are extracted from the data and how are they relevant to ASC? still
remain unsolved questions.

Therefore, a complete evaluation should involve both performance and qualitative analysis.
The qualitative analysis includes the representation of the convolutional filters, the feature
maps and the intermediate data transformation after each network layer.

6.5.1 Filters and feature maps

The 32 convolutional filters of the Battaglino_2 system are learned in the first convolutional
layer. These filters refer to the first channel (log-mel) of the input data and are illustrated in
Fig. 40 (a)). The CNN learns a set of time-frequency filters: some of them better represent
vertical lines (e. g. filter numbers 7 and 31); others reflect stationary patterns (e.g. filter
numbers 6, 20 and 32). Note that in Fig. 40 (a), black pixels represent 0 values (non-active)
while white 1 values (active). These filters perform a similar role to the LBP uniform patterns
in Fig. 29, with the main difference being that they are extracted directly from the data.
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In each convolutional layer, a feature map is the result of a filter applied to the receptive
field of the previous layer. A given filter is applied across the entire input, with a stride
of 1 pixel. Each time the filter is applied to a new pixel position, an activation of the
corresponding neuron is collected and drawn in the feature map. This process is applied in
the same way for the other 32 filters. In order to show this process and see if some filters
are more active depending on the type of signal, the same toy-problem recordings used in
LBP analysis (5.2.4) are used here: a series of impulsive clicks, a sinusoidal tone at TkHz
and white noise. The filters and activation outputs of the first convolutional layer for each
input signal are displayed in Fig. 40 (b), (), (d).

With respect to the input signals, some insights can be derived about which type of filters
are active. For the click signal, filters with a vertical component (7,31) activate neurons in
presence of impulsive sounds. Concerning the stationary tone, other feature maps (6, 20,
32) seem to better capture the temporally stationary tone. For the white noise, most of the
activation outputs are non-active (black) with some specific feature maps (3, 14, 24, 26)
being activated.

6.5.2  Fully connected layer

The fully connected layer is an essential component of the CNN architecture. It represents
the segments as a combination of local feature maps. Neurons in this layer are connected
to the high level features created by the previous convolutional layer, determining which
feature maps are the most representative of the acoustic scene. In other words, the fully
connected layer has higher activation values for the most discriminative feature maps.

Depending on the nature of the acoustic scene, the activation distribution may change.
As for the activation outputs of the fully connected layer, also the LBP algorithm reflects the
same idea of describing a global scene with a histogram of local patterns. The activation
outputs of the fully connected layer could be used as a feature vector for standard classifiers
(e.g. SVM) in the same fashion as LBP histograms [114].

6.5.3 t-SNE for CNN

Local patterns are captured through a combination of convolutional and pooling layers
which produce significantly higher level representations of the input data after each layer.
The perspectives in [115] provides a rather intuitive and plausible explanation of this
multi-layered representation. The intuition behind the work in [115] is that complex data
(such as images, audio, text) lie intrinsically in a non-linear manifold space. A manifold is a
space characterized by being only locally Euclidean, where local refers to the n*™ neighbours
close to each point. This perspective supposes the existence of manifolds of lower dimensions
compared to the original data. Let analyse a complex scene with spectrogram-based features.
This space may have thousand of dimensions, but probably only a subset of them are
relevant or necessary to the class. If there was a way of automatically finding the most
appropriate manifolds of complex spaces, it would project the data in a lower dimensional
space, such that the structure of the original space is preserved. CNNs perform this space
transformation by unfolding complex regions through the convolutional operations.

The key idea is that the intermediate hidden layers extract the underlying structure from
the original data. The deeper an architecture, the easier to unfold and flatten a complex
non-linear data space. The resulting features are then more suited to linear separation.
Interestingly, the unfold of manifolds form the basis of the t-SNE visualisation, the non-linear
dimensionality reduction technique presented in Chapter 4. In fact, t-SNE describes the
pattern of the original data on a manifold by representing sample pairwise distances.
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Figure 40: The insights of the first layer of a convolutional layer: (a) the 32 filters of size 5 x 5; (b) the
activation output of the series of impulsive clicks; (b) the activation output of the tone at
1kHz; (d) the activation output of the white noise. Note that the white colour indicates
that the corresponding neuron is active while the black colour expresses a non-active
neuron.
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t-SNE has been demonstrated to outperform linear dimensionality reduction (e. g. PCA),
especially in the case of complex data. In order to verify the manifold perspective, t-SNE
is applied to the outputs of convolutional and dense layers. A randomly selection of 20%
of DCASE 2016 evaluation data is used, while respecting the same proportion for the 15
classes. As for the experiments reported in Sec. 4.1, a PCA transformation is then applied to
reduce dimensionality while retaining 98% of the global variance. Perplexity is set to 100
and the trade-off 8 = 0.9, due to the huge number of samples to be processed.

Fig. 41 presents the t-SNE visualizations applied on the data transformed after the CNN
layers. The CNN architecture follows the same configuration of the Battaglino_2. The
distribution of the different classes across the layers changes as the network becomes
deeper. In fact, each new layer takes advantages of the data transformation of the previous
layer. This transformation is visible in Fig. 41: the separability increases as the architecture
becomes deeper. Another observation is that the second convolutional layer seems to have
the biggest impact on the transformation, whereas the fully connected layer seems to not be
showing such significant improvements. Each of the 15 classes in Fig. 41 are indicated with
a different colour and marker, even though t-SNE is based over sample pairwise distances
with no knowledge about the class labelling. t-SNE visualizations show that, with the second
convolutional layer, samples belonging to the same class tend to be clustered together with
a smaller overlap between different classes.

6.6 CONCLUSIONS

This chapter describes a promising application of CNNs to scene classification. In contrast
to past works which used almost exclusively hand-crafted features, the work presented
in this chapter shows how CNNs can be used to automatically learn local patterns from
spectro-temporal representations. Results on a public, standard dataset such as DCASE
2016 confirms the validity of the proposed approach, reaching 84.4% of accuracy on the
evaluation set. The CNN approach outperforms the MFCC-GMM baseline by 7%.

Hyperparameters tuning remains one of the biggest limitations. Hyperparameters to be
tuned concern different aspects of the network: from the architecture (topology, number
and nature of layers, size and shape of the convolutional filters, activation functions), to the
type of input (raw audio, spectrogram, filter-based spectrograms) to the training procedure
(learning rate, momentum). Due to the training time, an exhaustive evaluation would be
infeasible. Only the most significant hyperparameters were fully tested. Based on this tuning,
the best system obtained has 2-layers, 2-channels (log-mel + A) and segments of 1.2s. Deep
learning approaches offer one solution to the limitations of hand-crafted features for ASC.
Local patterns are captured through a combination of convolutional and pooling layers
which produce higher level representations of the input data. Another pillar of this chapter
is the insights into what the network is learning from the data. Too often, deep learning
research is performed blindly in black box fashion. It is therefore argued that, while based
on experimental intuitions, what the networks learn and how they distinguish different
acoustic classes is as important as the results they provide.

The visualisation of convolutional filters and feature maps suggests there exist similarities
between LBP and CNN, in terms of local patterns. In contrast, the local patterns are
pre-defined in the LBP approach (i. e. uniform patterns) whereas CNN extracts patterns
directly from the spectro-temporal data. As the architecture becomes deeper, each hidden
layer will produce a higher-level representation of the input data. The benefit of this data
transformation is then visible using t-SNE, a dimensionality reduction technique which
visualizes the intermediate representation of the data passing through the network. Results
of this visualization seem to confirm a manifold perspective: in other words, the operations
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Figure 41: t-SNE visualization of the intermediate outputs of a 3-layered CNN.
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performed at each layer flatten and linearise non-linear areas of the original space so as to
simplify classification.
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DCASE 2016 CHALLENGE

This chapter concludes the fundamental research (Part 1) with a review of the most signifi-
cant systems submitted to the DCASE 2016 challenge. The chapter presents results and the
most popular trends in ASC domain. As for the previous 2013 edition, the DCASE 2016 [26]
advanced the development of ASC and provided an occasion for companies and universities
to discuss about future research directions. The large number of participants to DCASE 2016
challenge demonstrated an increasing interest for new topics such as ASC and AED. There
were 82 submissions (3 times more than the previous DCASE 2013 challenge) with ASC
alone having 49 submissions. More companies involved themselves in the exploration of this
topic (Google, Audio analytics, Soundintelligence, Huawei, NXP, Microsoft, Franhaoufer
IDMT) together with a growing community of universities and research laboratories.

The structure of this chapter is organised as follows: Sec. 7.1 summarises the main trends
of the DCASE 2016 challenge in terms of features and classifiers methods; a specific review
of the most effective methods is presented in Sec. 7.2; Sec. 7.3 concludes the review of the
DCASE 2016 submissions .

7.1 TECHNOLOGICAL TRENDS

In order to visualise the main ASC trends, the number of submissions per type of classifier
and feature is summarised in Fig. 42. Technological trends are defined as methods which
then become the standard in a particular domain. Examples in audio-related fields involve
the adoption of deep learning techniques in automatic speech recognition (ASR) or music
information retrieval (MIR) tasks. Even though not correlated to evaluation performance,
charts in Fig. 42 provide a global overview of the most popular methods. Unsurprisingly,
deep learning techniques are employed by almost 40% of submissions. The reason of this
adoption is therefore related to the automatic creation of features from spectrogram-like
data (mel energy, raw spectrogram, CQT). MFCCs remain the standard feature extraction
method for one third of the submissions. Ensemble methods (i. e. the fusion of scores or
class predictions coming from a combination of different systems) show the most promising
results. In fact 3 out of the 5 most performing systems combine MFCC-based methods with
deep learning approaches.

7.2 SUBMISSION REVIEWS

In the following section a more detailed review of the best methods is presented. The
submission names are the same used in DCASE 2016 results in Fig. 43. The first proposed
system Battaglino_1 achieved an accuracy of 80% using a two convolutional layers without
batch normalization. The second system Battaglino_2 adopts the batch normalisation and
a squared 5 x 5 filter shape. With an accuracy of 5% less than that of the best system (89.7%),
the proposed deep architecture is still able to outperform a standard MFCC-GMM system
through the automatic learning of meaningful features.
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Figure 43: Results on the DCASE 2016 evaluation set. The baseline system has a global accuracy
of 77.2% and it is indicated with a solid blue line. The system name follows the same
naming of the challenge submissions. In solid red, the proposed CNN-based systems
Battaglino_1 and Battaglino_2.
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The first two systems Eghbal-Zadeh_4 and Eghbal-Zadeh_2 [116] use binaural information
represented by 2 stereo channels (left and right) and their average-difference. First, MFCCs
are extracted from each of the 4 channels. Second, starting from channel-based MFCCs, an
i-vector is created. The final feature vector is composed of the concatenation of 4 i-vectors.
This system alone achieves 88.7%, only 1% less than the same system which combines
i-vector and CNN predictions. This suggests that:

1. spatial information, seldom investigated in the ASC literature, is the real differentiator
between the top performing systems;

2. the CNN in [116] utilised as inputs single channel spectrograms. As reported in
Chapter 6, the CNNs can process multi-channel inputs (i. e. spectrograms extracted
from the left and right stereo signal). The level of performance obtained on the test
set (Tab. 9) confirms that the use of multi-channel inputs is beneficial to ASC. It is
therefore likely that a CNN which employs the same 4 channels configuration, as
described in [116], would reach a competitive level of performance.

Many works in the ASC literature express a global scene with its local elementary blocks.
The work presented in Bisot [117] is consistent to this bottom-up approach by achieving an
accuracy of 87.7%: time-frequency representations are decomposed with a non-negative
matrix factorisation (NMF), producing a common dictionary of elementary bases. Projections
to this dictionary are then used as features for classification.

The 7" best performing system of Valenti [118] is based on CNNs, similar to the
systems presented in Chapter 6. Together with this work are other 8 submissions which
applied CNNs to DCASE 2016 data (Lee_2[119], Lee_1[119], Bae [120], Eghbal-Zadeh_3[116],
Phan [121], Schindler_2 [122], Schindler_1 [122], Santoso [123], Hertel [124]). Among
other deep learning architectures, CNNs provided the best performance with the Valenti
implementation (accuracy of 86.2%). While not differing significantly from other CNN
approaches, Valenti’s work [118] does have some key differences compared to other CNN-
based systems: i) a batch normalization procedure is applied to each layer outputs; ii) the
network is learned from the entire development set without doing a split into training (80%)
and test set (20%). This larger amount of data makes the difference in terms of performance.
The main contribution of the proposed CNN (Battaglino_2) with respect to this CNN can
be found in the employment of the 2-channel inputs and a shorter segment duration (1.2s).

As for Valenti and Battaglino_2, a popular choice for the input to CNN solution is the
log-mel power spectrogram. The approach reported by Schindler_2 [122] uses an alternative
CQT transformation to obtain time-frequency inputs to the CNN. Similar to the histogram
of gradients (HOG) approach [33], the adoption of the CQT delivers promising results for
the ASC task. Not only the type of inputs influences the performance, but also the neural
network topology. In Bae’s work [120], for example, a parallel architecture combines the
sequential information and the spectro-temporal correlation by using a recurrent neural
network (RNN) and a CNN respectively. The final layer connects the outputs of the two
parallel networks. Xu [125] proposes to integrate the hierarchical taxonomy of the acoustic
scenes directly into the deep learning architecture. The network is first trained to classify
high-level concepts (e. g. vehicle, outdoor, indoor) and then the specific acoustic scene (e. g.
car, park, home).

The findings from the DCASE 2016 challenge confirmed the adoption of deep learning
techniques as a competing method for ASC. The flexibility of deep architectures allows
researchers to use the same techniques to solve different problems: examples comprise hier-
archical taxonomy, temporal recurrence, spectro-temporal locality and stereo microphone
input signals. All these findings which may come from other techniques, can be integrated
into a single deep learning architecture.
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7.3 CONCLUSIONS AND NEXT RESEARCH AXES

This section concludes Part 1 of this manuscript, which reported the main contributions
with respect to the fundamental research. In particular, the analysis of the DCASE 2016
submissions complements the literature review of Chapter 2. The chapters structure of
Part 1 reflects the chronological order of the contributions proposed in the thesis, from the
discussion on the MFCC-SVM system (the DCASE 2013 challenge) until the CNN approach
in 2016 (the DCASE 2016 challenge). The focus of Part 1 concerns the research of new
features which could better capture the peculiarities of acoustic scenes. Spectro-temporal
patterns are demonstrated to be suited to ASC by providing state-of-the-art performance.
This includes the employment of local binary patterns (LBPs) and the application of CNN5s
to time-frequency spectrograms. As shown in Sec. 7.1 and 7.2, CNNs are in fact the most
popular deep learning techniques. They also report the higher levels of performance with
respect to other popular deep learning architectures such as multi layer perceptrons (MLPs)
or recurrent neural networks (RNNs).

Nevertheless, the contents of Part 1 presents only a fraction of the contributions related to
this thesis. In fact, the nature of this PhD is industrial: the company sponsoring this research
(NXP semiconductors) was interested into the applicability of ASC to real products (e.g.
smartphones, earphones). Several aspects of the ASC implementation should be considered
when adapting fundamental research to “real-world” applications: the limited memory
and computational power; the use of single microphone with a low audio quality or the
always-listening mode. This applied research is described in Part 2. These aspects open new
opportunities to enlarge the spectrum of research in the ASC domain.
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ASC FOR EMBEDDED DEVICES

Part 2 of this thesis relates to the practical limitations of ASC and solutions to them. Except
for a few exceptions [29, 126], it is argued here that current ASC solutions do not take
into account the need for ASC services running on low-power embedded devices. We define
embedded a device with limited power, memory and connectivity which does not require
any connection to an external system to perform classification. Besides ASC computational
efficiency, other aspects should be considered in order that ASC be implemented on real
consumer products. These aspects are listed as follows:

1. real-time (Sec. 8.1). Numerous state-of-the-art algorithms assume access to the entire
recording or segment from which features are extracted. This supposition is unrealistic
in the case of an ASC system which is required to analyse an audio stream in
continuous fashion. Current ASC systems take 30s to provide predictions [33, 56].
These systems may fit a particular type of applications which do not require fast
predictions. Other applications, instead, require a faster response. Consider an ASC-
based system which applies an adaptive filtering and self-adjusts the quality on a
telephone call according to the current scene. Given the mobility of the device, such
that the acoustic scene can change during the call, this kind of system should be able
to react to a change within few seconds.

2. low-complexity (Sec. 8.2). On one side, the training phase is performed off-line on
external machines. This does not impact the on-device complexity. On the other side,
on-device classification is affected by the model size and the feature complexity; Thus,
ASC systems have to consider device limitations, in particular the memory size
dedicated for storing the model parameters and the computational complexity of
feature extraction.

To address the aforementioned limitations, this chapter reports a real-time and low-power
ASC system. Finally, the proposed ASC system is compared with the baseline systems
reported in Chapter 3. Experimental results are reported in Sec. 8.3. Conclusions are
presented in Sec 8.4.

8.1 REAL-TIME METHODS

A real-time ASC service should extract features in a continuous stream as new audio frames
are processed. This chapter reports a real-time implementation of a standard MFCCs-SVM
system. This standard system is summarised in Fig. 44. There exist two levels of processing: a
frame, which has a certain amount of audio samples and acts as the smaller processing-unit
from which features are extracted; a segment, which contains a fix number of frames and
from which statistics are computed (i. e. mean, standard deviation). While the extraction
of feature at frame-level fits the specifications of a low-power device [127], the statistics at
segment-level require to store and to process all previous frame-level features.
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Figure 44: The scheme of real-time feature extraction: MFCCs computed over short frames are
integrated over longer segments.

8.1.1 Recursive estimator

In a real-time classification, the system analyses one frame at a time and, therefore, statistics
over segments have to be estimated using a recursive form. This step involves the estimation
of mean and standard deviation statistics through recursive estimators.

Ideally, the estimation of the standard deviation should be performed without storing all
previous MFCCs. This corresponds to a gain in processing time (no need to read previously
stored values) and memory (no memory needed to store them). Thus, the standard deviation
is estimated according to a recursive approach over n frame-wise MFCCs xi_1,... , [128].
The full method is outlined in Alg. 1.

Algorithm 1 The algorithm for estimating the mean and standard deviation of a continuous
stream of xi—1,... n features

1: procedure MEAN AND STANDARD DEVIATION RECURSIVE ESTIMATOR(Z{—1,... n)

2 =z

3: 67 =

4: fori=2—>ndo

5 fy= i+ (e — f1)/i

6: 67 =6 1+ (@i — i)z — 1)

The estimated mean fi; is initialised to the first MFCC in the segment, ;. The estimated
variance 67 is initially set to 0.

From the second frame (i = 2), the mean ji; and &.12 is estimated using the current i*h
frame with no need to store all previous (i — 1) MFCCs. When i reaches the index of the
last frame of the segment n, the standard deviation & is computed from &72. At the end of
the iteration, the estimated statistics are used to create the feature vector used by a SVM

classifier.
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While it estimates mean and standard deviation statistics iteratively, this algorithm
suffers from poor adaptation to signal changes. When the iteration index i is too large (e. g.
thousands of frames), the incremental term (fi;—1)/1 tends to 0. This becomes a problem in
ASC where changes in the acoustic scene may produce significant variations in the MFCCs.

Due to the need for stable convergence and rapid adaptation, this estimation algorithm
poses more than one limitation. In the practical case, it may happen that the convergence
time of the estimator will be longer than the actual change in the acoustic scene. An ideal
estimator should follow signal changes. These changes correspond to the presence of events
or to a scene change. For these reasons, a new version of the recursive estimator is proposed.

8.1.2 Tandem estimator

The proposed estimator computes statistics (mean, standard deviation) with two estimators
working in tandem. Their estimation follows same procedure detailed in Alg. 1, except
that one of the two estimators starts after the other with a certain offset. This estimation
procedure is referred to as a tandem estimator. A counter is associated with each estimator
and is incrementally updated as a new frame is read. When the counter of one of the
estimators is greater than a fixed value max., the corresponding estimator is reset to the
initial conditions and its counter reset to 1.

Depending on the counter with the larger value, the proposed tandem estimator decides
which of the two estimators concurs the most to the final estimation. Once one of the
tandem estimators provides its estimation, the corresponding counter is reset. The tandem
estimator has the advantage of better following rapid variations in the signal and to be
almost insensitive to the number of frames n in the segment.

The complete tandem estimator algorithm is detailed in Algorithm 2. In the initialisation
phase of the algorithm, mean and standard deviation estimators are initialised as follows:
the global estimator (f1, ), tandem 1 estimator (i1, 61) and tandem 2 estimator (ti2, o'2)
are all set to 0, except for tandem 1 mean, which is set to the first MFCC value.

Note that the two counters are independent of the i frame as they have their internal
counters (counter1 and counter2). Every time one of two counters surpasses max., the
corresponding estimator is re-initialized. The global statistics are then selected depending
on the tandem whose counter is the highest.

As an example, Fig. 45 illustrates how the tandem estimator works in estimating the
mean of the first MFCC coefficient C0O. The choice of CO0 is due to the visualisation purpose.
In practise, the tandem estimator computes the mean and standard deviation of every
multi-dimensional frame-level feature vector.

Segments in this example contain 400 frames. The second estimator (tandem 2) starts at
1 = 200, while the first estimator has not reached the max counter max. and it is used to
estimate the CO mean. When the second segment starts, the first estimator (tandem 1) is
reset and tandem 2 provides the estimation at i = 400. This mechanism is repeated for the
next segments in a continuous streaming fashion. In Fig. 45, the max counter max. is set to
600 frames and the offset between the two tandems is equal to 200 frames.

To illustrate how the tandem estimator works in practice, an ad-hoc example is provided.
Fig. 46 depicts the variation in CO mean for white noise signal at different energy levels. In
this specific example, only the 1-dimensional CO is considered. For the experimental results
reported later in this chapter, the estimation is applied to multi-dimensional mean and the
standard deviation. The tandem estimator is then compared with the recursive estimator.
As expected, the tandem estimator better adapts to rapid variations in the signal, while the
recursive estimator is much slower in converging to the true value.
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Algorithm 2 The tandem estimator algorithm of a continuous stream of x;—1,...  feature
vectors
1: procedure MEAN AND STANDARD DEVIATION TANDEM ESTIMATOR(max., offset)

2: =0

3 02=0

4 H1y =X

5: 0121 =0

6: H2y = 0

7: 0'221 =0

8: counter1 = 1; counter2 = offset;

9: fori=2 — inf do

10: x; + compute feature vector of current i*" frame
11 p1; = g1 q + (@i — 1) /countert
12 012 =012 1+ (xy — piry) (2 — fi1;_q)
13: ,ulzi = u‘zi,] + (@i — pi2;_1)/counter2
14: 022y = 022 1 + (@ — pi2y) (@ — 25 1)
15: if counter1 >= max. then

16: counter1 = 1

17: Hi; =z

18: 0121 =0

19: else
20: counter2 = 1
21: Hz; =z
22: 0'A221 =0
23: if counter1 > counter2 then
24: fo=pi1g
25: 6= \/aAlZi/(counteﬂ —1)
26 else
27 f = Hizg
28: & = \/o22;/(counter2 — 1)
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Figure 45: Tandem estimator mechanism on 8oo MFCCs frames, split into 2 segments. The offset is
set to 200. In solid black the true value of CO mean, in dashed black the estimation; in red
and blue the first and second tandem estimator values as they are computed using the
ith frame. Tandem 1 (in solid red line) has reached the maximum counter and it is reset
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Nevertheless, the tandem estimator depends on the choice of the max counter and the
offset between the two estimators. These external parameters depend on the length of the
segments and they have to be manually tuned to minimise the global error between true
and estimated values.

8.2 LOW-COMPLEXITY METHODS

Efficiency is especially important with ASC for embedded devices. First, unreliable data
connections and the power implications of continually communicating audio data to a
remote server make cloud solutions impractical. While running locally on the device itself,
computational efficiency is essential to minimise battery consumption. Second, the context
is dynamic. The need for always-listening ASC calls for algorithmic efficiency. Third, reliable
context recognition usually requires context modelling with large amounts of data.

It is argued herein that current ASC approaches are too costly in terms of computation
and memory requirements to support an always-listening mode. Even though model learning
is performed off-line, with little or no memory or computation limitations, the testing is
performed on-line and remains the most critical aspect.

This section describes a reduced complexity ASC system: the principal hypothesis is
that feature dimensionality can be highly reduced and that a significant fraction of train-
ing samples contains information redundant to the classification. Inspired by related re-
search [129, 130, 131], the proposed method relates to the selection of training samples
through clustering and decimation resulting in a smaller number of training samples and
therefore a less complex model coming from these data.

8.2.1  Measures of complexity

Efficient modelling is thus needed to avoid the processing and storing in memory of large,
complex models. As an example, it has been demonstrated in [132] that memory and
computational cost of SVM classifiers are proportional to #5Vs x D, where D denotes the
feature dimensionality and #SVs the number of support vectors. In the method reported
in this chapter the focus has been directed towards the memory improvements but, since
also the complexity depends on the same variables, it is argued to be beneficial for both.
With large quantities of data being needed for reliable ASC, standard SVM classifiers are
typically too complex.

The size of memory has been calculated supposing blocks of 4 Bytes (B) for each SV
dimension. As a reference device for an always-listening ASC system is considered a cortex-
My processor with 80MHz operations per second and 256kB of memory (which should
include the code itself). The M4 processor is considered as the reference embedded device
for signal processing * [133].

Consider 200 kB of available memory for storing the model. Suppose, also, a standard
approach with MFCC-based statistics (mean and standard deviation) with D = 26. The
maximum number of SVs is: 200kB/ 26 features/ 4 Bytes = 1900 SVs. Generally the memory
on a device has to be shared with other software functionalities (e. g. video and audio codec,
sensors, speech recognition). This means that the memory available may be much lower
than 200kB thereby limiting also the total number of SVs which can be stored in the SVM
model.

1 https://www.arm.com/products/processors/cortex-m/cortex-mé4-processor.php
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Figure 47: Reduced complexity ASC system: (1) feature extraction and selection using LDA; (2) SVM
training after K-means clustering and corresponding decimation; (3) Testing with SVM
reduced model, applying the LDA projection.

8.2.2  Reduced complexity ASC system

Complexity reduction is achieved through a set of techniques designed to reduce the number
of SVs and the feature dimensionality with the common goal of decreasing the memory size
and the computational complexity of the testing phase. Before training, feature extraction
and selection are performed, followed by reduction of the training dataset. In testing, the
feature selection transformation is applied to the test data before classification.

The entire process of complexity reduction is depicted in Fig. 47: before training, feature
extraction and selection are performed using linear discriminant analysis (LDA) (1); during
training, the SVs of the SVM are learned after the K-means dataset reduction (2); during
testing, LDA projection is applied to the test data before the classification.

In the first step, full audio recordings are divided into non-overlapping fixed segments.
For each segment, standard MFCCs are computed over short overlapping frames before
mean and standard deviation statistics are determined. This produces a single, fixed-length
feature vector for each segment.

LDA is then applied in order to reduce dimensionality while improving discrimination.
Original training features are projected into a new sub-space where the ratio of between-class
to within-class variability is maximized according to the Fisher cost function, as defined in
Eq. 18. This problem is treated as a regular eigenvalue problem, where the eigenvectors
corresponding to the largest eigenvalues are used to determine a discriminant feature
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Figure 48: Diagram of data reduction using K-means clustering.

transformation [134]. Since LDA is a supervised technique which utilizes label information
from C classes, the maximum dimensionality allowed is equivalent to C — 1. It is worth
mentioning that LDA is applied after a z-score normalization on the training set. While
maintaining the same level of accuracy of the non-reduced system, LDA reduces the
dimensionality of feature vectors.

8.2.3 Data decimation

Following the scheme in Fig. 47, step (2) involves the learning of class models from sub-sets
X of original training set X. In the proposed decimation algorithm, the training data is split
into the corresponding class samples xi_1,... N, Where N. indicates the size of samples
belonging to the c'™ class. The data of each class is then clustered into K clusters using
a standard K-means algorithm which minimizes the average distance between a set of
samples and a set of clusters centres py_1,..., x expressed as an objective function:

K
minZ Z llz — il (30)

k=1 mexk

where x € Xy is the set of samples belonging to the k'™ cluster and py is the k'™ cluster
mean. Cluster centroids are initialized randomly. At each iteration, the K-means algorithm
attributes samples to their nearest cluster. Cluster means are updated until convergence.
The samples attributed to each cluster are then decimated according to uniform selection
so that the full distribution is now represented by a subset of the original data X with the
addition of cluster centroids.

Clustering and data selection is performed for each class before a multi-class SVM
classifier is trained with the reduced subset. One problem remains in selecting a global
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number of clusters K suitable for all acoustic scene samples. Since results seems to depend
on the context, the decimation algorithm should be able to automatically estimate a number
of clusters for each class data samples [135]. An optimal strategy involves decimation
optimised at the class and cluster levels.

8.2.4 Optimising the number of clusters

Among other metrics dedicated to evaluate the number of clusters, the silhouette width is
a composite criterion which measures the cluster strength: in other words how well each
sample has been grouped in one of the clusters [136]. The silhouette width is chosen because
it can be applied to any distance metric. For each training sample x; and a given cluster k,
the silhouette width is defined as follows:

i = & (31)

~ max(by, aq)’
where a; identifies the average distance of sample i to the other with-in cluster samples,
b; is the average distance of sample i to the other set of between cluster samples. The average
of s; over all training samples provides a global metric, whose range spans from o to 1. Let
ASW be the average silhouette width over N samples:

N
ASW = ﬁ (32)
N
A high value of ASW means that the corresponding K is a reliable estimation of the
number of clusters. On the contrary, when ASW values are too low, then the number of
cluster K is not reliable. The ASW metric can be applied to the data decimation algorithm as
a way of estimating the optimal number of clusters K. Fig. 49 shows the ASW as a function
of the number of clusters K, for each acoustic scene for the DCASE 2013 evaluation set.
Interestingly, many classes have low ASW values (i. e. below 0.4). This shows that the data
has only weak structure. Compared to prior experiments [135] with a fixed value of clusters
for all acoustic scenes, learning an optimal K for each class improved performance while
respecting the underlying data structure of each acoustic scene.

8.2.5 A distance-based decimation

The K-means clustering ensures that the entire feature space is represented after decimation
but the decimation is obtained by randomly selecting sample from each cluster and including
all centroids. Moreover, the fact of adding cluster centroids after the decimation ensures a
consistent representation even at strong levels of decimation.

An alternative strategy involves a distance-based data decimation which aims to improve
on the random decimation applied to each cluster. Intuitively, we should remove samples
whose contribution to the general data distribution is negligible and retain the most salient.

Inspired by work in [137], the reduction algorithm can be improved by saliency samples
according to their distance to the closest cluster centroid. This distance metric is computed
using the Euclidean norm of the ith sample x; of each class set X and the closest centroid
px according to:

di = min|lx; — px=1,...xl| Vi=1,---,Nc. (33)
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Figure 49: The silhouette values as a function of different K clusters. The highest value for each
acoustic scene is then considered as Optimal K cluster.

The set X of the c'"* class is then sorted in descending order based on d;. Iteratively, the
tirst sample x; of this ordered list is put into the decimated set X.. Then, all the samples
whose distance is lower than a distance threshold 6 are removed from the list (comprising
the first element ). The routine is repeated by filling X until the ordered list is empty.
Since samples lower than a distance threshold & are removed, a higher value of § indicates a
severe decimation.

When the threshold value ¢ is too large, the decimation may remove all training samples.
In this case, only the centroids of each cluster . are retained. The distance-based decimation
method is referred to as distance decimation in contrast to the method based on cluster with
no distance-based selection, called data decimation.

8.3 RESULTS & DISCUSSION

Real-time and low-complexity method results are reported in this section. These are assessed
using the DCASE 2013 and the NXP datasets (Chapter 4), employing a standard 5-fold
cross-validation partitioning. Averaged accuracy and corresponding confidence intervals
are provided for all methods.

8.3.1 Implementation details

MFCC features are extracted from frames of 32ms with a 16ms overlap and accumulated to
form non-overlapping segments. The frequency range is set to 0 —2000Hz. Mean and stan-
dard deviation statistics are extracted over each segment thereby creating a 26-dimensional
feature vector. This dimension is reduced to C — 1 (where C is the number of classes) through
LDA projection. Depending on the number of acoustic scenes, the feature dimensionality is
reduced to C —1 = 9 for the DCASE 2013 dataset (C = 10) and to C — 1 = 4 for the NXP
dataset (C = 5).

SVM classifiers were implemented with the LibSVM library [72], using RBF kernel. For
the decimation methods described in Sec. 8.2.3 and 8.2.5, the segment length from which
MEFCCs statistics are computed is set to 3s with no overlap. Since each audio file is split
into 10 segments, a majority vote strategy is adopted to provide a single prediction for each
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MFCC-2000Hz | Standard Real-time
308 67% (£8%) | 61% (+9%)
108 70% (£8%) | 63% (+10%)
55 71% (£12%) | 59% (£10%)
3s 72% (£4%) | 59% (£12%)

Table 11: Standard vs real-time estimation of mean and standard deviation over different segment
lengths. Results refer to DCASE 2013 evaluation set.

audio file. This segment length is empirically found to produce the highest performance
with the current MFCC configurations (72% of accuracy). Reduction rate is expressed as
the ratio of the number of decimated training samples with the original training set size.
The reduction rates for the distance decimation method are obtained by varying the distance
threshold 6 between 0.1 and 50; the reduction rate for the data decimation is a parameter
which determines the reduction for each cluster. The set of training samples which remains
after the decimation is expressed with X. In order to compare the different decimation
methods, X size is fix so that every decimation method uses to the same number of samples
for learning the model.

8.3.2  Comparing the tandem estimator with a standard system

The tandem estimator computes estimation of the feature statistics only for the testing
samples. Two methods are then compared: one computing statistics over the entire segment
(standard), the other adopting the tandem estimator (real-time). The tandem estimator is
applied to the concatenation of all test recordings representing in this way a single audio
stream with no interruption between recordings. This emphasizes the capacity of the
proposed method to automatically adapt to context changes (e. g. passing from a bus to an
office scene) reflecting what could happen in practical applications. Segment lengths are
30s, 10s, 5s and 3s with no overlap between segments. ASC results for different segment
lengths are presented in Tab. 11. For values below the file duration (i. e. 30s), a majority vote
strategy is utilised.

Experimental results in Tab. 11 show a drop in performance between the real-time and
standard system. The best real-time estimation corresponds to a 10s segment duration,
where both standard and real-time systems achieve a better accuracy. The standard system
computed at 3s reports the best performance. Its corresponding real-time system show an
accuracy of 59%, with a poor estimation on shorter segments. This is confirmed by results
computed over 5s. The fact that in the real-time system the files are all concatenated in
a unique audio stream (therefore adapting to scene change) may explain the difference
between the two systems.

Although a drop in performance is observed for the real-time estimator, the proposed
algorithm for estimating the mean and standard deviation outperforms the recursive
estimator and better adapts to rapid changes in the audio stream. In addition, it allows
state-of-the-art ASC methods to work in real-time by processing single frame-wise MFCCs.
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8.3.3 Comparing decimation methods

train set size memory  train set size memory

(% reduction) SVs accuracy (KBytes) (% reduction) SVs accuracy (KBytes)

800(0%) 462 72% 47 162800(0%) 7802 88% 794
752(6%) 429 71% 15 6512(69%) 2887 83% 45
440(45%) 240 61% 8 1050(95%) 400 81% 6
232(71%) 135 58% 5 420(98%) 158 80% 2
128(84%) 63 61% 2 210(99%) 49 78% 0.7

Table 12: Recognition accuracy, number of sup- Table 13: As for Tab. 12 for the NXP dataset.
port vectors and memory requirements
for different amounts of training data
reduction, for the DCASE 2013 evalu-
ation dataset. At 0% of reduction, no
feature or data decimation is applied.

Results for the data decimation method for the DCASE 2013 and NXP datasets are
presented in Tab. 12 and 13. The results for the distance decimation are similar to those of
the data decimation method in terms of memory required /number of SVs and therefore not
reported here. For the DCASE 2013 evaluation set, at a cost of an accuracy drop of 11%, the
amount of SVs is reduced by a factor of 20. Interestingly, for a 6% of data reduction, the
difference in terms of accuracy is negligible.

For the larger NXP dataset, results show a significant reduction (99%) in training samples
with a drop in accuracy of 10%. Other reductions can be achieved with less severe reduction
rates. As an example, a reduction from 794 to 45 kB corresponds to a drop of only 5%
in accuracy. In order to demonstrate the benefit of clustering before decimation in terms
of memory required, results are also presented for a system which reduces the training
data by random data selection without prior clustering. This approach is referred to as
random decimation. Comparative curves for data decimation, distance decimation and random
decimation are reported in Fig. 50 (a) and Fig. 50 (b), for the DCASE 2013 evaluation
and NXP datasets respectively. Each curve represents the mean accuracy and confidence
interval (ClIs) computed over 5-fold cross-validation partitions. Presented in the following
are considerations regarding these results:

¢ data decimation and distance decimation outperform random decimation. By varying
the reduction rate, one can select a trade-off model between complexity and perfor-
mance degradation;

¢ accuracy for the DCASE 2013 evaluation set is better for distance decimation at
a reduction of 45%. Concerning results for the NXP dataset, data and decimation
selection methods follow a similar trend.

8.4 CONCLUSIONS

Although presented separately, the proposed methods (tandem estimator, data decimation,
distance decimation) have a common goal, namely the development of a complete real-time
and low-power solution to ASC. Hence, a solution of this kind could be implemented in a
reference embedded device (e. g. the ARM cortex M4).
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Figure 50: Data decimation (dotted red line) vs distance decimation (yellow line) vs random decima-
tion (dashed blue line), for (a) DCASE 2013 and (b) NXP datasets.
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State-of-the-art methods employ SVMs with MFCC statistics, computed from the entire
recording. The proposed real-time approach estimates the mean and standard deviation
using recursive estimators working in tandem. The tandem estimator better tracks changes
in the audio signal and is therefore better suited to real-time ASC. A second limitation
concerns the complexity of the statistical model generated during the training phase. The
principal idea involves the selective decimation of training data such that a reduced set
of support vectors are then required during the testing phase. LDA is applied to reduce
the feature dimensionality. K-means clustering is the basis for data decimation, ensuring
that the full feature space is adequately represented after decimation. Results on a small,
standard dataset and the larger, non-standard NXP dataset confirm the validity of this
approach, showing a significant reduction in memory size and computational cost without
a severe impact on classification accuracy.

To conclude, this chapter describes the first attempt to build a real-time, low-complexity
ASC system for embedded devices. The methods proposed here are not in conflict with
state-of-the-art methods whereas providing sustainable versions from a low complexity and
low memory, real-time point of view. These represent key industrial contributions of this
PhD.
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THE OPEN-SET PROBLEM IN ASC

The problem of classification in ASC has been seen until now as that of assigning to an
acoustic scene a label which corresponds to one of a closed set of classes. If the classifier
knows only two outputs in the training set (for example car and office), it will classify any
other scenes as one of the two, even when the scene does not correspond to either a car or an
office (e. g. a train). From an application point of view, this approach will make meaningless
assignments or decisions: examples are applications that automatically switch the ring-tone
to silent mode in the office might trigger as well in the park or in other environments which
are not present in the original closed set of classes.

Common to all of the past work, is the evaluation of ASC systems in a closed-set
scenario for which training data is available for each and every acoustic class which may be
encountered during testing. This evaluation strategy does not reflect practical applications
in which out-of-set data may be readily encountered. Without any facility to reject out-of-
class acoustic data, its assignment to a target class will result in degraded classification
performance. As such, the current closed-set approaches to the evaluation of ASC systems do
not reflect the level of performance which could be expected in most practical applications.
Surprisingly, no previous work has investigated ASC in an open-set scenario.

In the machine learning literature, this problem is referred to as open set classification [138],
where incomplete information of the classes is presented at training time, and completely
unseen classes can be encountered during testing. The concept of open-set can be taken into
consideration by heterogeneous classifiers such as one class classifiers [139], SVMs [140] or
CNNs [141]. In other words, open set problems are used to recognise a finite set of known
classes which are a subset of a greater number of unknown classes. Recent works [141] in
visual recognition problem show how easy it is to deceive a classifier with unknown images.
In multi-classification problems, unknown images are classified in one of the classes learned
during training. If not handled properly, this produces many false predictions in the sense
that a (true) unknown class is predicted as an existing (false) one. A similar concept is
valid for a ASC task where the number of classes between training and testing can vary
significantly.

The possibility to reject out-of-class samples is particularly pertinent for applied research,
in order to avoid false detections. The use of ASC in real, practical applications would not
be possible without an open set model since the high rate of false positives may affect the
final precision on the class and performance estimates would not reflect those obtained
in practise. Moreover, modelling exclusively the target classes (instead of modelling the
entire set of classes) has other relevant advantages: first, the required amount of non-target
samples is not crucial, with a significant reduction of costs and effort to collect these data
which is in any case practically infeasible; second, the computational cost (in terms of
memory for storing the model and computation for deciding which is the most likely scene)
is proportional only to the number of target classes.

Content of this chapter illustrates the limitations of closed-set evaluation, proposes a
new classifier, protocol and metric after having reinterpreted the problem of open-set
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evaluation into a detection problems. The remainder of the chapter is organized as follows:
Sec. 9.1 defines the open-set problem; Sec. 9.2 presents a classifier tailored to an open-set
classification; Sec. 9.4 reports experimental results, whereas Sec. 9.5 presents our conclusions
and some directions for further work.

9.1 CLOSED VS. OPEN-SET

ASC systems are usually developed using large collections of heterogeneous data. The data
are aligned to a taxonomy in order to organize the collection into a number of groups or sub-
groups which together span the data domain [142]. The groups are referred to as ‘classes’
or ‘contexts” which gather together subsets of data which share similar characteristics.
Examples are the classes car, office and park, all of which exhibit their own distinguishable
characteristics.

The ASC task then involves the development of a statistical pattern recognition system
whose aim is to predict the class to which an unlabeled sample should be assigned. A
general approach to ASC thus involves the comparison of data samples to models of each
acoustic class. When the universe of classes is exclusively predefined, and thus each sample
must necessarily be assigned to one of the classes within, then the task is referred to as being
closed-set. All existing ASC datasets and evaluations follow such a closed-set paradigm [6].

It is argued here that most practical applications are indeed uncontrolled and thus ASC
solutions must necessarily be able to handle out-of-class data. Such an open-set system is
easily realized with the addition of a garbage class to which should be assigned all acoustic
data deemed insufficiently close to any of the other defined classes. Evaluation can then
include out-of-class data. Examples for the previously described application could include
street, train or supermarket noise. Out-of-class data should be as broad as necessary in order
to reflect the practical application. The union of pre-defined and out-of-class data then
makes up the entire acoustic universe.

9.1.1 The concept of openness

While the concept of closed and open-set problems is now clearly defined, the need to
evaluate ASC performance in an open-set scenario leads to a relative concept of openness.
An ASC system is designed to classify a number of target classes. In addition to the target
classes there is a number of known negative classes. Any data sample not in either of these
two classes is designated as a member of the unknown class. This arrangement is illustrated
in the Venn diagram of Fig. 51. Formally, an open-set evaluation will thus involve some
combination of t target classes, k known negative classes and u unknown negative classes.
Their values are set according to an evaluation scenario or protocol as follows: a training
dataset is composed of data from classes t and k while a testing dataset combines data from
known classes t and k with additional data from unknown classes 1.

The need for evaluation and the particular scenario impose some constraints on the values
of t, k and u. While u is, by its very definition, unbounded, the evaluation of ASC systems
can necessitate the definition of a notionally finite number of unknown classes; the value of
t,k and u can reflect the difficulty of an evaluation. Tasks involving greater values of u and
k relative to t are comparatively more difficult than tasks with smaller values. In particular,
unknown negative classes are comparatively more difficult to handle than known negative
classes. Related work [138] defines a measure, referred to as ‘openness’, which reflects the
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Figure 51: The universe of acoustic classes. Representative data from target and known negative
classes t Uk are used for training. Representative data from unknown classes is used only
in an open-set evaluation. One possible combination of acoustic classes may be t = car,
k = office, park, u = street, train, supermarket.

Lo Level of openness

o
©

o
o))

o
>

Openness

o
[N)

o
o

0.2 0.8 1.0

0.4 0.6
(t+k)/(t+k+u)

Figure 52: A plot of openness against the ratio of the number of training classes (t + k) and testing
classes (t + k + u) according to Eq. 34. The openness increases as the number of unknown
negative classes u increases.

difficulty of such a classification task. Drawing upon the aforementioned original work, a
measure of openness is here expressed in terms of t, k and u as:

openness = 1 — _trk (34)
p N Virk+u 34

An openness of 0 infers a closed-set problem, while an openness of 1 an entirely open
problem. The square root tempers rapid increases in openness with only moderate u.

The relationship between the openness and the number of training classes t + k and
testing classes t + k + u is illustrated in Fig. 52. Given a fixed number of targets t, the level
of openness depends on k and u: when u > k, the level of openness will tend to 1; when
u = 0 the level of openness will tend to 0. According to this assumption, the openness value
relates to u, the number of unknown classes presented during testing.

While publicly available datasets for ASC do not preclude an open-set evaluation, standard
evaluation protocols are all closed-set (1 = 0). The second and third rows of Tab. 14 illustrate
the openness of the standard, closed-set evaluation protocols for the DCASE 2013 and Rouen
2015 datasets [33]. [llustrated in the lowest five rows of Tab. 14 are different levels of openness
for non-standard protocol adaptations which are discussed later.
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Dataset t k | u | openness
DCASE 2013 100 [0 | 0%
Rouen 2015 190 |0 | 0%
DCASE closed-set 1 |9 |0 | 0%
Rouen closed-set 1 |18 ]0 | 0%
DCASE open-set (4 targets) | 4 | 4 |2 | 10%
DCASE open-set (1 target) |1 | 4 |5 | 29%
Rouen open-set (4 targets) | 4 | 4 | 11 | 35%
Rouen open-set (1 target) 1 |4 | 14 | 48%
Rouen open-set (1 target) 1 |1 |14 | 67%

Table 14: Examples of openness for two well-known datasets, standard closed-set (u = 0) and non-
standard open-set (u > 0) protocols. Openness then varies as a function of the number of
target classes t, known negative classes k and unknown negative classes w.

9.2 A CLASSIFIER TAILORED TO OPEN-SET

This section introduces the application of a SVM-based one-class classifier in the context of
ASC, better suited to open-set classification.

9.2.1  Support vector data description

So-called one class SVM approaches have been investigated in the context of many different
open-set problems, including image anomaly detection [143], machine fault detection [144]
and spoofing detection for speaker verification [92]. One particular approach, referred to as
support vector data description (SVDD), learns a hypersphere in which target samples are
contained [145]. The goal is to represent target data within the smallest possible hypersphere
volume. By using target data only for training purposes, SVDD avoids overfitting to known
negatives and thus offers greater generalization to unknown negatives in an open-set
scenario.

The hypersphere is characterised by its centre @ and radius R which are adjusted to
contain a percentage of training data X. Based upon the intuition that possible errors will
be reduced by minimizing the volume within the hypersphere, parameters a, R and £ are
learned to minimize the following function with constraints:

R,a,&

N
min RZ + C &
; (35)

st |lei—all® <RP+E, & >0, Vi

where z; is the it" sample of N training target samples, &; is a penalty factor associated
to each x; and C is the importance associated to these penalty factors. The &; variable adds
a distance to data sample with a controlling factor C. C reflects the trade-off between the
hypersphere volume and the percentage of training data contained within it. When C < 1,
samples with a corresponding &; will be allowed to remain outside the hypersphere without
affecting the optimisation.
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The minimisation problem with constraints in Eq. 35 is transformed into an unconstrained
problem by using the Lagrange method [145]:

LR a o,y =RP+CY &~ oufRP+&—(af —2axi+a’)}— ) &yi (36

with the Lagrange multipliers «; > 0 and y; > 0. The maximum of the Lagrange function
L is found by setting partial derivatives of R, @ and & in Eq. 36 to 0, leading to the following
constraints:

oL

ﬁ:O: Ei (Xi:]
oL

%:O: a:E‘ XiT{

sl
o0&

(37)
=0: Yi:C—OCi, Vi

The last constraint can be rewritten as o; = C — ;. Instead of putting a new constraint,
o is used to obtain y; = C — «4 so that v > 0 is satisfied. The new constraint is simplified
as 0 < a4 < C. Finally, by substituting constraints of Eq. 37 in Eq. 36, L assumes a quadratic
form:

L(R,a,¢, o) = RZ—FCZ& Zocle Zoclé,l Z%&l
+ Zocla: —ZZoclam1+Zoc1

RZ + c/V/ ;}/{ /2{ ;}/{ 68
+ Zoclw —XZ ocloc)zcl:zz)%—]/,(x/f
= Z oL Z O O LT

Interestingly, the dual form of Eq.35 becomes a maximisation problem with respect to the
Lagrangian o

max E ocia:iz — E KT
[
i i,j

st. 0< oy <C.

(39)

The solution to Eq. 39 gives the set of «; which characterizes the SVDD model (the centre
of the hypersphere). The Lagrangian «; satisfies one of the following conditions:

¢ for a; = 0, data sample x; will be within the hypersphere;

¢ for 0 < oy < C, =y will be on the boundary or outside the boundary. Data samples
lying on or beyond the boundary are referred to as SVs;

¢ for 0 < oy < C, ; will identify support vectors which lie on the boundary. They are
referred to as boundary support vectors (BSVs).

108



Thus, the radius of the hypersphere is the distance from its centre to one of the BSVs, xy:

N N
R? =l —all? = (2 o) —2)) il o) + ) oqoy (@i - ;). (40)
i Iy

A data sample lies within the hypersphere if its distance from the centre is less than the
radius. A test sample z is within the hypersphere (so accepted as target sample) when:

RZ—|lz—al* >0

- - (41)
RZ—(Z-Z)+ZZOQ(Z-£B1'_)—ZOQOC]'(:B1-£C]') > 0.
i i,

9.2.2  Gaussian kernel

Data samples are mapped into a higher dimensional space where the boundary is optimal in
describing the target class. As for regular SVMs, the kernel trick avoids the need to compute
explicit coordinates in the higher dimensional space [146]. With the dual form, the centre is
not calculated explicitly, since it can be replaced by the inner products between all pairs of
data samples a = Zl\' aixi (from constraints in Eq. 37). The most flexible kernel function
in many real-case scenarios, and that used here, is the Gaussian kernel [147, 148] expressed
as K:

-2
K(mi,mj) — exp(_M

), (42)

o2

with o which indicates the variance of the Gaussian distribution. The matrix K indicates
all-pair distances between training samples. The term ||x; — x;|| does not depend upon the
position of the data from the sphere centre. When two samples are closely located such that
x; ~ xj, then K(xi, ;) — 1; when two samples are well separated such that x; # x;, then
K(xi, ;) — 0. The distance depends on the choice of o . Tab. 15 presents the link between
o, K and the Lagrangian «, while the resulting decision boundaries are sketched in Fig. 53.

Fig. 53 shows the importance of ¢ in the generalisation capability of the classifier: o plays
the role of normaliser (amplifying or attenuating) the distance between any x; and x;. If
the distance between them is larger than o, the kernel value tends to 0. If ¢ is small, instead,
values of relatively fewer samples will influence the distance. In other words, smaller o
tends to make a locally optimised classifier, while larger values of o tend to build a more
generalised classifier. In the case of a Gaussian kernel, K(zi, i) = 1. By setting the first
term in Eq. 39 to 1 (3_; o = 1) and by splitting the second term into two components where
i=j and i # j, the following expression is obtained:

max 1— Z oci2 — Z 0 O T{ T (43)
i i#j

The relationship between o, kernel matrix K and Lagrangian « is clarified as follows:

1. in an overfitting case, a small o produces K(zxi, ;) — 0,1 # j. The impact of term
> o over the maximisation is minimal when many o; assume small values. This also
means that a large portion of the training samples will become SVs. A larger number
of SVs corresponds to a more complex boundary and a higher risk of overfitting
(Fig. 53 on the left);
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Figure 53: An illustration of how o influences the number of SVs and the shape of the sphere.
The data has been artificially created using a Gaussian distribution of 100 samples of 2
dimensions. SVs are indicated with white dots; the decision boundary is the line in white.
Contour describes the decision function values which vary from a target (in black) to
non-target class (in white), with all intermediate values.

Case Overfitting Underfitting

Variance o—0 o — 00

Kernel distance | K(xz;, ;) — 0 | K(z;, ;) — 1

Lagrangian x4y = % Few o # 0

Table 15: The following scheme represents the influence of o on the kernel distances and therefore
on Lagrangian o.

2. in an underfitting case, a large o produces K(z, z;) — 1. The function is maximised
when a significant fraction of «; = 0. This means fewer SVs and a simpler boundary
(Fig. 53 on the right).

9.3 GRID-SEARCH STRATEGIES

The generalisation capacity of the SVDD algorithm depends on the choice of model parame-
ters (C, o). Standard approaches compute an error estimation on the test set which reflects
the level of performance expected during evaluation. Nevertheless, this estimation is not
reliable when conditions vary from validation to evaluation set. Open-set evaluation, by
definition, expresses this difference in the composition of non-target classes. Therefore the
error estimation (and related parameters tuning) plays an important role in any open-set
scenario and it is further discussed herein. This error is defined as €y, or error of the first
kind or false negative rate. On the other hand, without knowing any information about the
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Figure 54: The confusion matrix while classifying an object in one-class classification problem. The
fraction of the target samples classified as outliers is the false positive rate (e1), whereas
outliers labelled as targets the false positive rate (erp).

non-target samples composition, the estimation of the false positive rate, €r, is not reliable.
The two types of error are illustrated in Fig. 54.

In binary SVM classifiers, samples from both target and non-target classes are represented
and used to build the decision boundary between the 2 sides of the feature space. In open-set
classification, instead, only target samples are available while the non-target samples are
not representative of the non-target distribution. It is much harder to select the boundary in
this sense and how tightly fitted it should be. The estimation of the false positive rate (e1r)
is problematic: in fact, the SVDD estimates solely the number of target samples which are
rejected (the false negatives). For SVM-based classifiers, the ratio between the number of
SVs and the training set size (referred to as SV ratio) produces a reliable estimation of false
negatives [70] (Sec. 3.2). The SV ratio is used also for the SVDD classifier, which is based
upon the SVM theory.

As an example of the application of SV ratio to SVDD, the curves of the false negative
rate (e1) and the SV ratio are illustrated in Fig. 55. The samples are trained with using the
SVDD classifier on a 2-D Gaussian distribution of 50 samples and tested on 200 samples
from a uniform distribution. The condition C = 1 indicates that all the training samples are
considered target samples. As demonstrated in Fig. 53, o influences the number of SVs and
therefore the complexity of the classifier: the number of SVs tends to decrease as o increases.
This behaviour is confirmed by experiments in Fig. 53 where, at higher values of o, fewer
SVs are needed to model the SVDD hypersphere boundary.

Hence, C influences the number of target samples rejected and o the number of SVs. These
considerations allow to specify an expected rate €7 for C, o in the case of a Gaussian kernel.
While the SV ratio expresses a measure of the false negative rate (e1), the false positive
rate (e17) cannot be reliably estimated for the SVDD. In fact, non-target samples are poorly
represented in an open-set scenario, as pointed out by [145], yet they are crucial to the
SVDD generalisation capability. Thus, the criterion to select the optimal (C, o) pair depends
upon the availability of non-target samples. Two different criteria are then proposed to
estimate e1: one which does not depends on the presence of non-target samples; the other
which does employ the non-target samples when available. The two criteria are described in
the following.

MIN #sV MAX RADIUS The problem of autonomously tuning C and o without any knowl-
edge of the non-target class is investigated by [149]. The optimal (C, o) pair is found
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Figure 55: Estimation of the false negatives (target samples which have been rejected). The ratio of
SVs on the boundary and the number of training samples is reported in dashed black line
while the false negative rate (computed over the test set) is in solid black line.

based on an optimization criterion. This criterion is referred to as Arqgius: On one
hand, the radius R should tend to 1 so as to produce a precise hypersphere boundary
(thereby producing a lower false positive rate); on the other hand, a SV ratio which
tends to 0 indicates a lower false negative rate. The A,qqivus Criterion is expressed as:

2
)\radius = \/<#SNV> + (] - R)Z_ (44)

Both #2Y and R values are in the [0, 1] range. The radius term is expressed by 1—R so

that the minimisation of Ayqqiys €xpresses the minimisation of % and maximisation
of R.

The Arqqius criterion has some advantages: the tuning does not require any informa-
tion of the non-target distribution and does not depend on the number or type of

classes in the training-validation set. However, in situations where the separability is
critical, it can lead to sub-optimal solutions.

MIN #sv MAX AuUC Some different approaches to grid-search may exploit the presence
of non-target samples in the training set to automatically select the best pair of
parameters. The Aay ¢ criterion includes a notion of validation error, computed on a

sub-set of the training set (the validation) with the AUC, the area under the receiver
operating characteristic (ROC) curve:

2
AAuc = \/<#SI\\J/S> + (1—AUC)?, (45)

where #SVs corresponds to the number of SVs and N is the cardinality of the target
class. Obviously, the quality of this estimation depends on the number and repre-
sentativeness of non-target samples. Therefore, Axyc defines a trade-off between
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an estimation of the classifier complexity (¥3Y* term) and the SVDD performance
expressed with the AUC metric.

The evaluation of Aq4ius and Aayc performance is reported in Sec. 9.4.4.

9.4 FROM CLASSIFICATION TO DETECTION: EXPERIMENTAL RESULTS

This section reports an evaluation of ASC in open and closed-set scenarios. The evaluation
is performed in a single-class detection mode. Detection, as opposed to classification, allows
for assessment with a comparatively simple metric [150] and also gives a more reliable
indication of performance which is less influenced by the number of classes in the dataset.
It is stressed, however, that this approach does not preclude multi-class classification which
could be implemented straightforwardly with multiple detectors [139]. Furthermore, the
choice of a detector has been driven by the applicability in unconstrained scenarios, where
only a single target class is of interest and the other classes have to be rejected.

9.4.1 Implementation details

MEFCC features are extracted from frames of 32ms with a 16ms overlap and accumulated
to form audio segments of 4s segments overlapped by 2s. The frequency range is set
to [0,8000Hz]. Mean and standard deviation statistics are extracted over each segment
(without the C0) thereby creating a 25-dimensional feature vector. MFCCs use rastamat
library [151] with default settings. SVM and SVDD classifiers are both implemented using
the l[ibSVM library [152] using a Gaussian kernel. The parameters for this kernel are tuned
independently for each classifier. Finally, feature vectors are normalized according to the
z-score method [153].

9.4.2 Datasets and protocols

The DCASE 2013 and Rouen 2015 datasets are used for evaluation. For the DCASE 2013
database, it has been used the development set for training/validation and the evaluation set
for testing. For Rouen 2015, testing is performed using a 5-fold cross-validation. In both cases,
evaluation involves a gradual transition from closed-set to progressively more open-set
configurations. Reported first are results for a closed-set evaluation which corresponds to
the configurations of the second and third rows of Tab. 14.

Acoustic class models are learned independently for each target. SVM training is per-
formed using data from both t = 1 target class and k known negative classes. In contrast,
the SVDD classifier is trained using target class data alone. In the case of the Aay ¢ criterion,
SVDD exploits the presence of non-target samples to estimate the AUC metric and to select
the best parameters. In order to vary the degree of openness, the number of known negative
classes k is varied in both cases from 1 to C — 1, where C is the total number of classes
involved in the evaluation (C = 10 for DCASE 2013 and C = 19 for Rouen 2015).

Testing is performed using varying quantities of data from the whole acoustic universe
encompassing t, k and u. When k = C — 1, the evaluation is closed-set. The number of
unknown acoustic classes in this case is u = C —t —k = 0. To better illustrate the closed-set
protocol, consider the detection of the bus class using the Rouen dataset where C = 19. If
the number of known negative classes is set to k = 4, then the number of unknown negative
classes is u = 14. According to Eq. 34, this setup corresponds to an openness of 48% as
illustrated in the penultimate row of Tab. 14.
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Figure 56: Arqqius and Aayc comparison, respectively in solid black line and dashed black line.
AUC metric refers to the average over all classes at the same level of openness. Results
relate to DCASE 2013 dev set.

In practice, the performance of the SVM classifier which exploits known negative data
will depend on exactly what composes the k known negative classes. Accordingly, for each
level of openness 10 random selections of k known negative classes is performed. AUC
mean and standard deviation are reported.

9.4.3 Detection metric

Classification accuracy is the standard metric for the evaluation of ASC systems. However,
the intrinsic limitations of classification accuracy [32] mean it is ill-suited to open-set prob-
lems. Consequently, the area under the curve (AUC) metric is preferred instead. The AUC is
not influenced by the ratio of target and negative classes and is threshold independent [154].

The latter graphically expresses the binary separability with respect to a threshold. The
thresholded values are referred to as scores. Scores describe the separability in terms of
continuous values (e. g. probabilities, distances, similarity measures). For the SVM classifier,
scores are extracted using the Platt method [155] which transforms the distances from
the hyperplane into class probabilities; for the SVDD classifier, the scores are calculated
according to the distance to the hypersphere radius R? — ||z — a||?. The AUC is then computed
for each classifier and for different levels of openness, averaged over all t = 1...C classes
and 10 random compositions of k known negative classes.

9.4.4 Grid-search results

For the SVM classifier, parameter tuning is performed using cross-validation based on
the highest validation accuracy. For the SVDD classifier, parameters are optimised by
minimizing one of the two proposed criteria A;qqius OF AAucC-

Results for the best criteria for tuning (C, o) are reported in Fig. 56. Implementation details,
protocols and detection metrics follow those presented in Sec. 9.4.1 and 9.4.2. Arqqius and
Aauc are computed over the validation set, a randomly 30% selection of the training set. To
avoid bias between segments coming from the same recording, the split is always performed
at recording level. Fig. 56 reports the AUC metric averaged over all classes at different levels
of openness.

Results for the DCASE 2013 development dataset confirm the intuition that A, q gius does
not depend on the training set composition whereas Aay ¢ is influenced by the level of
openness. When a good representation of the non-target classes is available (i. e. therefore

114



at lower levels of openness), the Aauc provides higher performance in terms of AUC.
In the experimental works reported in the next section, the A;qqivys criterion is preferred
because of its non-dependency on the non-target data composition. However, for specific
applications, the Ay c may provide better performance.

9.4.5 SVMvs SVDD

Results are illustrated for the DCASE 2013 and the Rouen 2015 datasets in Figs. 57 (a)
and (b) respectively. Results for the SVM classifier are illustrated by dashed-blue profiles.
Those for the SVDD classifier are illustrated by solid-red profiles. For each level of openness,
AUC results are averaged over all classes with the same level of openness. Vertical bars in
Fig. 57 reflect the AUC standard deviation over these classes.

Similar trends are observed for both datasets. As the openness increases, the performance
of the SVM classifier deteriorates, falling from 95% to 60% for the DCASE 2013 dataset and
from 90% to 50% for the Rouen 2015 dataset. In contrast, results for the SVDD classifier
remain relatively stable for both datasets, measuring in the order of 80% and 85% of AUC
for the DCASE 2013 and Rouen 2015 datasets respectively.

Results in Fig. 58 illustrate separately the AUC for each class in the Rouen 2015 dataset
for an openness of 0.67. Consistent with results illustrated in Fig. 57, the SVDD classifier
outperforms the SVM classifier. Of greater interest here, however, is the variation in perfor-
mance for different compositions of k known negative classes, again illustrated in terms
of standard deviation with vertical bars. While the performance of the SVM classifier is
impacted by a specific combination of k known negative classes, that of the SVDD classifier
is relatively unaffected.

Fig. 59 reports, instead, the results of two systems characterised by different feature
extraction methods but having the same SVDD classifier. Features are: i) MFCC features
detailed in 9.4; local binary patterns (LBPs), root mean square (RMS) and band energy ratio
(BER) (LBP+RMS-based+BER). For further details about features LBP+RMS-based+BER, refer
to Sec. 5.3. The system based on LBP+RMS-based+BER features outperforms that based on
MECC features in the case of a small number of classes, such as bus, metro-paris, quietstreet
and tubestation. For others (e. g. airplane, metro-rouen, pedestrian street and train), the level of
AUC for the two systems is similar. For the remainder of the classes, the SVDD-MFCC
system outperforms the other system.

9.5 CONCLUSIONS AND FUTURE DIRECTIONS

This chapter reports the first attempt to develop an approach to acoustic scene classification
(ASC) for a practical, open-set scenario. A traditional ASC classifier is shown to outperform
an open-set classifier in a largely closed scenario. When the level of openness increases,
however, performance degrades rapidly, whereas the performance of the newly proposed
approach to open-set ASC remains stable. The SVDD classifier learns a hypersphere from
target data only. While using target data only for training, this classifier is less susceptible
to overfitting to known negative data and is thus more reliable in the face of unknown
negative data. A new approach based on a detection formulation, a new protocol and metric
are also introduced.

A further contribution relates to the importance of model parameter tuning. Two methods
are compared: one based on a target-based criterion and a second, aware of non-target
samples. Depending on the type of ASC applications, one criterion may be preferred to
the other : under a 0.1 level of openness, making use of the entire training set (target and
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Figure 57: Plots of the area under the receiving characteristic curve (AUC) against openness for (a)
DCASE 2013 evaluation set and (b) Rouen 2015 datasets for SVM (dashed-blue profiles)
and SVDD (solid-red profiles) classifiers. Standard deviation is illustrated with vertical

bars.
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Figure 58: Individual class AUC results for the SVM and SVDD classifiers for the Rouen 2015 dataset
with an openness of 0.67.
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Figure 59: Individual class AUC results for SVDD classifier and two different feature extraction
methods: MFCC (dark-red bar profiles) and LBP+RMS-based+BER (light-yellow bar profiles).
The referred dataset is Rouen 2015 with an openness of 0.67.
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non-target, if available) is beneficial; when the uncertainty is high, a criterion based solely
on training data seems more robust.

The performance of the SVDD algorithm is correlated to the type of features used to
describe each acoustic scene. As an example, LBP-based features show better performance
for some classes whereas MFCC-based features lead to better reliability in the case of some
other classes. More generally, open-set approaches can be designed with any classifier,
including deep learning approaches. Given recent work which shows the vulnerability of
deep learning architectures [156] to specifically designed samples, an open-set evaluation
is needed. Domains as image classification [157] and face verification [158] have started
questioning closed-set evaluations. There is evidence that current deep learning approaches
show too optimistic performance and they are not robust to unknown samples during
testing [141].

In ASC, inter and intra-class variability is so high that the open-set scenario has to be
taken into account. Future ASC evaluation should consider this scenario, since it provides an
evaluation framework which is closer to reality. The SVDD classifier is a possible solution to
the open-set problem, but other open-set aspects should be investigated in future research:

* a better feature characterization of each acoustic scenes (e. g. using CNN architectures
to automatically extract features from data);

¢ the integration of the open-set risk in the error minimization (e. g. replacing the soft
max function with an open max function, tailored to open-set [141]);

¢ the exploitation of non-target samples, when available (e. g. SVDD which takes advan-
tages of non-target samples [159]);

¢ novelty detection of unknown samples with the automatic definition of new classes
(e. g. novelty detection based on SVDD distances).

Given that the predominant ASC use-case scenario is open-set in nature, it is hoped that
the proposed perspective on ASC will be adopted by the research community in the future.
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CONCLUSIONS AND FUTURE WORK

The scope of this thesis has been to investigate acoustic scene classification (ASC), with the
goal being to deliver context-awareness for low power devices carried by people during
daily activities. Context-awareness has broad appeal, e. g. for controlling the frequency of
notification alarm with respect to the context (e. g. in the car or at home); adapting phone
call volume to the surrounding environment or enabling context-based configurations for
hearing aids. The implementation of ASC on embedded devices is a strategic choice since it
respects user privacy; there is no need to communicate potentially private, sensitive acoustic
information (speech and audio events/scene) to external services. Furthermore, unreliable
data connections and power implications add to the appeal of performing ASC locally on
the device.

Given this emphasis on embedded applications, the research performed through this
thesis study had to consider two aspects: on one side, the proposed ASC systems required a
comparison to the current state-of-the-art performance; on the other side, the applicability
to “real-world” products introduced practical constraints (e. g. always-listening and low-
complexity systems). The motivation of this thesis, then, stems from reducing the gap
between fundamental (Part 1) and applied research (Part 2).

With ASC being a recent field of study, standard methods borrow techniques from other
related domains (such as MFCC features for speech or music genre recognition) without
investigating ASC peculiarity. The analysis of two decades of ASC literature described
in Chapter 2 shows that MFCCs are the most popular features. Nevertheless, the top
performing systems [56, 33] used features specifically tailored to the ASC problem. These
findings confirm that, while the ASC community can benefit from prior research in other
domains, there is also a need for specific solutions.

Aside from fundamental research, a more applicative aspect should be considered when
implementing ASC systems for real products (e.g. smartphones or hearing aids). These
aspects include: always-listening systems which process and analyse sounds in a continuous
streaming fashion; low-power systems which limit the computational power and the memory
required to store models. Even if these product constraints may sound a limitation, they
enlarge the current ASC research scopes, thereby introducing new areas of studies.

10.1 WHAT HAS BEEN DONE?

From the analysis of DCASE 2013 results (Chapter 2), standard MFCC-based features are
found to be insufficiently discriminative to capture the complex spectro-temporal structure
of an acoustic scene. The winning system of DCASE 2013 complemented information
extracted with standard MFCCs with features capturing frame-level temporal recurrence.
This new set of features captures the recurrence of MFCCs in the acoustic scenes. However,
being still based on MFCCs, this method has several limitations such as a high dependence
on scene energy, poor generalisation across multiple datasets and poor robustness to scene
variations.
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In order to have a first baseline, the winning system of DCASE 2013 (referred to as RNH)
was re-implemented obtaining the same level of performance reported in [56]. Experimental
results reported in Chapter 3 show that small changes in the feature parameters can impact
drastically on performance. In particular, these changes can be grouped as follows: i)
differences in the energy level; ii) differences in the frequency range; iii) differences in the
segment length from which features are extracted.

Besides these considerations, optimised features seem be dependent on the composition of
the scenes to be recognised. Chapter 4 reports visualisations and feature metrics which are
designed to shed light on the relationship between features and acoustic scenes: t-SNE is a
non-linear visualization technique which can be used to represent high-dimensional features
in 2D mappings. This visualisation feedback helps in the design of new features. In addition,
feature metrics such as the Fisher score and the Bhattacharyya distance complement the
information coming from t-SNE visualisations by providing quantitative metrics which are
independent of a particular classifier. Experimental work reported in Chapter 4 demonstrates
that, depending on the type of scenes composing the database, certain features are better
suited than others. As an example, the first MFFC coefficient (CO, which reflects the level of
energy in the signal) is replaced by relative-measures of energy. These features are based
upon variations in the root mean square values (RMS) and over the band energy ratio (BER).
Results showed consistent performance over multiple databases.

A very relevant aspect discussed in Chapter 4, then, is the cross-database validation to
test the generalisation of ASC systems. At the time when this thesis started, in 2014, only
the DCASE 2013 database was publicly available. Moreover, the recording conditions of
these datasets were far from the realistic ones recorded by mobile devices. The NXP dataset
contains 30h of audio recordings collected from different scenes and forms a contribution of
this thesis. The NXP dataset provides far much broader and various data; augments the
diversity of recording conditions and better represents the heterogeneity of each acoustic
scene.

Recent trends in the ASC literature [33] employ image-processing techniques on audio
spectrogram. This suggests that spectro-temporal information is beneficial to ASC. Work
presented in Chapter 5 demonstrates that local binary patterns (LBPs) could represent the
entire scene with a unified descriptor. Results obtained with LBPs outperformed state-of-
the-art methods on multiple datasets. The capture of spectro-temporal structure through
spectrogram patterns represents a significant improvement with respect to traditional
features for ASC.

Nevertheless, ASC is characterised by a significant inter and intra scene variability. With
such variability, the design and tuning of LBP features is still correlated to the number
and type of acoustic scenes. Every time a new class is introduced, features need to be
re-optimised. Recent advances in deep learning techniques offer a promising alternative
to the use of hand-crafted features as well as a suite of different approaches to automatic
feature learning from complex input data (e. g. images and audio). The research presented in
Chapter 6 describes the use of a convolutional neural network (CNN) based on a 2-channel
input spectrograms (log-mel power spectrogram + first derivatives A) and specifically
adapted to the ASC task. Like LBPs, this network topology captures local correlation in time-
frequency domain. Results on publicly available DCASE 2016 dataset showed competitive
results of this approach. The review of the systems submitted to the DCASE 2016 challenge
in Chapter 7 reports a significant adoption of CNNs for ASC. This trend consolidates the
hypothesis of using spectro-temporal techniques as suggested in Chapter 5 and 6.

Even so, current solutions in the literature did not investigate the impact of running
ASC on embedded devices. This implementation imposes limitations in terms of memory
storage, computational cost and real-time processing. A complete solution to solve the
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aforementioned limitations is presented in Chapter 8. MFCC statistics (mean and standard
deviation) are estimated in real-time with two recursive estimators. These two estimators
work in tandem to better capture variation in the signal. To reduce the model size, a reduced
complexity SVM model is obtained by clustering and decimating the training samples
without a significant impact on performance.

Even if previous methods enable ASC systems to run on embedded devices, these systems
poorly react to unknown classes during in-field evaluation. The rejection of unknown classes
is recognised as a fundamental requirement in order to reduce false positives and then
to make applications possibly usable. Common to all of the prior work is the evaluation
of ASC systems in a closed-set scenario for which training data is available for each and
every acoustic class which may be encountered during system use. It is argued in this
thesis (Chapter 9) that ASC is an open-set problem by nature: realistic ASC applications
should be able to recognise an acoustic scene among a set of unknown scenes (i. e. not seen
during training phase). Possible solutions consist of only modelling the target class without
creating a corresponding non-target. As an example of this idea, the support vector data
description (SVDD) classifier tailored to open-set is proposed in Chapter 9, together with
metrics (receiver operating characteristic (ROC) curve and corresponding area under the
curve (AUC)) and protocols more suited to an open-set scenario. It is strongly believed that
future ASC evaluations should consider this scenario, since it provides results which are
close to those one could expect in "real-life".

10.2 WHAT CAN BE CONCLUDED?

The research on the peculiarities of ASC is the topic that the author has tried to investigate
throughout the thesis. From the offered views to this subject, some general conclusions are
derived. They are detailed as follows:

e ASC is a highly complex task from an acoustic and taxonomy point of view. For
example, similar acoustic scenes could be classified under two different high-level
concepts (e. g. quiet street and park) while the same concept may contain very different
acoustic scenes (e. g. car contains sport car and electric car). A comprehensive dataset
which captures such variation would be expensive and difficult to collect. In addition,
obtaining an agreement from the community on a common taxonomy would also
represent a big challenge;

* an acoustic scene has a weak temporal structure. Prominent sounds may appear in
any order so that any methods which model a temporal evolution will not be suited
to represent this temporally unstructured scene. Systems based on LBPs or CNN rely
upon the presence of specific patterns rather than their temporal evolution. This idea
can be seen under the bottom-up perspective (Chapter 2). A bottom-up perspective
groups different methods under the common idea that low-level audio descriptors (in
the case of LBPs and CNN, the audio patterns) compose the entire acoustic scene;

* an acoustic scene can be characterised by spectro-temporal patterns, which extract
information from time-frequency representation. The nature of these patterns can
be decided a priori (e. g. LBPs) or automatically extracted from the data (e. g. CNNs).
What is different from traditional features (e. g. MFCCs), is the significant correlation
in time and frequency showing that a unified descriptor in time and frequency can
obtain a high level of performance;

¢ ASC is an open-set classification problem. Before performing any classification, a
robust ASC system should first determine whether or not the scene is within the set
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of known classes or label it as unknown. In this case, the ASC system would perform
detection before classification.

10.3 ON WHAT SHOULD FUTURE RESEARCH FOCUS?

Research in the ASC domain still relies on a supervised scenario where labels and data must
be provided. This supervised paradigm is very inefficient when the amount of training
data represents very poorly the true variability of acoustic scenes. It is recommended that
future research should investigate different approaches, which do not depend entirely
on labelled data. In that sense, learning from weakly annotated data coming from other
domains (video, audio event) is a possible option. From a similar perspective, continuous
active learning approaches should be considered as an alternative to existing supervised
ones. ASC solutions may have access (through a microphone) to an essentially infinite
amount of unlabelled data, but labelling this data is expensive. Semi-supervised approach
such as active learning [160] can select a subset of such data to label automatically. Once
the sample has been labelled (from an interaction with the user or with other source of
information), scene models can be re-trained or adjusted.

Another research track may involve transfer learning [161, 162] between related domains.
For example a system designed to detect audio events could be used to classify scenes
without complete re-training. In this case the goal is to train a complete ASC system with
a fully-fledged small labelled dataset using the knowledge from other domains (such as
audio event detection).

Given the successful application of time-frequency patterns, further research may in-
vestigate a unified time-frequency-spatial descriptor including also the spatial information.
This could be done using multi-channel inputs to CNNs. To date, very little work has
addressed the ASC problem using multi-microphone approaches [54, 116] and, that which
has a maximum of 2 microphones has considered. In this sense future work should consider
multi-microphones or microphone arrays.

In terms of applied research, it is believed that solutions to ASC task require advances in
the following areas:

1. open-set protocols and metrics for future public evaluation. In order to realise the
commercial potential of ASC and to reduce the gap between fundamental and applied
research, the performance of solutions developed in the lab has to be confirmed by
users or through in-the-field tests;

2. robustness to high-quality as well as low-quality recordings. Invariance to poor
recording quality must be further investigated;

3. model complexity in terms of memory and computational constraints. Even while
providing good generalisation performance, deep learning solutions may contain
millions of parameters. Recent works have been presented for reducing the number of
parameters in a CNN model [163] and should be investigated in the context of ASC;

4. real-time strategies involving analysing audio in a streaming fashion. Due to limited
resources, low-power devices cannot store a huge quantity of audio. This means that
real-time ASC systems should use a limited audio sample buffer to extract features and
perform predictions. A possible candidate approach may use evolving topologies of
neural networks to process raw audio samples directly [164] in a continuous streaming
fashion. This may result in a trade-off between flexibility (in terms of number of
network parameters) and performance;
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5. with the objective of having a reliable acoustic context-recognition system, cues from
heterogeneous sensors (camera, motion sensors, temperature sensors) may provide a
better view of the surrounding environment. Under this assumption, it is clear that the
fusion or combination of heterogeneous information sources could be a future axe of
investigation.

Finally, the ASC community has grown in the recent years and now attracts interest
from both academia and industry. In order to create useful and usable ASC applications, a
synergy between fundamental and applied research must become the standard pathway
for future research. It is therefore hoped that the analysis presented in this thesis may help
steer ASC research in the future.
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APPENDIX

A.1 SUPPORT VECTOR MACHINES FORMULATION

Let us define the Lagrangian with several inequality constraints be defined as:

L(w, o) = f(w) + ) angn(w)

(46)

where f is the optimization function, gn are the inequality functions and «, the La-

grangian multipliers. Optimal parameters w*, b*, a* respect the KKT conditions if:

ZSLéZ;a) “ 0 vn
an =0 Vn
dngn(w) =0 V¥n
gn(w) <0 Vn

(47)

The following optimization can be easily applied to the ‘best boundary’ search, in the
form L(w,b,a) = %Il'wll2 -2 o [Yn(w xn +b) — 1]. Note that f(w) = %Ilw\l2 and the
inequality constraints g(w) are equal to | n(wTxy +b) —1]. The routine to transform the

primal to a dual problem is described as follows:

Step 1: determine partial derivatives with respect to w and b

SL(w, b, ¢

(&lun):O: En (Xnyn$n:0
SL(w, b, ) )

T =0: En AnYn = 0

Step 2: substitute the partial derivatives into the Lagrangian

1
Llw,b,a) = Slwl® =} onlyn(w s +b) = 1]
n

1
=D Gn—5 ) CndmYnYmnTm
n n,m
Step 3: formulate the dual problem
1
mOSlXZ Xn — E Z AN myYnYmTnTm
n n,m

s.t. Z nYyn =0, on =20
n
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The best margin is the solution of the dual problem in Eq. 50. The solutions depends
not on w but on the Lagrangian multipliers a*. From Eq. 48, w* = ) | aYynXn.
When a new sample z is classified, the boundary is calculated with respect to these
values

w'z+b= (; XnYnXn) z+b = ; XnYn Tnz +Db. (51)

inner product

Eq.51 depends on the inner product of the new sample z and the samples in the
training. KKT equality condition for o gn (W) = 0, where g(w) = yn (w 2y +b) —1.

KKT conditions determine the training samples which "support" the final classification.
These special samples are called SVs. From the KKT conditions, when oty > 0, gn(w) =
0 and so w'z,, +b = 1. The corresponding samples for which &, > 0 lie exactly on
the boundary. On the contrary, when &, =0, gn(w) > 0 so (w'xn +b) > 1 and the
corresponding Lagrangian indicates samples which are not on the boundary.

A.2 T-SNE VISUALISATION FORMULATION

Let X = x1, 2, - , &N be the data set composed of high-dimensional samples and consider
that there exists a function which transforms pairwise distances into similarities. Stochastic
neighbor embedding (SNE) was reported initially in [165]. It learns a low-dimensional
representation of the high-dimensional samples and its goal is to minimize the difference
between high and low-dimensional representations. The low-dimensional samples are
expressed as Y = y1,¥y2,--,yn. The pairwise similarity between samples x; and x; is
defined as a conditional probability P; = Pr(z;|z;), that ; would pick z; as its neighbour
according to a Gaussian distribution centred in x;:

exp(—|zi — x;l[2/202)
YRS N exp(—llak — zl2/202)

where o is the variance of the Gaussian distribution and N is the total number of samples.

In practice, the computation of all the pairwise distances (expressed in the denominator
of Eq. 52) is expensive. Because of that, the conditional probability Pr(x;j|z;) replaces the
normalization term with a local normalization with respect to the neighbourhood K of the
considered sample x;:

Pr(xj|x;) =

(52)

exp(—lle — a;1|*/207)
Ztyéi exp(—llzi — wkHZ/ZGiZ) ’

PI‘(:L‘]'|2131) = (53)

where oj is the variance of the Gaussian distribution centred in x;. The variance is
scaled for each it" sample such that the number of the considered neighbours is fixed to
a parameter (called perplexity). Different parts of the space may have different densities of
samples. The use of an adaptive o allows the algorithm to better adapt to different densities:
for dense areas of the space, a small value of o is preferable than sparser areas.

In order to minimize the difference of the two representations, a Kullback-Leibler (KL)
divergence criteria is used to quantify the mismatch between probability distributions
in the high and low dimensional space. The cost function ] minimizes the sum of KL
divergences on the overall conditional probabilities using a gradient descent approach.
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The low-dimensional representation changes depending on the mismatch between the two
probability distributions:

N
_ . ($]|m1)
- Z KEPIRY Z Z Pri@jle) 0 g () (54)

where P; indicates the conditional probability distribution for all samples with respect to
x; and Q; stands for the conditional probability for all low-dimensional samples given ;.

t-SNE is the evolution of SNE and it is different in two aspects: i) it uses a symmetrised
version of cost function | to reduce the number of possible combinations; ii) it adopts a
Student t-distribution to compute the similarity in low-dimensional space.

Another possible way to represent the cost function J is to use KL divergence between a
joint probability P and Q instead

Pr(a,
J = KL[PIQ) = ZZPrmuw] D 53)

This is called symmetric SNE because Pr(z;, ;) = Pr(x;j, zi) and Pr(yi, y;) = Pr(y;, yi).
The most relevant advantage of this version is to produce a simpler and more efficient
gradient [77].

The low-dimensional similarities between corresponding samples y; and y; are instead
given by

(1 + llys —y501°) !
Pr(yi, y;) = . (56)
oy ZLN7A1< exp(—llyx —yll?) !

The application of the heavy-tailed Student t-distribution in Eq.56 with one degree of
freedom allows the modelling of moderate distances in the high-dimensional space by much
larger distances in the embedding. This represents more accurately close samples in the
high-dimensional space with small distances in the low-dimensional space. Without this
distribution, small distances in the the low-dimensional space will just collapse toward
specific regions of the space, making any interpretation impossible.

127



FRENCH VERSION

128



CLASSIFICATION DES SCENES ACOUSTIQUES

INTRODUCTION

Imaginez fermer vos yeux pendant un moment et écouter attentivement les sons dans votre
environnement immédiat. Vous pouvez reconnaitre des sons spécifiques comme des pas,
la climatisation, le passage de voitures ou des voix. Méme en 1’absence de repéres visuels,
les humains peuvent identifier la plupart des événements et des sons avec des signaux
acoustiques. Ces signaux acoustiques fournissent des informations sur les objets qui ne sont
pas dans le champ de vision de 'auditeur. La recherche présentée dans cette these porte sur
la reconnaissance d'une scene acoustique spécifique par des machines.

Le choix des signaux acoustiques pour reconnaitre I’environnement environnant est mo-
tivé par I'omniprésence du microphone dans les smartphones, des appareils avec la sphére
de l'internet des objets, des wearables et des appareils auditifs. Alors que certains appareils
sont équipés par plusieurs capteurs hétérogenes (par exemple des capteurs de lumiere,
des gyroscopes et des accélérometres), les capteurs acoustiques sont les plus largement
utilisés dans la pratique. Il existe des preuves [1] que la reconnaissance du contexte utilisant
des signaux acoustiques donne de meilleures performances que l'utilisation de mesures
accélérométriques seulement. Dans tous les cas, les signaux acoustiques et autres sont
complémentaires dans un cadre de fusion des sensors.

La classification des scénes acoustiques (CSA) vise a classer I’environnement dans lequel
un appareil est utilisé. Le probleme de la reconnaissance des scenes acoustiques est par-
ticuliérement pertinent dans le cas des appareils mobiles compte tenu de leur utilisation
dans des situations multiples au cours d’une journée type. Ici, par exemple, le volume
de la sonnerie d'un portable peut étre ajusté selon que l'utilisateur est dans un bus, au
bureau ou a la maison. La motivation de ce travail provient de la demande continue de
fonctionnalités avancées en adaptant automatiquement la configuration de l'appareil a la
situation ou au contexte. De plus, le caractere industriel de ce doctorat a conditionné les
pistes et les axes de recherche. L'CSA étant un domaine d’étude récent, il existe toujours un
écart entre le monde universitaire et 'industrie en termes de problemes, de solutions, de
protocoles et de parametres; il existe des différences claires entre I’évaluation en laboratoire
et la performance sur le terrain. Cette dichotomie explique la structuration de cette these
en deux parties; une liée a la recherche fondamentale; ’autre 1ié a la recherche appliquée.
L’objectif final est de concevoir un systéme CSA robuste qui analyse et classe les scenes
acoustiques en temps réel sur des appareils de faible puissance.

Applications du CSA

Les applications qui peuvent bénéficier directement de 'CSA englobent les technologies
existantes, des smartphones aux aides auditives:

Les dispositifs de sensibilisation au contexte comprennent des capacités d’écoute perma-
nente pour adapter le comportement a la situation environnante [13]. Les exemples incluent
I'adaptation d’un volume de sonnerie selon que l'utilisateur se trouve dans un bus, dans
un bureau ou au cinéma [14]. Les preuves [15] montrent que la capacité d’associer un
comportement a un contexte est particulierement pratique pour les utilisateurs. Un autre
exemple d’applications pratiques est rapporté dans [16], o1 les dispositifs portables ajustent
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le taux (ou l'intensité) des notifications en fonction du contexte. Le cotit d’étre distrait par
un appareil peut étre élevé: imaginez recevoir de nombreuses notifications dans la voiture
en conduisant, au restaurant avec d’autres personnes ou en traversant la rue. La décision
de notifier ou non et comment notifier 1'utilisateur doit étre prise en considération pour le
contexte actuel.

Les robots d’écoute utilisent 'information de «ot1 je suis» pour changer de comportement.
Particulierement dans des conditions de mobilité élevée, I'information préalable sur la
localisation du robot aide a définir les actions les plus appropriées a réaliser [17]. Des
exemples concrets peuvent utiliser CSA pour modifier la vitesse du robot, qu'il soit situé a
I'intérieur ou a ’extérieur [18].

Le marquage automatique des données exploite les similitudes de contexte pour 1'étiquetage
automatique des données audiovisuelles. Il existe une énorme quantité de contenu multimé-
dia non segmenté, ni étiqueté, dont le marquage manuel serait pratiquement impossible. La
combinaison de la vidéo, de I'image et de I'information sur la scéne acoustique permettrait
de marquer automatiquement une grande quantité de matériel. Ce matériel pourrait ensuite
étre utilisé pour recycler CSA avec des ensembles de données plus volumineux [19].

Les aides auditives adaptent leur configuration a I'environnement de l'utilisateur, tel qu'un
bureau silencieux, un restaurant ou un music-hall. Les solutions actuelles d’aides auditives
sont réglées en fonction d’environnements acoustiques généraux qui ne s’adaptent pas
rapidement aux changements de contexte [20]. Les solutions CSA peuvent étre utilisées
pour améliorer la qualité audio et permettre des configurations basées sur le contexte. Dans
toutes les applications ci-dessus, CSA est essentiellement une étape de prétraitement qui
fournit des informations préalables a d’autres systemes.

Contributions

La structure de la these reflete la nature des contributions concernant la recherche fonda-
mentale et appliquée. Le plan est illustré graphiquement par une carte mentale dans la Fig.
1. La recherche fondamentale est 1'objet de la partie 1 (a gauche de la figure 1) qui décrit les
contributions entre le premier défi public sur CSA en 2013 [6] et le deuxiéme en 2016 [26].
La séquence des chapitres suit temporellement ces deux jalons, relatant les défis DCASE
publics en 2013 et 2016. La recherche appliquée est au centre de la partie 2 (a droite de
la figure 1) qui traite des implications pratiques de 'CSA dans le monde réel scénarios.
Les contributions de cette partie incluent I’adaptation des solutions CSA pour travailler en
mode streaming avec une complexité réduite. Le travail rapporté dans cette these a donné
lieu a plusieurs publications:

* publication 1 (conference paper): "Acoustic context recognition for mobile devices
using a reduced complexity SVM", 2015 IEEE European Signal Processing Conference
(EUSIPCO);

* publication 2 (conference paper): "Acoustic context recognition using local binary
pattern codebooks", 2015 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA);

¢ publication 3 (workshop paper): "Acoustic scene classification using convolutional
neural networks", 2016 IEEE Detection and Classification of Acoustic Scenes and
Events challenge (DCASE);

¢ publication 4 (conference paper): "The open-set problem in acoustic scene classifica-
tion", 2016 IEEE Workshop on Acoustic Signal Enhancement (IWAENC);
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¢ publication 5 (conference paper): "Baby cry sound detection: a comparison of hand
crafted features and deep learning approach”, 2017 Springer Engineering Applications
of Neural Networks conference (EANN);

¢ publication 6 (patent): "Acoustic Context Recognition using Local Binary Pattern
Method and Apparatus"”, US Patent App. 15/141,942

¢ publication 7 (patent): "Embedded car detector based on acoustic sensor”, EU patent
App. under approval.

La partie 1 commence par le chapitre 2 qui décrit 1’état de 1’art de 'CSA en 2013, lors du
premier concours public en CSA. Conjugué a un défi public, un ensemble de données a
également été publié. Bien qu’étant un grand pas vers la standardisation de la tache CSA
(données, protocoles, métriques d’évaluation), les méthodes standard étaient toujours basées
sur des fonctionnalités principalement congues pour la parole ou la musique (par exemple
MFCCQ). Le systéme gagnant de ce défi, en fait, estime et modélise les modéles récurrents
dans les MFCC. Ce systeme et ses principales limites sont discutés au chapitre 3, ot une
premiere référence est également présentée. Les moyens possibles d’évaluer et de visualiser
les fonctionnalités audio sont présentés dans le chapitre 4 qui conduit a la conception
de nouvelles fonctionnalités. A ce jour, presque toutes les approches CSA existantes sont
basées sur des caractéristiques traditionnelles congues pour d’autres domaines. Méme
ainsi, les expériences montrent que ces caractéristiques peuvent ne pas étre suffisamment
discriminantes pour la tache CSA.

Compte tenu de la focalisation sur les caractéristiques CSA, la structure acoustique
complexe d'une scéne est représentée par des motifs spectro-temporels locaux, extraits
directement du spectrogramme (publications 2 et 6). Par conséquent, I'idée d’extraire des
modeles spectro-temporels est ensuite exploitée en utilisant une topologie particuliére des
réseaux neuronaux profonds comme indiqué au chapitre 6. Cette contribution (publication
3) a été soumise et évaluée publiquement dans le contexte de 1’évaluation DCASE 2016 dont
les principaux résultats les tendances sont présentées au chapitre 7.

Les grandes lignes de la partie 2 sont résumées comme suit: Le chapitre 8 décrit les
problémes pratiques de 'CSA. L'ensemble de données NXP, bien que propriétaire, est
considéré comme une contribution dans le contexte d’un doctorat cifre. Les données
contenues dans cet ensemble de données peuvent étre utilisées non seulement pour 'CSA,
mais aussi pour d’autres taches connexes (détection d’événement, mélange de la parole
avec enregistrement de scene acoustique pour apprendre un modele plus robuste, etc.). Les
contraintes de calcul en termes de complexité et de mémoire sont abordées au chapitre
8 avec une contribution supplémentaire incluant un systeme CSA a complexité réduite
(publication 1).

L'une des plus grandes limites des systemes CSA actuels concerne son application
aux problemes d’ensembles fermés. En pratique, les applications CSA sont ouvertes dans
la nature, ot le nombre de classes pendant 1’évaluation est illimité. Les contributions
comprennent la proposition d’'une nouvelle approche de 1’évaluation des solutions CSA
avec une approche ouverte, comme indiqué au chapitre 9. Cette contribution (publication 4)
présente le probleme CSA comme une détection de scéne acoustique o1 un petit nombre
de scénes connues sont détecté dans un plus grand univers de classes inconnues. Les
conclusions du dernier chapitre 10 rassemblent les réflexions et conclusions des recherches
fondamentales (Partie 1) et appliquées (Partie 2), et décrivent des idées pour des recherches
futures.
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Figure 1: Mind-map des blocs principaux composant la these. La légende en bas a droite aide a lire

I'image entiére. Les chiffres dans le coin supérieur droit représentent 1'index du chapitre.
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ETUDE DE LA LITTERATURE

Plusieurs approches ont été proposées dans le passé pour classer les sons et les scenes
acoustiques, soutenues par des études psycho-acoustiques [5]. L'une des conclusions les
plus pertinentes de ces études est que notre systeme auditif repose sur une mémoire sonore
capable d’associer les sons a un environnement significatif. A la lumiere de cela, Ellis
[34] en 1996 a proposé de décrire une scene acoustique comme un mélange d’éléments
de construction plus simples. Dans la méme année, Couvreur et al. [34] ont étudié une
reconnaissance automatique des sources de bruit ambiant (comme la voiture, le camion,
’avion) en fonction de leurs propriétés acoustiques globales. Cette approche a été développée
par El-Maleh et al. [35] en "99 en utilisant des caractéristiques spectrales et un classificateur
gaussien. La premiere méthode traitant spécifiquement du probléme de I'CSA concerne
un rapport technique de Sawhney et Maes en 1997 [36]. Les auteurs ont enregistré un
petit ensemble de données composé de voix de personnes, de métro, de trafic et d’autres
classes. A partir de ces enregistrements, ils extraient des caractéristiques basées sur des
filtres psycho-acoustiques, en utilisant un classificateur de réseaux neuronaux récurrent. Ils
rapportent une précision de classification de 68% sur 5 classes.

Quelques années plus tard en 2001, Peltonen et al. [37] montraient que les humains
identifient une scéne avec des événements sonores typiques, tels qu'un clic, un claquement
de porte ou un moteur de voiture. Les tests effectués sur 19 sujets ont montré une précision
globale de classification de 70% sur 25 classes. L’énorme variation des précisions entre les
classes (elle varie de 32% a 100%) dépend des indices acoustiques présents dans la scene:
lorsque les sons de la scéne sont déterminants pour distinguer une classe d’une autre, la
précision est plus grande.

Comme prévu, une classification intégrée sur une période plus longue contient des
informations plus importantes, comme mentionné précédemment dans [37]. Par conséquent,
une longueur idéale pour avoir des résultats de classification stables suggére un signal de
30 a 40 secondes. En dépit de ces observations, 1’aspect le plus important de la recherche de
Peltonen était d’appliquer pour la premiere fois le modele de mélange MFCC et gaussien au
probleme CSA, atteignant une précision de 68% sur 17 classes. L'adoption de MFCC-GMM a
fourni un systéme de base pour la recherche future. Poursuivant les expériences de Peltonen,
Eronen et al. [39] en "03 ont exploité 1"évolution temporelle de la scéne acoustique pour
améliorer le systeme de base MFCC-GMM, en utilisant un modele de Markov caché (HMM)
a deux états complétement connectés. Ce systéme a été comparé a la capacité humaine de
reconnaitre 18 classes et 6 méta-classes (par exemple, extérieur, véhicules, intérieur, etc ...).
La précision de la reconnaissance du systtme HMM est de 61% sur 18 classes contre 69%
des tests d’écoute humaine.

Un autre axe de recherche interroge la taxonomie de la scéne: quels sont les liens
entre l'expérience personnelle quotidienne et I’évaluation collective a travers un concept
linguistique de haut niveau? Dubois et al. [40] en 06 ont étudié cette association entre les
concepts de haut niveau et les scénes acoustiques. La recherche a montré que les individus
classent les scenes acoustiques sur la base d’expériences antérieures. Pour renforcer cette
perspective, une étude complémentaire a été menée par Tardieu et al. [41] en "08 sur
I'organisation humaine des indices acoustiques dans les niveaux croissants d’abstraction.
Dans le contexte d’une scéne acoustique d’une gare ferroviaire, ils ont démontré que les
gens utilisent des signaux acoustiques locaux (activité humaine) et des informations globales
(réverbération, intensité) pour construire hiérarchiquement une scéne acoustique. La méme
idée a été récemment proposée par Torija [42] en "13. En utilisant 15 descripteurs acoustiques,
une scene acoustique est composée par ces éléments de construction.
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Method Features Classifiers Testing strategies
(ID)
Olivetti et Length of the compressed audio file Random forest
al. (OE) [66] based on the
compression
distance
Elizalde et MFCCs + A + AA over a concatenation of left, right, difference and average of GMM-UBM — Maximum likelihood
al. stereo channels i-vector
(ELF) [57]
Krijinders time-frequency chocleagram statistics — SVM One-vs-one
eta.
(KH) [55]
Baseline MFCCs GMM Maximum likelihood
Patil et al. time-frequency multi-resolution analysis — PCA SVM One-vs-one, weighted majority
(PE) [61] vote by the energy present in 1s
window (overlap o0.5s)
Nogueira et MEFCCs, temporal features (modulation rate of MFCCs over 4 bands, event SVM
al. (NR) [54] density estimation), spatial features (time and amplitude differences between
the two channels) — Fisher score for features selection
Nam et al. unsupervised learning using restricted Boltzman machines on Mel-spectrogram SVM One-vs-all
(NHL) [62] — PCA
Chum et al. energy/frequency features over short and long frames (different temporal GMM — HMM Maximum likelihood
(CHR) [59] resolutions)
Geiger et al. spectral, cepstral, energy, voicing-related over 4s of signal SVM Majority vote
(GSR) [53]
Rakotoma- Histogram of gradients on constant Q transforms SVM One-vs-one
monyjy et al.
(RG) [33]
Lietal MECCs on wavelet decomposition Ensemble of binary Majority vote
(LTT) [58] trees
Roma et al. MFCCs — recurrent quantification analysis metrics (RQA) SVM One-vs-one
(RNH) [56]

Table 2: La liste des systéemes soumis au challenge DCASE 2013, suivie du type de fonctionnalités,
du classificateur et des stratégies de test. La fleche exprime les dépendances a partir de la
fonctionnalité — traitement des entités ou classification.

D’apres Résdnen et al. [1] en "11, I'utilisation du classificateur audio combinée a I’accélération
a permis d’améliorer les performances de classification du contexte. Au lieu de fusionner
des informations sensorielles de bas niveau (c’est-a-dire de combiner directement des car-
actéristiques provenant de capteurs acoustiques et d’accélération), seules les prédictions
de classification sont combinées. En fait, la prédiction finale est une somme pondérée de
prédictions uniques provenant de classificateurs acoustiques et d’accélération. Une intuition
similaire a été adoptée pour la fusion des indices visuels et acoustiques par Lee et al. [44] en
’12. Une approche hiérarchique compleéte a été proposée dans Feki at al. [45] en "11. Dans
cette approche descendante, chaque diffusion audio a été classée en sons vocaux, musicaux
ou environnementaux. Si le streaming audio ne contenait pas de paroles ou de musique, il
a été classé en fonction de la scene acoustique la plus probable. Cette approche décompose
un probleme de classification global en taches de sous-classification plus simples, depuis
des concepts de haut niveau jusqu’a des événements sonores uniques.

En termes de reproductibilité et de comparabilité des résultats, le domaine CSA manquait
d’un ensemble de données commun. Avant 2013, chaque travail mentionné ci-dessus utilisait
un ensemble de données différent (avec un nombre différent de classes et de conditions
d’enregistrement). Le premier ensemble de données sur DCASE a été publié en 2013, associé
a une évaluation publique des méthodes CSA. Les travaux antérieurs a DCASE 2013 étaient
généralement réalisés avec des données variables (la qualité du microphone, les types et
le nombre de classes en sont quelques exemples). En conséquence, la plupart des ceuvres
ont été évaluées en utilisant différentes bases de données d’enregistrements. Le jeu de
données de défi DCASE, dont l'objectif principal était de soutenir la reproductibilité et les
comparaisons avec d’autres solutions, a abordé exactement ce probleme.
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Figure 2: La courbe montre la précision moyenne avec des intervalles de confiance (IC) de 95% sur
une validation croisée de 5 pour I’ensemble de données DCASE 2013. Dans les cercles
bleus, les valeurs de I'ensemble d’évaluation, dont la ligne de base est également exprimée
par une ligne bleue; dans les étoiles rouges les valeurs du développement avec la ligne de
base exprimée en ligne rouge pointillée. Pour certains systemes, les IC ne sont pas fournis
dans la description de I'ensemble de développement et n’ont pas été signalés.

DCASE 2013 résultats

Le tableau 2 montre une différence significative entre les résultats de 1’évaluation et les
performances de 1’ensemble de développement. L’abréviation des travaux soumis est re-
portée dans la figure 2. Certaines méthodes étaient probablement surimposées aux données
de développement. En général, les meilleurs systémes (LTT, RNH) ont amélioré les perfor-
mances dans la phase d’évaluation. Un nombre important de systemes fonctionnent mieux
que la ligne de base et méme dans le cas d"une précision similaire, les systémes ELF ou KH
devraient étre préférés pour un intervalle de confidence inférieure.

Par conséquent, les performances et les méthodes sont fortement corrélées. A I’exception
des systemes ELF et CHR, tous les autres utilisent des classificateurs discriminatifs (SVM,
arbre binaire). Sur le plan des caractéristiques, les MFCC sont les plus adoptés. Parmi
plusieurs stratégies de test, le vote majoritaire semble étre le plus efficace permettant
d’intégrer les décisions dans le temps. Ceci suggere qu'une scéne acoustique est détectée de
maniere fiable a 30s, comme on le trouve dans [38].

En raison de sa large adoption par de nombreux systémes soumis, SVM ne fait pas la
différence en termes de performance finale. En effet, en analysant les trois meilleurs systémes,
les deux systemes RG et RNH proposent des fonctionnalités adaptées a CSA: la premiere
en capturant des structures temporelles en utilisant une représentation d’images basée sur
CQT; le second en quantifiant la récurrence des MFCC consécutifs. L'idée d’exploiter des
spectrogrammes temps-fréquence est commune a d’autres systéemes (KH, PE, NHL, LTT)
suggérant que l'information temporelle est pertinente pour la tache CSA.

D’un point de vue global, le fait que seulement quelques systémes surpassent la base
prouve la difficulté de la tdche pour une quantité modeste de données. De plus, il semble
qu'un niveau de performance similaire obtenu dans d’autres domaines (tels que la recon-
naissance de la parole ou la classification des genres musicaux) pourrait étre atteint a partir
d’une enquéte plus approfondie sur les caractéristiques adaptées a CSA.

MODELES TEMPS-FREQUENCE

Presque toutes les approches de I'CSA utilisent des caractéristiques traditionnelles congues
principalement pour les applications de traitement de la parole telles que la reconnaissance
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de la parole ou du locuteur. Méme ainsi, les expériences des chapitres précédents ont montré
que ces caractéristiques peuvent ne pas étre suffisamment discriminantes pour la tdiche CSA.
Voici les principaux inconvénients des systemes CSA actuels:

1. ils ne capturent pas les informations globales et locales. Les caractéristiques détermi-
nent si un systeme représente une information de scene générique (telle que I'énergie
globale, I’enveloppe spectrale, etc.) ou s’il décrit une variation relative locale (comme
BER, RMS). L'utilisation de I'information mondiale et locale s’est avérée efficace pour
la littérature d’CSA [34, 45], méme s’il n’existe pas d’approche globale;

2. ils sont basés sur des fonctionnalités non adaptées a CSA. Par exemple, les MFCC
restent le choix standard dans de nombreux systemes CSA. Les MFCC ne capturent
que les variations a court terme avec une information dynamique minimale, tandis
que la corrélation dans le domaine temporel peut aider a différencier les différentes
sceénes. A titre d’exemple, une approche prometteuse [33] représente une structure
acoustique complexe avec des caractéristiques a la fois dans l’espace temps et dans
I'espace fréquence. Intuitivement, les caractéristiques spectro-temporelles devraient
étre considérées comme une alternative aux approches standard basées sur le MFCC;

3. ils impliquent une structure temporelle méme en présence d’une séquence de sons
clairsemée et non ordonnée. Contrairement aux signaux de parole, ot une structure
temporelle forte est déterminée par la séquence téléphonique, CSA est caractérisée par
une structure temporelle relativement faible. Les événements composant une scéne
peuvent survenir a n‘importe quel moment et dans n’importe quel ordre et durée.
Comme nous 1’avons montré dans [37], les auditeurs humains classent une scéne par
la présence d"un son particulier. Cela suggere que se concentrer sur la présence de
certains sons peut améliorer les performances, comme indiqué dans [12].

Local binary patterns (LBP)

L’idée originale de LBP est décrite dans [93]: 'opérateur représente des images texturales
complexes d'une maniere simple et pratique a travers le seuillage binaire des voisins
environnants de chaque pixel. Chaque bloc autour d’un pixel fournit un nombre binaire qui
exprime les relations des pixels par rapport au pixel central: si la différence des voisins et
du pixel central est négative, le résultat est o sinon il est 1. Un histogramme h représente la
fréquence des nombres binaires dans chaque bloc. L'histogramme lui-méme exprime I'image
(ou une partie de celle-ci) comme les occurrences de motifs binaires trouvés dans I'image.
L’application de LBP aux spectrogrammes nécessite une certaine adaptation. Chaque bac
du spectrogramme refléte la quantité d’énergie présente a proximité des intervalles de
temps et de fréquence spécifiques. Les spectrogrammes, par construction, sont caractérisés
par des fluctuations locales de la poubelle (a savoir des poubelles qui peuvent varier
de maniere significative dans une zone locale), ce qui peut dégrader la représentation
des caractéristiques LBP. LBP est fortement affectée par les fluctuations des bacs dans le
voisinage qui peuvent en effet changer radicalement le code binaire LBP. Dans ’analyse
LBP, ces fluctuations sont des transitions rapides dans un code LBP de 1 & o et vice-versa.

Ainsi, l'interpolation des valeurs de bin aide a atténuer 1'effet de ces fluctuations en
lissant globalement les blocs (figure 3). Une autre stratégie pour ajouter de la robustesse a
LBP est de considérer uniquement les codes LBP pour lesquels le nombre de transitions
entre o et 1 est inférieur ou égal a 2. Ce sous-ensemble de LBP représente les modeles dits
uniformes. Les motifs non uniformes restants sont souvent regroupés et considérés comme
un motif non uniforme unique e distinct.
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Figure 3: Du bloc spectrogramme a 'histogramme LBP: & partir du coin supérieur gauche de I'image,
le bloc spectrogramme est analysé en utilisant LPB8,2 avec 8 voisins et rayon égal a 2;
le code binaire local est ensuite généré; enfin le code binaire est mis a jour dans la case
correspondante de 1’histogramme.
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Figure 4: La courbe montre la précision moyenne avec des intervalles de confiance (IC) de 95% sur
une validation croisée de 5 pour 1’ensemble de données DCASE 2013. Dans les cercles
bleus, les valeurs de I'ensemble d’évaluation, dont la ligne de base est également exprimée
par une ligne bleue; dans les étoiles rouges, les valeurs de 'ensemble de développement
avec la ligne de base exprimée en ligne rouge pointillée. A I’exception de la ligne de base
et de la RNH, les autres systémes ont été proposés dans ce travail.

Les systemes LBP proposés sont comparés aux systémes de pointe de la Fig. 5. Les LBP
atteignent une précision de 73%, soit 18% de mieux que la base de référence MFCC. En
outre, remplacer RQA dans le systeme RNH donne une précision de 79%. La LBP combinée
a des caractéristiques basées sur 1’énergie (BER et RMS) atteint une précision de 72%.

A premiére vue, les fonctionnalités basées sur le protocole LBP surpassent les fonction-
nalités MFCC-noCo pour tous les jeux de données. L'ajout de fonctionnalités RMS et BER a
LBP augmente encore les performances, atteignant la meilleure précision pour les jeux de
données DCASE 2013 dev, NXP et Rouen. Pour les ensembles de données plus volumineux
tels que NXP et Rouen, la configuration LBP + RMS-BASED + BER atteint respectivement
93(:70 et 88%.

En particulier, pour I'ensemble de données de Rouen, les résultats sont comparables a
la précision de 87% rapportée dans [33], qui utilise des techniques de traitement d’image
appliquées a une représentation temps-fréquence. Le systeme MFCC-RQA-goo reste le
deuxieme meilleur systeme pour 1'ensemble de données DCASE 2013 (eval) mais il se
généralise mal a d’autres ensembles de données. Etonnamment, pour les ensembles de
données NXP et Rouen, I'ajout de RQA aux entités MFCC n’a aucun impact. Le systeme de
livre de codes LBP atteint une précision de 9o% pour I'ensemble de données NXP, tandis
que lorsqu’il est combiné avec MFCC, il améliore encore les performances, atteignant la
précision la plus élevée atteinte pour 1’ensemble d’évaluation DCASE 2013. Enfin, le systéme
BER + RMS + RMS semble étre le plus cohérent parmi les quatre ensembles de données.

Convolutional neural network

La littérature de I'CSA montre que la majorité des approches CSA utilisent des fonctionnal-
ités développées pour d’autres taches connexes telles que la reconnaissance de la parole
ou de la musique (revue de la littérature au chapitre 2). Des travaux récents ont exploré
l"utilisation de caractéristiques qui capturent la corrélation temps-fréquence. Certains de
ces travaux s’appuient sur des méthodes populaires dans d’autres domaines bidimen-
sionnels tels que le traitement d’image. LBP, par exemple, représente un spectrogramme
audio avec un histogramme des motifs les plus fréquents [98]. De méme, HOG code la
direction des variations dans les spectrogrammes a base de CQT [33]. Aprés avoir été
appliquées avec succeés a d’autres probléemes connexes, des techniques d’apprentissage
en profondeur [6] sont en train d’émerger [99]. Les réseaux neuronaux profonds (DNN)
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sont capables d’identifier et d’extraire des caractéristiques discriminantes optimisées a
partir des données d’apprentissage et offrent ainsi une alternative aux fonctionnalités arti-
sanales. De nombreuses architectures et représentations d’entrée de données ont été étudiées
pour une multitude d’applications différentes telles que la reconnaissance d’image et de
reconnaissance vocale [100, 101].

Alors que la premiére étude des approches DNN de 1'CSA [99] a montré des résultats
prometteurs, le travail était basé sur les caractéristiques du MFCC. Ainsi, le bénéfice potentiel
de l'apprentissage en profondeur était encore limité par 1'utilisation initiale des MFCC. Cette
partie présente les travaux expérimentaux avec une approche particuliere de ’apprentissage
en profondeur impliquant des réseaux de neurones convolutionnels (CNN). Les principales
raisons de ce choix sont (i) la possibilité de remplacer les caractéristiques artisanales par des
caractéristiques apprises automatiquement et (ii) la possibilité d’utiliser des représentations
temps-fréquence comme entrées du réseau, en accord avec les recherches antérieures sur
LBP spectro-temporelle.

Les réseaux CNN ont une architecture de réseau profonde et multicouche. Différemment
des MFCC qui décorrélent les données avec le DCT, CNN prend en entrée le spectro-
gramme log-mel filtré imitant un comportement de traitement d’image. Dans la couche
convolutionnelle, chaque unité cachée n’est pas connectée a toutes les entrées de la couche
précédente, mais uniquement a une zone de l'espace d’entrée original, appelée champ
réceptif. Ces petites parties de tout 1’espace d’entrée sont connectées aux unités cachées
a travers les poids w et bias b. Cette opération est équivalente a un traitement de filtre
convolutif. L'architecture proposée dans ce travail est illustrée a la Fig. 6. Elle est composée
d’une couche d’entrée, d"une pile de couches convolutionelles et de regroupement, d'une
couche cachée entierement connectée et d'une couche de sortie finale. Les CNN s’appuient
sur des opérations de convolution et de regroupement: la couche convolutionnelle applique
un ensemble de filtres sur une partie de 'entrée dont les filtres sont partagés dans tout
I'espace d’entrée; la mise en commun peut étre considérée comme une opération de sous-
échantillonnage qui se concentre davantage sur le modele lui-méme que sur I'emplacement
exact dans I'entrée. Cela ajoute de la robustesse aux petites modifications et traductions dans
I'espace d’entrée. Une architecture profonde réplique ces opérations dans une pile. De cette
maniere, les filtres de chaque couche capturent des motifs & un niveau d’abstraction plus
élevé, car ils travaillent sur des entrées de résolution inférieure provenant de la couche de
regroupement. Finalement, la couche entierement connectée connecte les unités provenant
de toutes les positions locales pour effectuer une classification globale de 1’entrée. Comme
pour les histogrammes LBP, les entrées du spectrogramme initial sont représentées par la
combinaison de leurs composantes locales.

Dans la section suivante, un examen plus détaillé des meilleures méthodes est présenté.
Les noms des soumissions sont les mémes que ceux utilisés dans les résultats DCASE 2016
de la figure 6. Le premier systéeme Battaglino_1 proposé a atteint une précision de 80%
en utilisant deux couches convolutives sans normalisation de lot. Le deuxieme systeme
Battaglino_2 adopte la normalisation par lots et une forme de filtre carré 5 x 5. Avec une
précision de 5% inférieure a celle du meilleur systeme (89,7%), l’architecture profonde
proposée est toujours capable de surpasser un systeme MFCC-GMM standard grace a
I'apprentissage automatique de fonctions significatives.

CSA COMME PROBLEME DE CLASSIFICATION OUVERT
Le probléme de la classification en CSA a été vu jusqu’a présent comme celui d’attribuer a

une scéne acoustique une étiquette qui correspond & un ensemble fermé de classes. Si le
classificateur ne connait que deux sorties dans I’ensemble d’apprentissage (par exemple
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Figure 5: Un exemple d’architecture CNN étudiée dans ce travail: ’entrée est un spectrogramme
statique et dynamique a 2 canaux. Ils sont suivis de deux couches de convolution et de
regroupement empilées. Les couches entierement connectées et en sortie produisent les
probabilités des données d’entrée appartenant a chaque classe acoustique.
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Figure 6: Résultats sur I'ensemble d’évaluation DCASE 2016. Le systéeme de référence a une précision
globale de 77,2% et il est indiqué par une ligne bleue continue. Le nom du systeme suit la
méme dénomination des soumissions de défi. En rouge continu, les systemes basés sur
CNN Battaglino_1 et Battaglino_2.
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voiture et bureau), il classera toutes les autres scénes comme 1'une des deux, méme si la
scéne ne correspond ni a une voiture ni a un bureau (par exemple un train). Du point de
vue de l'application, cette approche fera des affectations ou des décisions sans significa-
tion: exemples sont des applications qui basculent automatiquement la sonnerie en mode
silencieux dans le bureau pourrait se déclencher aussi bien dans le parc ou dans d’autres
environnements qui ne sont pas présents dans le ensemble fermé de classes.

Commun a tous les travaux passés, est I’évaluation des systemes CSA dans un scénario
fermé pour lequel des données d’entrainement sont disponibles pour chaque classe acous-
tique qui peut étre rencontrée pendant les essais. Cette stratégie d’évaluation ne reflete pas
les applications pratiques dans lesquelles des données hors-jeu peuvent étre facilement
rencontrées. Sans possibilité de rejeter les données acoustiques hors classe, leur affectation a
une classe cible entrainera une dégradation des performances de classification. En tant que
telles, les approches actuelles de 1’évaluation des systémes CSA ne définissent pas le niveau
de performance auquel on peut s’attendre dans la plupart des applications pratiques. De
maniére surprenante, aucun travail antérieur n’a étudié I'CSA dans un scénario ouvert.

Le concept de I'ouverture

Bien que le concept de probléemes ouvert fermé et est maintenant clairement défini, la
nécessité d’évaluer la performance de I'CSA dans un scénario ensemble ouvert conduit a un
concept relatif d’ouverture. Un systeme CSA est con¢u pour classer un certain nombre de
classes cibles. En plus des classes cibles, il existe un certain nombre de classes négatives
connues. Tout échantillon de données qui ne se trouve dans aucune de ces deux classes est
désigné comme un membre de la classe inconnue. Formellement, une évaluation en circuit
ouvert implique donc une combinaison de t classes cibles, k classes négatives connues et u
classes négatives inconnues. Leurs valeurs sont définies selon un scénario d’évaluation ou
un protocole comme suit: un ensemble de données d’apprentissage est composé de données
des classes t et k alors qu'un ensemble de données de test combine des données de classes
connues t et k avec des données supplémentaires de classes inconnues.

Le besoin d’évaluation et le scénario particulier imposent certaines contraintes sur les
valeurs de t, k et u. Tandis que u est, par sa définition méme, illimitée, 1’évaluation des
systemes CSA peut nécessiter la définition d’'un nombre théoriquement fini de classes
inconnues; la valeur de t, k et u peut refléter la difficulté d'une évaluation. Les taches
impliquant de plus grandes valeurs de u et k par rapport a t sont comparativement plus
difficiles que les taches avec des valeurs plus petites. En particulier, les classes négatives
inconnues sont comparativement plus difficiles a gérer que les classes négatives connues.
Un travail connexe [138] définit une mesure, appelée «ouverture», qui refléte la difficulté
d’une telle tache de classification. En s’appuyant sur le travail original susmentionné, une
mesure d’ouverture est ici exprimée en termes de t, k et u comme:

openness = 1 — _tok (57)
p Vit 27

Une ouverture de o induit un probleme d’ensemble fermé, alors qu'une ouverture de 1
est un probléme entierement ouvert. La racine carrée tempere les augmentations rapides
de 'ouverture avec seulement u modéré. Etant donné un nombre fixe de cibles t, le niveau
d’ouverture dépend de k et u: k, le niveau d’ouverture tendra a 1; quand u o le niveau
d’ouverture tendra vers o. Selon cette hypothese, la valeur d’ouverture concerne u, le
nombre de classes inconnues présentées lors des tests.

Alors que les ensembles de données publiquement disponibles pour 'CSA n’empéchent
pas une évaluation en ouvert, les protocoles d’évaluation standard sont tous fermés (u = o).
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Un classificateur adapté a I'open-set

Une approche particuliere, appelée description de données vectorielles de support (SVDD),
apprend une hyperspheére dans laquelle des échantillons cibles sont contenus [145]. Le but
est de représenter les données cibles dans le plus petit volume d’hypersphére possible. En
utilisant les données cibles uniquement a des fins de formation, le SVDD évite de surenchérir
sur les négatifs connus et offre ainsi une plus grande généralisation aux négatifs inconnus
dans un scénario ouvert. Un classificateur CSA traditionnel est montré pour surpasser un
classificateur de jeu ouvert dans un scénario largement fermé. Cependant, lorsque le degré
d’ouverture augmente, la performance se dégrade rapidement, tandis que la performance
de la nouvelle approche proposée pour 'CSA a cycle ouvert reste stable. Le classificateur
SVDD apprend une hyper sphéere uniquement a partir de données cibles. Tout en utilisant
des données cibles uniquement pour la formation, ce classificateur est moins susceptible
de se sur-ajuster aux données négatives connues et est donc plus fiable face a des données
négatives inconnues. Une nouvelle approche basée sur une formulation de détection, un
nouveau protocole et une métrique sont également introduits.

Une contribution supplémentaire concerne 1'importance du réglage des parametres du
modele. Deux méthodes sont comparées: 'une basée sur un critere basé sur la cible et l'autre,
consciente des échantillons non ciblés. Selon le type d’applications CSA, un critére peut étre
préféré a l’autre: avec un niveau d’ouverture de o,1, l'utilisation de I'ensemble de I’ensemble
de la formation (cible et non-cible, si disponible) est bénéfique; lorsque l'incertitude est
élevée, un critere basé uniquement sur les données d’entrainement semble plus robuste.

Les performances de l'algorithme SVDD sont corrélées au type de caractéristiques utilisées
pour décrire chaque scéne acoustique. A titre d’exemple, les fonctionnalités basées sur LBP
montrent de meilleures performances pour certaines classes alors que les fonctionnalités
basées sur MFCC conduisent a une meilleure fiabilité dans le cas de certaines autres
classes. Plus généralement, les approches ouvertes peuvent étre congues avec n’importe
quel classificateur, y compris les approches d’apprentissage en profondeur. Compte tenu
des travaux récents qui montrent la vulnérabilité des architectures d’apprentissage en
profondeur [156] a des échantillons spécifiquement congus, une évaluation en circuit ouvert
est nécessaire.

Les domaines comme classification d’image [157] et vérification de visage [158] ont
commencé a remettre en question les évaluations en série fermée. Il existe des preuves
que les approches actuelles d’apprentissage en profondeur montrent une performance trop
optimiste et qu’elles ne sont pas robustes aux échantillons inconnus pendant les tests [141].
Dans le CSA, la variabilité inter et intra-classe est si élevée que le scénario de I'ouverture
doit étre pris en compte. L'évaluation future de I’ASC devrait tenir compte de ce scénario,
car elle fournit un cadre d’évaluation plus proche de la réalité. Le classificateur SVDD
est une solution possible au probleme de I’ouverture, mais d’autres aspects de I'open-set
devraient étre étudiés dans de futures recherches:

¢ une meilleure caractérisation de chaque scene acoustique (par exemple en utilisant des
architectures CNN pour extraire automatiquement des entités a partir de données);

¢ lintégration du risque d’ouverture dans la minimisation des erreurs (par exemple,
en remplagant la fonction soft max par une fonction open max, adaptée a I'open-set

[141]);

¢ l'exploitation d’échantillons non ciblés, lorsqu’ils sont disponibles (par exemple SVDD
qui tire parti des échantillons non ciblés [159]);

¢ détection de nouveauté d’échantillons inconnus avec la définition automatique de
nouvelles classes (par exemple détection de nouveauté basée sur les distances SVDD).
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Etant donné que le scénario prédominant du scénario d’utilisation de la NCP est ouvert,
il est a espérer que le point de vue proposé sur la NCP sera adopté par le milieu de la
recherche a l’avenir.

Résultats en open-set

Les résultats sont illustrés pour les jeux de données DCASE 2013 et Rouen 2015 dans les
Figs. 8 (a) et (b) respectivement. Les résultats du classificateur SVM sont illustrés par des
profils en pointillés-bleu. Ceux du classificateur SVDD sont illustrés par des profils rouge.
Pour chaque niveau d’ouverture, les résultats d’AUC sont moyennés sur toutes les classes
avec le méme niveau d’ouverture. Les barres verticales de la figure 7 refletent 1’écart-type
AUC sur ces classes.

Des tendances similaires sont observées pour les deux ensembles de données. A mesure
que 'ouverture augmente, la performance du classificateur SVM se dégrade, passant de
95% a 60% pour l’ensemble de données DCASE 2013 et de 90% a 50% pour 'ensemble de
données Rouen 2015. En revanche, les résultats du classificateur SVDD restent relativement
stables pour les deux ensembles de données, mesurant respectivement 80% et 85% de 1'CSA
pour les jeux de données DCASE 2013 et Rouen 2015.

Conformément aux résultats illustrés sur la figure 7, le classificateur SVDD surpasse le
classificateur SVM. Cependant, un plus grand intérét est la variation de performance pour
différentes compositions de k classes négatives connues, encore illustrées en termes d’écart-
type avec des barres verticales. Alors que la performance du classificateur SVM est affectée
par une combinaison spécifique de k classes négatives connues, celle du classificateur SVDD
est relativement non affectée.

CONCLUSION

La recherche sur les particularités de I'CSA est le sujet que l'auteur a tenté d’étudier tout au
long de la these. Des vues offertes a ce sujet, quelques conclusions générales sont dérivées.
IIs sont détaillés comme suit:

¢ CSA est une tache tres complexe d’un point de vue acoustique et taxonomique. Des
scénes acoustiques similaires peuvent étre classées sous deux concepts différents
de haut niveau (par exemple, rue calme et parc) alors que le méme concept peut
contenir des scénes acoustiques tres différentes (par exemple, une voiture sport et
une voiture électrique) . Un ensemble de données complet qui capterait une variation
serait cotiteux et difficile a collecter. De plus, obtenir un accord de la communauté sur
une taxonomie commune contient aussi un grand défi;

* une scéne acoustique a une structure temporelle faible. Des sons proéminents peuvent
apparaitre dans n'importe quel ordre, de sorte que les méthodes qui modélisent une
évolution temporelle ne seront pas adaptées pour représenter cette scéne temporelle-
ment non structurée. Les systemes basés sur les LBP ou les CNN reposent sur la
présence de modeles spécifiques plutdt que sur leur évolution temporelle. Cette idée
peut étre vue sous la perspective « bottom-up » (Chapitre 2). Une perspective CSA
regroupe différentes méthodes sous 1'idée commune que les descripteurs audio de
bas niveau (dans le cas des LBP et CNN, les patterns audio) composent toute la scéne
acoustique;

* une scéne acoustique peut étre caractérisée par des motifs spectro-temporels, qui
extraient des informations de la représentation temps-fréquence. La nature de ces
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Figure 7: Tracés de l'aire sous la courbe caractéristique de réception (AUC) par rapport a 1'ouverture

pour (a) ensemble d’évaluation DCASE 2013 et (b) ensembles de données Rouen 2015 pour
les classificateurs SVM (profils en pointillés bleus) et SVDD (profils rouges-rouges). L'écart
type est illustré par des barres verticales.
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motifs peut étre décidée a priori (par exemple, LBP) ou automatiquement extraite des
données (par exemple CNN). Ce qui est différent des caractéristiques traditionnelles
(par exemple MFCCs), est la corrélation significative en temps et en fréquence montrant
qu'un descripteur unifié en temps et en fréquence peut obtenir un haut niveau de
performance;

® CSA est un probleme de classification ouvert. Avant d’effectuer une classification,
un systéme CSA robuste doit d’abord déterminer si la scéne est dans 1'ensemble
des classes connues ou l'identifier comme inconnue. Dans ce cas, le systeme CSA
effectuera la détection avant la classification.

La recherche dans le domaine CSA repose toujours sur un scénario supervisé ot les
étiquettes et les données doivent étre fournies. Ce paradigme supervisé est tres inefficace
lorsque la quantité de données d’apprentissage représente tres mal la vraie variabilité
des scenes acoustiques. Il est recommandé que les recherches futures étudient différentes
approches, qui ne dépendent pas entiérement de données étiquetées. Dans ce sens, ap-
prendre a partir de données faiblement annotées provenant d’autres domaines (vidéo,
événement audio) est une option possible. Dans une perspective similaire, les approches
d’apprentissage actif continu devraient étre considérées comme une alternative aux ap-
proches supervisées existantes. Les solutions CSA peuvent avoir acces (via un microphone)
a une quantité essentiellement infinie de données non étiquetées, mais 1'étiquetage de ces
données est cotiteux. Une approche semi-supervisée telle que 1'apprentissage actif [160]
peut sélectionner un sous-ensemble de telles données a étiqueter automatiquement. Une
fois que I'échantillon a été étiqueté (a partir d’une interaction avec 1'utilisateur ou avec une
autre source d’information), les modeles de scéne peuvent étre recyclés ou ajustés.

Une autre piste de recherche peut impliquer I'apprentissage par transfert [161, 162] entre
domaines connexes. Par exemple, un systéeme congu pour détecter des événements audio
pourrait étre utilisé pour classer des scénes sans un réentrainement complet. Dans ce cas,
'objectif est de former un systeme CSA complet avec un jeu de données étiqueté a part
entiere utilisant les connaissances d’autres domaines (tels que la détection d’événements
audio).

mpte tenu de l'application réussie de modéles temps-fréquence, d’autres recherches
pourraient examiner un descripteur temps-fréquence-espace unifié incluant également les
informations spatiales. Cela pourrait étre fait en utilisant des entrées multicanaux pour les
CNN. A ce jour, tres peu de travaux ont abordé le probleme CSA en utilisant des approches
multi-microphones [54, 116] et, celui qui a un maximum de 2 microphones a considéré. Dans
ce sens, les travaux futurs devraient tenir compte des multi-microphones ou des matrices
de microphones.

En termes de recherche appliquée, on pense que les solutions a la tiche CSA nécessitent
des avancées dans les domaines suivants:

1. ouvrir les protocoles et les métriques pour une évaluation publique future. Afin
de réaliser le potentiel commercial de 'CSA et de réduire 1'écart entre la recherche
fondamentale et appliquée, la performance des solutions développées en laboratoire
doit étre confirmée par les utilisateurs ou par des tests sur le terrain;

2. robustesse aux enregistrements de haute qualité et de basse qualité. L'invariance d"une
mauvaise qualité d’enregistrement doit faire 1’objet d"une étude plus approfondie.

3. modéliser la complexité en termes de mémoire et de contraintes de calcul. Méme en
fournissant de bonnes performances de généralisation, les solutions d’apprentissage
en profondeur peuvent contenir des millions de parametres. Des travaux récents ont
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été présentés pour réduire le nombre de parametres dans un modéele CNN [163] et
devraient étre étudiés dans le contexte de 1'CSA;

4. stratégies en temps réel impliquant I’analyse de 1’audio en mode continu. En raison
des ressources limitées, les périphériques de faible puissance ne peuvent pas stocker
une quantité énorme d’audio. Cela signifie que les systemes CSA en temps réel doivent
utiliser un tampon d’échantillons audio limité pour extraire des fonctionnalités et
effectuer des prédictions. Une approche candidate possible peut utiliser des topologies
évolutives de réseaux neuronaux pour traiter des échantillons audio bruts directement
[164] de maniere continue en continu. Cela peut entrainer un compromis entre la
flexibilité (en termes de nombre de parametres réseau) et la performance;

5. dans le but de disposer d"un systéme fiable de reconnaissance du contexte acoustique,
les signaux provenant de capteurs hétérogénes (caméra, capteurs de mouvement,
capteurs de température) peuvent fournir une meilleure vue de 'environnement
environnant. Dans cette hypothese, il est clair que la fusion ou la combinaison de
sources d'information hétérogénes pourrait constituer une future piste d’investigation.

Enfin, la communauté CSA s’est développée au cours des dernieres années et attire
maintenant l'intérét des universités et de l'industrie. Afin de créer des applications CSA
utiles et utilisables, une synergie entre la recherche fondamentale et appliquée doit devenir
la voie standard pour la recherche future. On espére donc que 1’analyse présentée dans cette
these pourrait aider a orienter la recherche de I'CSA a ’avenir.
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