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ABSTRACT

A source separator is proposed based on a contrast

functional recently introduced. This contrast is not
squaring the sample cumulants, which allows a reduced
variance on the estimated separating matrix. In fact, it

is shown by extensive computer experiments how this
contrast compares with JADE, and with the contrast
squaring sample fourth-order cumulants. Then a proce-

dure is outlined that allows to compute the asymptotic
theoretical performances.

1. INTRODUCTION AND NOTATION

Notation. The following narrow band model, classical
in the context of array processing, is considered:

x = Am+ v = s+ v; (1)

where m and v are independent random vectors of di-

mension P and N , respectively, with values a priori
in the complex �eld, and with �nite moments up to
order 4; x stands for the observation, s for the signal

part in the observation (part of interest), m for source
complex envelopes, v for an additive noise with i.i.d.
components, not necessarily Gaussian (cv denotes the

noise kurtosis), and A for a N � P unknown matrix,
P � N . As usual in the source separation problem,
sources mi(t) are assumed to be non Gaussian, for at

least P � 1 of them, and to be mutually independent
up to order 4. The goal is to recover sources m, and
possibly the columns ai of A.

Denote C
jk

i`;z
= cumfzi; z

�

j
; z�

k
; z`g, C

j

i;z
=

cumfzi; z
�

j
g, the cumulants of variable z of orders 4

and 2, respectively; superscripts (�) and (y) represent
respectively complex conjugation and complex trans-
position. For convenience, one denotes cp = Cpp

pp;m
, the

source kurtosis. Also denote W = U B, aiming at in-
verting A, so that y = W x is an LS estimate of the
source vector, up to the standard indeterminacies [5].

However, the spatial matched �lter (SMF), Wsmf , is
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generally a better estimate of the sources, once W has
been estimated; in subsequent computer simulations,

the SMF will be used.
In practice, the whitening matrixB is �rst computed

from an estimate of the source covariance, R̂s. Next,
once B is �xed, the unitary part U is estimated by

maximizing one of the two functionals, aiming at max-
imizing the statistical independence of components yi:

�2(U ) =

PX
n=1

�
Cpp

pp;y

�2
; �1(U ) = �

PX
n=1

Cpp

pp;y
: (2)

It is known from [6] that �2 is a contrast, and from
[8] that �1 is a contrast if cp have the same sign, 1 �
p < P . In [8], it has been shown that the absolute
maximum of �1 can be computed analytically with a

reduced complexity.

B UA
x z ym s

v

Survey. Approaches that have been proposed to this
problem include: (i) adaptive algorithms [14] [13] [12]

[19], and closed-form solutions based on (ii) second or-
der statistics only [17] [16] [11], (iii) higher orders only
[9] [7], or (iv) making use of both second and higher

orders [10] [15] [18] [2] [6] [8]. The present submission
is related to the three latter references only.
Approaches based on contrast �2 [6], referred to as

\C2" in the remaining, have already shown an excellent
behavior compared to the other approaches [4]. The
goal of this paper is to report on performances of \C1"

approaches, based on �1 [8], and compare them with
JADE [2] denoted \J2", and with C2.
Contrasts. The main interest of maximizing a con-

trast, over cumulant matching techniques for instance,
is that the solution can pretend to some optimality in
presence of noise with unknown statistics (even non

Gaussian). Thus, contrasts are attractive in presence
of noise, or when statistics (e.g. cumulants) are esti-
mated over short data records. In addition, interfer-
ences may be incorporated in the non Gaussian noise

e�ect when sources are sought to be extracted.
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2. ACTUAL PERFORMANCE

In this section, we analyse, by computer simulations,
the performance ofC1 and compare it to that of J2 and
C2, recalling that it has been shown in [4] [5] that the

methods J2 and C2 have approximately the same per-
formance in most situations, provided that the number
of sources P is not over-estimated, while the perfor-

mance of J2 degrades with respect to that of C2 when
P is over- estimated. Note that the �gures 3 and 4 are
the results of the average over 10 independent realiza-
tions.

2.1. Performance measure

The performance is measured in terms of the follow-
ing matrix, where w

y

i
are rows of Wsmf :

SINRj[wi] =
varf(w

y

i
aj)mjg

varf
P

p 6=j
(w

y

i
ap)mpg+ varfw

y

i
vg

: (3)

The output yio that estimates source mj the best is
the one that maximizes SINRj [wi] over all indices i.
Assuming this estimate for every source leads to a P -

dimensional performance vector, SINRM, correspond-
ing to a maximal SINR for every source. This is indeed
the most natural criterion to quantitatively evaluate

the performance of source estimates, with the goal of
comparing source separators [5] [4].

Note that with the measure (3), in contrast with the
gap proposed in [6] [8], it might happen that the same
output estimates two di�erent source envelopes.

2.2. Results

Summary. After a great number of computer simu-

lations, we are able to conclude that, provided (i) the
number of sources in not over-estimated, (ii) the back-
ground noise is Gaussian, (iii) no source is Gaussian
and their kurtosis have the same sign, then the per-

formance of C1 is the same as that of J2 and C2,
whatever the kind of sources and the observation dura-
tion. In these cases, the illustration of the J2 and C2

methods performance with respect to the optimal ones,
presented in [5] [4] for several sources scenari, still holds
for C1. However, in the other cases, the C1 method

behaviour may signi�cantly di�er from J2 and C2, as
it is discussed and illustrated in the next sections.

In the �gures below, the line types associated to the
methods are: solid for J2, dashdotted for C2, and
dashed for C1, and the vertical scale is always in dB.

Sources with di�erent fourth-order cumulant

signs. In the presence of sources with di�erent kurtosis
signs, for a given value of the constant � in criterion (2)
and for a given source scenario, there is, for each source
taken separately, a value of its kurtosis ci over which

or under which the separation of this source from the

other by the C1 method fails. This value is, in particu-
lar, a function of �, of the SNR (Signal to Noise Ratio),

and of the modulus and sign of the source kurtosis, ci,
1 < i < P . This result is illustrated in �gure 1 which
shows, for P = 2, an Uniformly Linear Array (ULA)

of N = 4 sensors, and a Gaussian noise, the variation
of the steady-state SINRM1 [5], (it is the same for the
source 2), at the output of C1 as a function of c2, for

c1 = �2 and for sources whose input SNR is 10 dB.
Note the optimal separation of sources as the constant
� corresponds to the sign of the highest source kurtosis

modulus. In the other cases or when the sources have
kurtosis with the same modulus but with a di�erent
sign, the method C1 fails in separating the sources.
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Figure 1: SINRM1 as a function of c2, with P = 2, N = 4,

ULA, �1 = 0, �2 = 20 degrees, SNR = 10 dB, c1 = �2,

� = �1: solid, � = +1: dashdotted

Non Gaussian background noise. In the pres-

ence of a non Gaussian background noise, the steady
state performance of C1 becomes very poor as soon
as the absolute value of the noise kurtosis cv becomes
greater than a threshold which depends on several pa-

rameters, and which increases with the SNR and the
source kurtosis. However, the threshold associated
with C1 is much higher than that associated with J2

or C2, which proves that C1 is much more robust to
a non Gaussian noise than J2 and C2. This result is
illustrated in �gure 2 which shows the variation of the

SINRM1 at the output of C1, C2 and J2, as a func-
tion of cv, for P = 2 with SNR = 5 dB and for several
values of c1 = c2 = c. Note the very high robustness of

C1 to the non Gaussian noise with respect to J2 and
C2.

Presence of a Gaussian source. When one of
the sources is Gaussian or quasi- Gaussian, the perfor-
mance of C1 degrades with respect to that of J2 and

C2 and the performance degradation increases with
the input SNR of the sources and as the number of
independent snapshots K, used to estimate the data
statistics, decreases. These results are illustrated in

�gure 3 which shows the variations of the SINRM1 at
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Figure 2: SINRM1 at the output of C1, J2 and C2 as

a function of cv, ULA, N = 4, P = 2, �1 = 0, �2 = 10

degrees, SNR = 5 dB, c = �0:1: top, c = �1: bottom

the output of C1, J2 and C2 as a function of K, for
an ULA of 4 sensors receiving 2 sources, the second
one being Gaussian, and for several values of the input

SNR of the sources.

Over-estimation of the source number. When

the number of sources is over-estimated, the conver-
gence speed of the methods C1, J2 and C2 decreases.
In this case, the method C2 remains the most pow-

erful whereas J2 becomes the slowest. Thus, the per-
formance of C1, although lower than that of C2, is
still better than J2's. Figure 4 illustrates this result

for P = 2 sources, by showing the variations of the
SINRM1 (it is the same for SINRM2) at the output of
C1, J2 and C2 as a function of K, when the number

of estimated sources is 2 or 3.

3. ASYMPTOTIC ANALYSIS

It has been shown by Cardoso that J2 and C2 ulti-
mately reach the same performance, but he did not
compute explicitly the variance of the estimated matrix

U , as a function of the data length K. From this vari-
ance, on can also compute an asymptotical expression
for the SINR matrix, that could serve as a reference in

the calculation of actual performance. This cannot be
reported for reasons of space.

But the principle can be outlined as follows: station-
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Figure 3: SINRM1 at the output of C1, J2 and C2 as a

function of K, with ULA N = 4, P = 2, �1 = 0, �2 = 20

degrees, SNR = 10, 30 dB, c1 = �1, c2 = 0

ary matrices of a criterion �(U ) satisfy a relation:

h(U; 
) = 0; (4)

where 
 denotes the set of sample cumulants of z that
are utilized in the computation of �. A �rst order ex-
pansion can be explicitly computed because everything

is known in h(�; �), and leads to:

Gvec[U ] = Hvec[
]: (5)

The variance of Uij can thus be accessed by the for-

mula:

V arfvec[U ]g = G�H V arfvec[
]gHyG�y: (6)

This covariance can be computed once we know the
covariance of sample cumulants. Using McCullagh
bracket notation, and noting [�2]expr = expr + expr�,

this covariance takes the general form:

K V arfĈ
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Figure 4: SINRM1 at the output of C1, J2 and C2 as

a function of K, with ULA, N = 4, P = 2, P̂ = 2 or 3,

�1 = 0, �2 = 20 degrees, SNR = 10 dB, c1 = c2 = �1.
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Recall that in the circular case, the covariance of
sample cumulants has been given in [3]. One can check

out that the above indeed de
ates to the same kind of
formula in the latter case:

K V arfĈ
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; ĈJK

IL
g = C

jkJK

i`IL

+[�2][4]C
jkJ

iIL
CK

`

+[�2][4]CJK

iL
C
jk

I`
+CJK

i`
C
jk

IL
+ [8]C

jJ

iI
CkK

`L

+[16]C
jJ

iI
Ck

L
CK

`
+ [�2][2]C

jk

IL
CJ

i
CK

`

+[4]CJ

i
C
j

I
Ck

L
Ck

`

4. CONCLUDING REMARKS

The previous analysis shows that although the per-
formances of C1 are di�erent from those of J2 or
C2 in some situations; they remain very promising in

most practical cases. Besides, the implementation of
C1 seems less costly than that of C2 [8], which may
compensate its somewhat less attractive performances

with respect to C2. Comparisons with the theoretical
asymptotic limits will be reported in a future paper.
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